MS&E 246: Lecture 10 Repeated games

Ramesh Johari

What is a repeated game?

A repeated game is:

A dynamic game constructed by playing the same game over and over.

It is a dynamic game of imperfect information.

This lecture

- Finitely repeated games
- Infinitely repeated games
 - Trigger strategies
 - The folk theorem

Stage game

At each stage, the same game is played: the stage game G.

Assume:

- G is a simultaneous move game
- In G, player i has:
 - Action set A_i
 - Payoff $P_i(a_i, \mathbf{a}_{-i})$

Finitely repeated games

G(K): G is repeated K times

Information sets:

All players observe outcome of each stage.

What are:

strategies? payoffs? equilibria?

History and strategies

Period t *history* h_t :

$$h_t = (\mathbf{a}(0), ..., \mathbf{a}(t-1))$$
 where $\mathbf{a}(\tau) = \text{action profile played at stage } \tau$

Strategy s_i :

Choice of stage t action $s_i(h_t) \in A_i$ for each history h_t

i.e.
$$a_i(t) = s_i(h_t)$$

Payoffs

Assume payoff = *sum of stage game payoffs*

$$\Pi_i(\mathbf{s}) = \sum_{t=0}^{K-1} P_i(s_1(h_t), \dots, s_N(h_t))$$

Example: Prisoner's dilemma

Recall the Prisoner's dilemma:

Player 1

		defect	cooperate
Player 2	defect	(1,1)	(4,0)
	cooperate	(0,4)	(2,2)

Example: Prisoner's dilemma

Two volunteers

Five rounds

No communication allowed!

Round	1	2	3	4	5	Total
Player 1	1	1	1	1	1	5
Player 2	1	1	1	1	1	5

SPNE

Suppose \mathbf{a}^{NE} is a stage game NE. Any such NE gives a SPNE: Player i plays a_i^{NE} at every stage, regardless of history.

Question: Are there any other SPNE?

SPNE

How do we find SPNE of G(K)?

Observe:

Subgame starting after history h_t is identical to G(K - t)

SPNE: Unique stage game NE

Suppose G has a unique NE \mathbf{a}^{NE}

Then regardless of period K history h_K , last stage has unique NE \mathbf{a}^{NE}

$$\Rightarrow$$
 At SPNE, $s_i(h_K) = a_i^{NE}$

SPNE: Backward induction

At stage K - 1, $given s_{-i}(\cdot)$, player i chooses $s_i(h_{K-1})$ to maximize:

$$P_i(s_i(h_{K-1}), \mathbf{s}_{-i}(h_{K-1})) + P_i(\mathbf{s}(h_K))$$

payoff at stage K -1 payoff at stage K

SPNE: Backward induction

At stage K - 1, $given s_{-i}(\cdot)$, player i chooses $s_i(h_{K-1})$ to maximize:

$$P_i(s_i(h_{K-1}), \mathbf{s}_{-i}(h_{K-1})) + P_i(\mathbf{a}^{NE})$$

payoff at stage $K-1$ payoff at stage K

We know: at last stage, a^{NE} is played.

SPNE: Backward induction

At stage K - 1, $given s_{i}(\cdot)$, player i chooses $s_{i}(h_{K-1})$ to maximize:

$$P_i(s_i(h_{K-1}), \mathbf{s}_{-i}(h_{K-1}))$$

payoff at stage K -1

⇒ Stage game NE again!

SPNE: Conclusion

Theorem:

If stage game has unique NE a^{NE}, then finitely repeated game has unique SPNE:

$$s_i(h_t) = a_i^{\text{NE}} \text{ for all } h_t$$

Example: Prisoner's dilemma

Moral: "Cooperate" should never be played.

Axelrod's tournament (1980):

Winning strategy was "tit for tat":

Cooperate if and only if your opponent did so at the last stage

SPNE: Multiple stage game NE

Note:

If multiple NE exist for stage game NE, there may exist SPNE where actions are played that appear in no stage game NE

(See Gibbons, 2.3.A)

Infinitely repeated games

 History, strategy definitions same as finitely repeated games

• Payoffs:

Sum might not be finite!

