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Network routing

• Last lecture: a model where N is finite
• Now: assume N is very large
• Formally: Represent the set of users as a 

continuous interval, [0, B]
• B represents the total amount of flow
• Each user is infinitesimal

(also called nonatomic)



Network routing

We’ll consider networks of parallel links.

J = # of links; nj = flow on link j
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The network routing game

Strategy space of each user:
Links from s to d

Cost to each user:
Delay experienced on
chosen link



The network routing game

Formally:
Delay on link j = lj(nj) ≥ 0

(assume lj is strictly increasing)

Strategy space = { 1, …, J }
Payoff = lj(nj) if link j chosen



The network routing game

What is a pure NE in this game?
Each infinitesimal user must have chosen 

the best path available, given links 
chosen by all others.

Formally:  If nj > 0, then
lj(nj) ≤ lk(nk) for all k ≠ j



Wardrop equilibrium

A Wardrop equilibrium n is a pure NE of 
this game:

(1) ∑j nj = B
(2) If nj > 0, then lj(nj) ≤ lk(nk) for all k ≠ j

Does a WE exist?  Is it unique?



Wardrop equilibrium

Recall last lecture: we found a potential

Intuition: replace sum by an integral.



Wardrop equilibrium

Theorem:
There exists a unique WE n.  It is the 

unique solution to:

minimize ∑J
j = 1 ∫0

nj  lj(z) dz

subject to ∑J
j = 1 nj = B



Wardrop equilibrium: proof

Define V (n) =  ∑J
j = 1 ∫0

nj  lj(z) dz

Suppose n is optimal, and nj > 0.
Consider moving δ > 0 units of flow

to link k ≠ j.
What is the change in V ?



Wardrop equilibrium: proof

• The j’th term falls by: lj(nj) δ
• The k’th term increases by:  lk(nk) δ
Since n is optimal, this change cannot 

reduce the cost.
So:

lk(nk) δ - lj(nj) δ ≥ 0



Wardrop equilibrium: proof

• The j’th term falls by: lj(nj) δ
• The k’th term increases by: lk(nk) δ
Since n is optimal, this change cannot 

reduce the cost.
So:

lj(nj) ≤ lk(nk)  for all k ≠ j



Wardrop equilibrium: proof

Conclude:
Any optimal solution is a Wardrop 

equilibrium.
At least one optimal solution exists

(the feasible set is closed and bounded).
So at least one WE exists.



Wardrop equilibrium: proof

To check uniqueness:
Since lj is strictly increasing,

each term of V is strictly convex in nj

(strictly convex
⇔ for all α ∈ [0,1], x, x’,
f(α x + (1 - α) x’) < αf(x) + (1 - α) f(x’)
⇔ second derivative is strictly positive)



Wardrop equilibrium: proof

Since lj is strictly increasing,
each term of V is strictly convex in nj

First implication:
Any WE is also an optimal solution.
(Second order conditions

automatically hold.)



Wardrop equilibrium: proof

Since lj is strictly increasing,
each term of V is strictly convex in nj

Second implication:
If n ≠ n’ are two solutions, then

(n + n’)/2 is a feasible solution with 
strictly lower cost.

So optimal solution (and hence WE)
is unique.



Total delay

We again expect Wardrop equilibria
will not be Pareto efficient.

One way to find a Pareto efficient point:
minimize total delay.

Total delay = TD(n) = ∑j = 1
J nj lj(nj)



Total delay

Let’s assume lj is affine for each j, i.e.,
lj(nj) = aj + bj nj,   aj ≥ 0, bj ≥ 0

Then:
TD(n) = ∑j = 1

J aj nj + bj nj
2



Total delay

Let’s assume lj is affine for each j, i.e.,
lj(nj) = aj + bj nj,   aj ≥ 0, bj ≥ 0

Then:
TD(n) = ∑j = 1

J ∫0
nj (aj + 2 bj z ) dz



Total delay

Let’s assume lj is affine for each j, i.e.,
lj(nj) = aj + bj nj,   aj ≥ 0, bj ≥ 0

Then:
TD(n) = ∑j = 1

J ∫0
nj (aj + 2 bj z ) dz

So a flow allocation that minimizes delay is 
a WE with respect to different latencies:
mj(nj) = aj + 2 bj nj



Pigovian taxes

In general, WE does not
minimize total delay.

Pigovian taxes charge tolls to provide the 
right incentives to users.

(Named for the economist Pigou.)



Pigovian taxes

Suppose on link j,
a toll is charged, Tj(nj).

Also suppose that users value time and 
money identically.

Then a user of link j has payoff:
lj(nj) + Tj(nj)



Pigovian taxes

Notice that if we choose:
Tj(nj) = bj nj,
then 
lj(nj) + Tj(nj) = mj(nj)

Moral: A Nash equilibrium with these tolls 
minimizes total delay.



Pigovian taxes

More generally:
If lj is strictly convex and strictly 

increasing,
the Pigovian tax on link j is:

Tj(nj) = nj lj’(nj)



Efficiency: example

Example:

s d

l1(n1) = 1

l2(n2) = n2

1 unit 
of flow



Efficiency: example

Wardrop equilibrium:
n1 = 0, n2 = 1 ⇒
Total delay = 1

Minimizing total delay:
n1 = 1/2, n2 = 1/2, ⇒
Total delay = 3/4

So WE cost is 4/3 higher than the optimum.



Efficiency

When lj are affine,
the 1/3 increase in total delay is the
worst possible (over all choices of lj)
(Roughgarden and Tardos, 2002)



Other directions

More complex user models:
1. Users may not be infinitesimal
2. Users may have different preferences 

for money and time
3. Users may care about the variance of 

their delay

All these are much harder than WE.



Other directions

Partial optimization in the network:

ISPs frequently reroute traffic inside their 
own networks to improve performance.

How does this interact with selfish routing 
from source to destination?



Other directions

An ISP might set prices to maximize profit, 
not achieve minimum total delay.

How efficient is profit maximization?



Other directions

A service provider may wish to invest to 
improve the performance of existing 
links.

What is the equilibrium of the resulting 
game of investment, pricing, and routing?



Other directions

Service providers form contracts with each 
other to share traffic (e.g., peering).

What contracts should they use to:
-maximize profit?
-maximize network performance?


