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Ramesh Johari May 23, 2007

In this lecture we use Blackwell’s approachability theorem to formulate both external and in-
ternal regret minimizing algorithms. Our study is based primarily on the algorithms presented by
Hart and Mas-Colell [6, 7]; see also [3] for a summary.

Throughout the lecture we consider a finite two-player game,where each playeri has a finite
pure action setAi; let A =

∏

i Ai, and letA−i =
∏

j 6=i Aj. We letai denote a pure action for player
i, and letsi ∈ ∆(Ai) denote a mixed action for playeri. We will typically view si as a vector in
R

Ai , with si(ai) equal to the probability that playeri places onai. We letΠi(a) denote the payoff
to playeri when the composite pure action vector isa, and by an abuse of notation also letΠi(s)
denote the expected payoff to playeri when the composite mixed action vector iss.

The game is played repeatedly by the players. We lethT = (a0, . . . ,aT−1) denote the history
up to timeT . Theexternal regret of playeri against actionsi after historyhT is:

ERi(h
T ; si) =

T−1
∑

t=0

Πi(si,a
t
−i) − Πi(a

t
i,a

t
−i).

Theinternal regret of playeri of actionai against actiona′
i after historyhT is:

IRi(h
T ; ai, a

′
i) =

T−1
∑

t=0

I{at
i = ai}

(

Πi(a
′
i,a

t
−i) − Πi(ai,a

t
−i)
)

.

We letpT
i ∈ ∆(Ai) denote the marginal empirical distribution of playeri’s play up to timeT :

pT
i (ai) =

1

T

T−1
∑

t=0

I{at
i = ai}.

1 External Regret Minimization

Recall that a strategy for player 1 is external regret minimizing, or Hannan consistent, if regardless
of the (possibly history-dependent) strategy of player 2, there holds:

lim sup
T→∞

max
a1∈A1

1

T
ER1(h

T ; a1) ≤ 0.

To translate from external regret minimization to the Blackwell approachability setting, we
define a game with vector-valued payoffs where the payoff vector to player 1 is negative regret.
Formally, definêΠ : A1 × A2 → R

A1 by:

Π̂(a1, a2)(a
′
1) = Π1(a1, a2) − Π1(a

′
1, a2).
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Thus Π̂ measures the improvement in player 1’s payoff by playinga1 instead ofa′
1. The key

observation we require is the following:

ER1(h
T ; a1) = −

T−1
∑

t=0

Π̂(at
1, a

t
2)(a1).

Thus, in the notation of Lecture 13, we have:

Π̂T (a1) = − 1

T
ER1(h

T ; a1).

Hannan consistency is equivalent to requiring that for alla1 ∈ A1, there holds:

lim inf
T→∞

Π̂T (a1) ≥ 0.

We thus conclude:there exist Hannan consistent algorithms for player 1 if and only if the nonneg-
ative orthant S = {u : u(a1) ≥ 0, a1 ∈ A1} is approachable for player 1 in the zero-sum game
with vector-valued payoffs Π̂.

In one direction, we have already established the existenceof Hannan consistent algorithms for
player 1 (e.g., the multiplicative weights algorithm), so the nonnegative orthant must be approach-
able. Further, Blackwell’s approachability theorem then ensures that any halfspace containing the
orthant is also approachable.

More interesting, however, is the use of approachability toconstruct a Hannan consistent algo-
rithm for player 1. Our approach will be to build the strategysuggested in the proof of Blackwell’s
theorem (see Lecture 13), by “mixing” optimal strategies that arise from approachability of all
the halfspaces containingS. We start by first finding an optimal strategy for the scalar zero-sum
game induced by any halfspace containingS. Without loss of generality, we restrict attention to
halfspaces of the form:

H = {u : V · u ≥ 0},
where the vectorV is nonzero, and has all nonnegative components. Such a halfspace has the
property that its tangent hyperplane is also tangent toS. (Clearly approachability of all such
halfspaces implies approachability of any halfspace containing S.)

To ensure approachability ofH, we must find a mixed actions1 for player 1 such that:

min
a2∈A2

V · Π̂(s1, a2) ≥ 0. (1)

(Recall that this is theBlackwell condition.) From the definition of̂Π, the preceding relation holds
if and only if, for eacha2 ∈ A2:

Π1(s1, a2)

(

∑

a1∈A1

V (a1)

)

≥
∑

a1∈A1

V (a1)Π1(a1, a2).