Discounting

Define payoff as:

$$\Pi_i(\mathbf{s}) = (1 - \delta) \sum_{t=0}^{\infty} \delta^t P_i(s_1(h_t), \dots, s_N(h_t))$$

i.e., discounted sum of stage game payoffs. This game is denoted $G(\delta, \infty)$

(*Note:* $(1 - \delta)$ is a normalization)

Discounting

Two interpretations:

1. Future payoffs worth less than today's payoffs

2. Total # of stages is a geometric random variable

Folk theorems

 Major problem with infinitely repeated games:

If players are patient enough, SPNE can achieve "any" reasonable payoffs.

Consider the following strategies, (s_1, s_2) :

- 1. Play C at first stage.
- 2. If $h_t = ((C,C), ..., (C,C)),$ then play C at stage t.

 Otherwise play D.

i.e., punish the other player for defecting

Note: $G(\delta, \infty)$ is *stationary*

Case 1: Consider any subgame where at least one player has defected in h_t .

Then (D,D) played forever.

This is NE for subgame, since (D,D) is stage game NE.

Step 2: Suppose
$$h_t = ((C,C), ..., (C,C))$$
.

Player 1's options:

- (a) Follow $s_1 \Rightarrow \text{play C forever}$
- (b) Deviate at time $t \Rightarrow play D$ forever

Given s_2 :

Playing C forever gives payoff:

$$(1-\delta) (P_1(C,C) + \delta P_1(C,C) + ...) = P_1(C,C)$$

Playing D forever gives payoff:

(1-
$$\delta$$
) ($P_1(D,C) + \delta P_1(D,D) + ...$)
= (1- δ) $P_1(D,C) + \delta P_1(D,D)$

So cooperate if and only if:

$$P_1(C,C) \ge (1 - \delta) P_1(D,C) + \delta P_1(D,D)$$

Note: if $P_1(C,C) > P_1(D,D)$, then this is always true for δ close to 1 Conclude:

If δ close to 1, then (s_1, s_2) is an SPNE

In our game:

Need
$$2 \ge (1 - \delta) 4 + \delta \Rightarrow \delta \ge 2/3$$

So cooperation can be sustained if time horizon is *finite but uncertain*.

Trigger strategies

In a (Nash) trigger strategy for player i:

- 1. Play a_i at first stage.
- 2. If $h_t = (\mathbf{a}, ..., \mathbf{a})$, then play a_i at stage t. Otherwise play a_i^{NE} .

Trigger strategies

If a Pareto dominates \mathbf{a}^{NE} , trigger strategies will be an SPNE for large enough δ

Formally: need

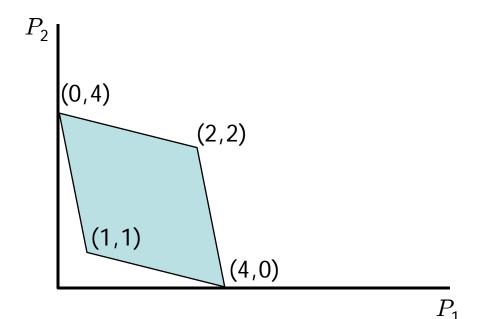
$$P_i(\mathbf{a}) > (1 - \delta) P_i(a_i', \mathbf{a}_{-i}) + \delta P_i(\mathbf{a}^{NE})$$

for all players i and actions a_i' .

Achievable payoffs

Achievable payoffs:

 $T = \text{Convex hull of } \{ (P_1(\mathbf{a}), P_2(\mathbf{a})) : a_i \in S_i \}$ e.g., in Prisoner's Dilemma:



Achievable payoffs and SPNE

A key result in repeated games:

Any "reasonable" achievable payoff can be realized in an SPNE of the repeated game, if players are patient enough.

Simple proof: generalize prisoner's dilemma.

Randomization

• To generalize, suppose before stage t all players observe i.i.d. uniform r.v. U_t

• History: $h_t = (\mathbf{a}(0), ..., \mathbf{a}(t-1), U_0, ..., U_t)$

• Players can use U_t to $\emph{coordinate}$ strategies at stage t

Randomization

E.g., suppose players want to achieve

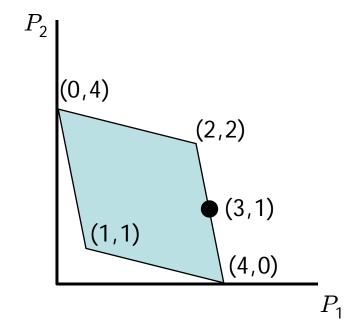
$$\mathbf{P} = \alpha \mathbf{P}(\mathbf{a}) + (1 - \alpha) \mathbf{P}(\mathbf{a}')$$

If $U_t \leq \alpha$: Player i plays a_i

If $U_t > \alpha$: Player i plays a_i

We'll call this the \mathbf{P} -achieving action for i. (Uniquely defined for all $\mathbf{P} \in T$.)

