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What is a repeated game?

A repeated game is:

A dynamic game constructed by playing
the same game over and over.

It is a dynamic game of imperfect 
information.



This lecture

• Finitely repeated games

• Infinitely repeated games
• Trigger strategies
• The folk theorem



Stage game

At each stage, the same game is played:
the stage game G.

Assume:
• G is a simultaneous move game
• In G, player i has:

• Action set Ai

• Payoff Pi(ai, a-i)



Finitely repeated games

G(K) : G is repeated K times

Information sets:
All players observe outcome of each stage.

What are:
strategies?  payoffs?  equilibria?



History and strategies

Period t history ht: 
ht = (a(0), …, a(t-1)) where
a(τ) = action profile played at stage τ

Strategy si: 
Choice of stage t action si(ht) ∈ Ai

for each history ht  

i.e. ai(t) = si(ht)



Payoffs

Assume payoff = sum of stage game payoffs



Example: Prisoner’s dilemma

Recall the Prisoner’s dilemma:

(2,2)(0,4)cooperate

(4,0)(1,1)defect

cooperatedefect

Player 1

Player 2



Example: Prisoner’s dilemma

Two volunteers
Five rounds
No communication 

allowed!

511111Player 2

511111Player 1

Total54321Round



SPNE

Suppose aNE is a stage game NE.
Any such NE gives a SPNE:

Player i plays ai
NE at every stage, 

regardless of history.

Question: Are there any other SPNE?



SPNE

How do we find SPNE of G(K)?

Observe:

Subgame starting after history ht is 
identical to G(K - t)



SPNE: Unique stage game NE

Suppose G has a unique NE aNE

Then regardless of period K history hK ,
last stage has unique NE aNE

⇒ At SPNE, si(hK) = ai
NE



SPNE: Backward induction 

At stage K - 1, given s-i(·), player i chooses 
si(hK - 1) to maximize:

Pi(si(hK - 1), s-i(hK - 1))   +    Pi(s(hK))

payoff at stage K -1 payoff at stage K



SPNE: Backward induction 

At stage K - 1, given s-i(·), player i chooses 
si(hK - 1) to maximize:

Pi(si(hK - 1), s-i(hK - 1))   +    Pi(aNE)

payoff at stage K -1 payoff at stage K

We know: at last stage, aNE is played.



SPNE: Backward induction 

At stage K - 1, given s-i(·), player i chooses 
si(hK  - 1) to maximize:

Pi(si(hK - 1), s-i(hK - 1))

payoff at stage K -1

⇒ Stage game NE again!



SPNE: Conclusion

Theorem:
If stage game has unique NE aNE,
then finitely repeated game has
unique SPNE:

si(ht) = ai
NE for all ht



Example: Prisoner’s dilemma

Moral: “Cooperate” should never be played.

Axelrod’s tournament (1980):

Winning strategy was “tit for tat”:
Cooperate if and only if
your opponent did so at the last stage



SPNE: Multiple stage game NE

Note: 
If multiple NE exist for stage game NE,

there may exist SPNE where 
actions are played that appear in
no stage game NE

(See Gibbons, 2.3.A)



Infinitely repeated games

• History, strategy definitions same as 
finitely repeated games

• Payoffs:
Sum might not be finite!



Discounting

Define payoff as:

i.e., discounted sum of stage game payoffs
This game is denoted G(δ, ∞)

(Note: (1 - δ) is a normalization)



Discounting

Two interpretations:

1. Future payoffs worth less
than today’s payoffs

2. Total # of stages is a
geometric random variable



Folk theorems

• Major problem with infinitely repeated 
games:

If players are patient enough,
SPNE can achieve “any” reasonable 
payoffs.



Prisoner’s dilemma

Consider the following strategies, (s1, s2):
1. Play C at first stage.
2. If ht = ( (C,C), …, (C,C) ), 

then play C at stage t.
Otherwise play D.

i.e., punish the other player for defecting



Prisoner’s dilemma

Note: G(δ, ∞) is stationary

Case 1: Consider any subgame where at 
least one player has defected in ht.

Then (D,D) played forever.
This is NE for subgame, 

since (D,D) is stage game NE.



Prisoner’s dilemma

Step 2: Suppose ht = ( (C,C), …, (C,C) ).

Player 1’s options:
(a) Follow s1 ⇒ play C forever
(b) Deviate at time t ⇒ play D forever



Prisoner’s dilemma

Given s2:
Playing C forever gives payoff:

(1- δ) ( P1(C,C) + δ P1(C,C) + … ) = P1(C,C)

Playing D forever gives payoff:

(1- δ) ( P1(D,C) + δ P1(D,D) + … )

= (1-δ) P1(D,C) + δ P1(D,D)



Prisoner’s dilemma

So cooperate if and only if:

P1(C,C) ≥ (1 - δ) P1(D,C) + δ P1(D,D)

Note: if P1(C,C) > P1(D,D),
then this is always true for δ close to 1

Conclude:
If δ close to 1, then (s1, s2) is an SPNE



Prisoner’s dilemma

In our game:  

Need   2 ≥ (1 - δ) 4 + δ ⇒   δ ≥ 2/3

So cooperation can be sustained if 
time horizon is finite but uncertain.