If we choose:

s1(a1) =
V (a1)

∑

a′

1
∈A1

V (a′
1)

, (2)
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then (1) holds with equality for alla2 ∈ A2. (Note the denominator is positive sinceV 6= 0.)
We now use this construction to build the strategy suggestedin the proof of Blackwell’s ap-

proachability theorem. The idea is to projectΠ̂
T−1

onto the nonnegative orthant, and then play the

optimal actions1 for the resulting halfspace. Note thatPS(Π̂
T−1

)(a1) = [Π̂T−1(a1)]
+, so:

PS(Π̂
T−1

)(a1) − Π̂
T−1

(a1) =

[

1

T
ER1(h

T ; a1)

]+

.

Thus Blackwell’s strategy is as follows. At time0, player 1 plays any mixed action. At timeT , if

Π̂
T−1 ∈ S—i.e., if ER1(h

T ; a1) ≤ 0 for all a1—then player 1 can play according to any mixed

action. IfΠ̂
T−1 6∈ S, then player 1 plays the following mixed actionsT

1 :

sT
1 (a1) =

[

ER1(h
T ; a1)

]+

∑

a′

1
∈A1

[ER1(hT ; a′
1)]

+ , a1 ∈ A1.

The preceding expression follows from (2). From the proof ofthe approachability theorem, we
conclude that this strategy for player 1 ensures the averagevector payoff approaches the nonnega-
tive orthant; in other words, this is a Hannan consistent algorithm for player 1.

We make two remarks on this algorithm:

1. Notice that the mixed actionsT
1 depends on more than just the empirical distribution of player

2’s action—it also depends on the past history ofplayer 1’s play. Thus the algorithm just
constructed isnot a variant of fictitious play.

2. It is possible to provide a finite time bound on the regret ofthis algorithm, in the spirit of
the bounds proven in Lecture 11 for the multiplicative weights algorithm. In particular, it is
possible to show that if player 1 uses this algorithm, then:

E[max
a1∈A1

ER1(h
T ; a1)] ≤ O(

√

T |A1|).

(See [3] for details.)

2 Internal Regret Minimization

We now consider the same approach as the previous section, but for internal regret minimization.
Recall that a strategy for player 1 isinternal regret minimizing if regardless of the (possibly history-
dependent) strategy of player 2, there holds for alla1, a

′
1 ∈ A1

lim sup
T→∞

1

T
IR1(h

T ; a1, a
′
1) ≤ 0.

By analogy with the preceding section, we consider a vector-valued payoffΠ̂ : A1 × A2 →
R

A1×A1 defined as:

Π̂(a1, a2)(a
′
1, a

′′
1) = I{a1 = a′

1}(Π(a1, a2) − Π(a′′
1, a2)).

3



It then follows that:

Π̂T (a1, a
′
1) = − 1

T
IR1(h

T ; a1, a
′
1).

Thus internal regret minimization is equivalent to the requirement that for alla1, a
′
1 ∈ A1, there

holds:
lim inf
T→∞

Π̂T (a1, a
′
1) ≥ 0.

We conclude thatthere exist internal regret minimizing algorithms for player 1 if and only if the
nonnegative orthant S = {u : u(a1, a

′
1) ≥ 0, a1, a

′
1 ∈ A1} is approachable for player 1 in the

zero-sum game with vector-valued payoffs Π̂.
As in the preceding section, we use the strategy constructedin the approachability theorem to

present an internal regret minimizing algorithm for player1. We start by considering approacha-
bility of halfspaces of the form:

H = {u : V · u ≥ 0},
whereV is nonzero, and all components ofV are nonnegative. We wish to find a mixed actions1

for player 1 such that:
min
a2∈A2

V · Π̂(s1, a2) ≥ 0.

Fix a2 ∈ A2. Then the preceding expression is equivalent to:

∑

a′

1
,a′′

1
∈A1

V (a′
1, a

′′
1)
∑

a1∈A1

s1(a1)I{a1 = a′
1}(Π(a1, a2) − Π(a′′

1, a2)) ≥ 0.