Randomization



E.g., Prisoner's Dilemma Let $\mathbf{P} = (3,1)$.

P-achieving actions:

Player 1 plays C if $U_t \leq 1/2$ and D if $U_t > 1/2$

Player 2 plays C if $U_t \leq 1/2$ and C if $U_t > 1/2$

Randomization and triggering

So now suppose $P \in T$ and:

$$P_i > P_i(\mathbf{a}^{NE})$$
 for all i

Trigger strategy:

Punish forever (by playing a_i^{NE}) if opponent deviates from **P**-achieving action

Randomization and triggering

Both players using this trigger strategy is again an SPNE for large enough δ .

Formally: need

(1 -
$$\delta$$
) $P_i(p_i, \mathbf{p}_{-i}) + \delta P_i$
> (1 - δ) $P_i(a_i', \mathbf{p}_{-i}) + \delta P_i(\mathbf{a}^{NE})$

for all players i and actions a_i' .

(Here p is \mathbf{P} -achieving action for player i, and \mathbf{p}_{-i} is \mathbf{P} -achieving action vector for all other players.)

Randomization and triggering

Both players using this trigger strategy is again an SPNE for large enough δ .

Formally: need

(1 -
$$\delta$$
) $P_i(p_i, \mathbf{p}_{-i}) + \delta P_i$
> (1 - δ) $P_i(a_i', \mathbf{p}_{-i}) + \delta P_i(\mathbf{a}^{NE})$

for all players i and actions a_i' .

(At time t:

LHS is payoff if player i does not deviate after seeing U_t ; RHS is payoff if player i deviates to $a_i{}'$ after seeing U_t)

Folk theorem

Theorem (Friedman, 1971): Fix a Nash equilibrium \mathbf{a}^{NE} , and $\mathbf{P} \in T$ such that $P_i > P_i(\mathbf{a}^{\text{NE}})$ for all i

Then for large enough δ , there exists an SPNE s such that:

$$\Pi_i(\mathbf{s}) = P_i$$

What is the *minimum* payoff Player 1 can guarantee himself?

$$\min_{a_2 \in A_2} \left\{ \max_{a_1 \in A_1} P_1(a_1, a_2) \right\}$$

What is the *minimum* payoff Player 1 can guarantee himself?

$$\min_{a_2 \in A_2} \left\{ \max_{a_1 \in A_1} P_1(a_1, a_2) \right\}$$

Given a_2 , this is the highest payoff player 1 can get...

What is the *minimum* payoff Player 1 can guarantee himself?

$$\min_{a_2 \in A_2} \left\{ \max_{a_1 \in A_1} P_1(a_1, a_2) \right\}$$

...so Player 1 can guarantee himself this payoff if he knows how Player 2 is punishing him

What is the *minimum* payoff Player 1 can guarantee himself?

$$\min_{a_2 \in A_2} \left\{ \max_{a_1 \in A_1} P_1(a_1, a_2) \right\}$$

This is m_1 , the *minimax value* of Player 1.

Generalization

Theorem (Fudenberg and Maskin, 1986): Folk theorem holds for all \mathbf{P} such that $P_i > m_i$ for all i

(Technical note:

This result requires that dimension of T = # of players)

Finite vs. infinite

Theorem (Benoit and Krishna, 1985):

Assume: for each i, we can find two NE \mathbf{a}^{NE} , $\underline{\mathbf{a}}^{\text{NE}}$ such that $P_i(\mathbf{a}^{\text{NE}}) > P_i(\underline{\mathbf{a}}^{\text{NE}})$

Then as $K \to \infty$, set of SPNE payoffs of G(K) approaches $\{ \mathbf{P} \in T : P_i > m_i \}$

(Same technical note as Fudenberg-Maskin applies)

Finite vs. infinite

In the unique Prisoner's Dilemma NE, only one NE exists

⇒ Benoit-Krishna result fails

Note at Prisoner's Dilemma NE, each player gets minimax value.

Summary

Repeated games are a simple way to model interaction over time.

- (1) In general, too many SPNE ⇒ not very good predictive model
- (2) However, can gain insight from *structure* of SPNE strategies