Trigger strategies

In a (Nash) trigger strategy for player i :
1. Play ai at first stage.
2. If ht = ( a, …, a ), 

then play ai at stage t.
Otherwise play ai

NE.



Trigger strategies

If a Pareto dominates aNE, 
trigger strategies will be an SPNE
for large enough δ

Formally: need
Pi(a) > (1 - δ) Pi(ai’, a-i) + δ Pi(aNE)
for all players i and actions ai’.



Achievable payoffs

Achievable payoffs:
T = Convex hull of { ( P1(a), P2(a) ) : ai ∈ Si }

e.g., in Prisoner’s Dilemma:

(0,4)

(4,0)

(2,2)

(1,1)

P1

P2



Achievable payoffs and SPNE

A key result in repeated games:

Any “reasonable” achievable payoff can be 
realized in an SPNE of the repeated game,
if players are patient enough.

Simple proof: generalize prisoner’s dilemma.



Randomization

• To generalize, suppose before stage t
all players observe i.i.d. uniform r.v. Ut

• History:
ht = (a(0), …, a(t-1), U0, …, Ut )

• Players can use Ut to coordinate
strategies at stage t



Randomization

E.g., suppose players want to achieve
P = α P(a) + (1 - α) P(a’)

If Ut ≤ α : Player i plays ai

If Ut > α : Player i plays ai’

We’ll call this the P-achieving action for i.
(Uniquely defined for all P ∈ T.)



Randomization

E.g., Prisoner’s Dilemma
Let P = (3,1).
P‐achieving actions:
Player 1 plays C if Ut ≤ ½

and D if Ut > ½
Player 2 plays C if Ut ≤ ½

and C if Ut > ½

(0,4)

(4,0)

(2,2)

(1,1)

P1

P2

(3,1)



Randomization and triggering

So now suppose P ∈ T and:
Pi > Pi(aNE) for all i

Trigger strategy: 
Punish forever (by playing ai

NE) if opponent 
deviates from P-achieving action



Randomization and triggering

Both players using this trigger strategy
is again an SPNE for large enough δ.

Formally: need
(1 - δ) Pi(pi, p-i) + δ Pi

> (1 - δ) Pi(ai’, p-i) + δ Pi(aNE)
for all players i and actions ai’.
(Here p is P-achieving action for player i, and
p-i is P-achieving action vector for all other players.)



Randomization and triggering

Both players using this trigger strategy
is again an SPNE for large enough δ.

Formally: need
(1 - δ) Pi(pi, p-i) + δ Pi

> (1 - δ) Pi(ai’, p-i) + δ Pi(aNE)
for all players i and actions ai’.
(At time t:
LHS is payoff if player i does not deviate after seeing Ut; 
RHS is payoff if player i deviates to ai’ after seeing Ut)



Folk theorem

Theorem (Friedman, 1971): 
Fix a Nash equilibrium aNE, and
P ∈ T such that 

Pi > Pi(aNE)  for all i

Then for large enough δ,
there exists an SPNE s such that:

Πi(s) = Pi



Minimax payoffs

What is the minimum payoff
Player 1 can guarantee himself?



Minimax payoffs

What is the minimum payoff
Player 1 can guarantee himself?

Given a2, this is the
highest payoff

player 1 can get…



Minimax payoffs

What is the minimum payoff
Player 1 can guarantee himself?

…so Player 1 can guarantee
himself this payoff if he knows
how Player 2 is punishing him



Minimax payoffs

What is the minimum payoff
Player 1 can guarantee himself?

This is m1, the minimax value of Player 1.



Generalization

Theorem (Fudenberg and Maskin, 1986):
Folk theorem holds for all P such that
Pi > mi for all i

(Technical note:
This result requires that dimension of T = # of players)



Finite vs. infinite

Theorem (Benoit and Krishna, 1985):
Assume: for each i, we can find
two NE aNE, aNE such that Pi(aNE) > Pi(aNE)

Then as K →∞,
set of SPNE payoffs of G(K)
approaches { P ∈ T : Pi > mi }

(Same technical note as Fudenberg-Maskin applies)



Finite vs. infinite

In the unique Prisoner’s Dilemma NE,
only one NE exists

⇒ Benoit-Krishna result fails

Note at Prisoner’s Dilemma NE,
each player gets minimax value.



Summary

Repeated games are a simple way to model 
interaction over time.

(1) In general, too many SPNE ⇒
not very good predictive model

(2) However, can gain insight from
structure of SPNE strategies