Simplifying, the preceding expression is equivalent to therequirement that:

∑

a1,a′

1
∈A1

V (a1, a
′
1)s1(a1)Π(a1, a2) −

∑

a1,a′

1
∈A1

V (a′
1, a1)s1(a

′
1)Π(a1, a2) ≥ 0.

The preceding expression will hold with equality for alla2 ∈ A2 as long as for alla1 ∈ A1, there
holds:

∑

a′

1
∈A1

V (a1, a
′
1)s1(a1) − V (a′

1, a1)s1(a
′
1) = 0. (3)

Thus approachability ofH has been reduced to determining whether there exists a mixedstrategy
s1 such that (3) holds. Define theA1 × A1 matrixQ as:

Q(a1, a
′
1) = V (a1, a

′
1), if a1 6= a′

1; Q(a1, a1) = −
∑

a′

1
6=a1

V (a1, a
′
1). (4)

ThenQ is the rate matrix of a continuous time Markov chain on the finite state spaceA1, and such a
chain must have at least one invariant distribution, i.e., adistributions1 such thats1Q = 0; such an
invariant distribution is also a mixed action satisfying (3). This establishes thatH is approachable.

As in the preceding section, we can use this construction together with the strategy of the proof
of the approachability theorem to give an internal regret minimizing strategy for player 1. At time
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T , we project the average payoffΠ̂
T−1

onto the nonnegative orthantS, and use the optimal strategy
suggested by the resulting halfspace. We have:

PS(Π̂
T−1

)(a1, a
′
1) − Π̂

T−1
(a1, a

′
1) =

[

1

T
IR1(h

T ; a1, a
′
1)

]+

.

Thus whenΠ̂
T−1 6∈ S, player 1 plays a mixed actionsT

1 that is an invariant distribution for the
continuous time Markov chain with rate matrixQ defined as in (4), with:

V (a1, a
′
1) =

[

1

T
IR1(h

T ; a1, a
′
1)

]+

.

The approachability theorem then implies that if player 1 plays using this algorithm, the average
payoff approaches the nonnegative orthant; in other words,this algorithm is internal regret mini-
mizing. (A similar eigenvector calculation is used by Blum and Mansour to show that any external
regret minimizing algorithm can be efficiently “converted”into an internal regret minimizing al-
gorithm; see [1].)

We conclude by reinterpreting the algorithm via a slightly different presentation. Choose a
constantµ > supa1,a′

1

|Q(a1, a
′
1)|, and define:

P = I + Q/µ,

whereI is the identity matrix. ThenP is a stochastic matrix, i.e., all its entries are nonnegative
and all its rows sum to one; the former follows by choice ofµ, and the latter since all rows ofQ
sum to zero. ThusP is the transition matrix of a discrete time Markov chain on the finite state
spaceA1, and further, a mixed actions1 is an invariant distributions1 for this chain if and only if
it is an invariant distribution for the continuous time Markov chain with rate matrixQ.

If we write the components ofP explicitly in terms of the internal regrets, we find:

P (a1, a
′
1) =

1

µ

[

1

T
IR1(h

T ; a1, a
′
1)

]+

, if a′
1 6= a1;

P (a1, a1) = 1 −
∑

a′

1
6=a1

P (a1, a
′
1).

Hart and Mas-Colell view the preceding transition probabilities as a specification for repeated
play [6]. In particular, they consider an algorithm for player 1 wheresT

1 (a′
1) = P (aT−1

1 , a′
1).

Considering the expression above forP (a1, a
′
1), we see that this algorithm involves increasing

weight on pure actions for which internal regret is highagainst the most recently played pure
action. Hart and Mas-Colell refer to this algorithm as “regret matching.” (Note that this isnot the
algorithm constructed via Blackwell approachability above, where player 1 plays according to the
stationary distribution of the matrixP .) Hart and Mas-Colell observe that while regret matching
is not internal regret minimizing, if all players play according to the regret matching strategy,
then the resulting joint distribution of play converges to the set of correlated equilibria. This is
an elegant result in the theory of learning in games, becauseof the simplicity of regret matching.

5



Indeed, regret matching might be considered the simplest ofthe algorithms for which convergence
to correlated equilibria is guaranteed. Note, however, that it requires the strong assumption that all
players are using the same algorithm.

Additional remarks:

1. As before, observe that the internal regret minimizing algorithm constructed above also has
the property that it depends on the entire past history of both players’ actions (through the
regret vector).

2. It is possible to find finite time bounds for internal regretminimizing algorithms as well. The
best of these bounds are

√
2 higher than the corresponding bounds for their external regret

minimizing counterparts; thus, for example, the best achievable bound on internal regret (in
the general setting) at timeT is

√

T log |A1|. (Informally, this inflation occurs because the
set of “experts” we are checking against is of size|A1|2, rather than size|A1|; see [3] for
details.)

3. Clearly, internal regret minimization requires a more sophisticated algorithmic procedure
than external regret minimization; in particular, computing a stationary distribution typically
requires an eigenvector calculation.

3 Potential-Based Approachability

We conclude by briefly surveying a generalization of approachability that turns out to be quite
powerful; the approach we present here is studied in more detail by Hart and Mas-Colell [7] and
Cesa-Bianchi and Lugosi [2].

For definiteness, we fix attention on the external regret minimization setting, though the same
constructions can also be applied for internal regret minimization. We definêΠ as in Section 1,
and again letS be the nonnegative orthant. Suppose there exists a real-valued functionΦ(Π̂) with
the following properties:

1. There exists a monotonically increasing, concave functionφ such thatΦ(Π̂) =
∑

a1∈A1
φ(Π̂(a1)).

2. ForΠ̂ 6∈ S, there exists a mixed actions1 such that:

∇Φ(Π̂) · Π̂(s1, a2) ≥ 0, for all a2 ∈ A2. (5)

The idea in these assumptions is thatΦ measures the quality of the payoff vectorΠ̂. The first
condition ensures thatΦ resembles a sum of “utility functions” in each element ofΠ̂. The second
condition is a generalization of the Blackwell condition. Itrequires that ifΠ̂ 6∈ S, then there exists
a mixed action of player 1 that guarantees that the resultingpayoff to player 1 lies on the same side
of the subspace defined by the normal∇Φ(Π̂) as the nonnegative orthant. It is straightforward to
show that under conditions on the Hessian ofΦ, one can recreate a strategy similar to the proof
of Blackwell’s approachability theorem to ensure that the average payoff converges to the setS
almost surely [7, 2].
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One example of a potential is provided by:

φ(x) =

{

−1
2
x2, if x ≤ 0;

0, otherwise.

It is straightforward to check that using this potential, weobtain:

∇Φ(Π̂
T−1

)(a1) =

[

1

T
ER1(h

T ; a1)

]+

.

Thus the generalized Blackwell condition (5) is equivalent to the standard Blackwell condition (1),
with V (a1) = [(1/T )ER1(h

T ; a1)]
+.

Another example is provided by consideringφ(x) = −e−x/ε, for someε > 0. In this case:

∇Φ(Π̂
T−1

)(a1) =
1

ε
e(1/T )ER1(hT ;a1)/ε.

Following the analysis of Section 1, we see that a mixed action sT
1 satisfying (5) is given by:

sT
1 (a1) =

e(1/T )ER1(hT ;a1)/ε

∑

a′

1
∈A1

e(1/T )ER1(hT ;a1)/ε
=

eΠ1(a1,pT−1

2
)/ε

∑

a′

1
∈A1

eΠ1(a′

1
,pT−1

2
)/ε

.

The last equality follows by multiplying top and bottom byexp((1/T )
∑T−1

t=0 Π1(a
t
1, a

t
2)).

Thus using the exponential potential, we recover the logistic fictitious play of Fudenberg and
Levine [5], or equivalently, the multiplicative weights algorithm of Freund and Schapire [4]. We
conclude that the multiplicative weights algorithm can be recovered as a special case of algorithms
arising via Blackwell approachability. Note, however, thatgeneral stochastic fictitious play algo-
rithms will not emerge as special cases of algorithms constructed via the Blackwell condition; to
see this, note that stochastic fictitious play algorithms only involve responses to the empirical dis-
tribution of the opponent, while algorithms constructed via approachability generally involve the
entire past history of both players’ actions (as discussed above).
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