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Calibration is a concept that tries to formalize a notion of quality for forecasters. For example,
suppose a weatherman predicts each day whether the it will rain, or be sunny. Typically forecasters
will predict such events in terms of probabilities, i.e., “There is a 30% chance of rain.” Given only
the outcome that day, it is impossible to judge the quality ofsuch a forecast. However, if we
considerall days on which a forecaster said the probability of rain wasx%, it is reasonable to
expect that the fraction of such days on which it rained is exactly x%. This is precisely the notion
of calibration.

In this lecture we first define a notion of calibration that is appropriate for the study of games,
and then prove that calibration is essentially a generalization of internal regret minimization. For-
mally, we will show that playing a best response to a calibrated forecast of the opponent is an
internal regret minimizing strategy; and that using an internal regret minimizing algorithm, one
can easily build a calibrated forecaster. Our presentationis based primarily on the corresponding
paper of Foster and Vohra [2].

Throughout the lecture we consider a finite two-player game,where each playeri has a finite
pure action setAi; letA =

∏

i Ai, and letA−i =
∏

j 6=i Aj. We letai denote a pure action for player
i, and letsi ∈ ∆(Ai) denote a mixed action for playeri. We will typically view si as a vector in
R

Ai , with si(ai) equal to the probability that playeri places onai. We letΠi(a) denote the payoff
to playeri when the composite pure action vector isa, and by an abuse of notation also letΠi(s)
denote the expected payoff to playeri when the composite mixed action vector iss.

The game is played repeatedly by the players. We lethT = (a0, . . . ,aT−1) denote the history
up to timeT . Theinternal regretof playeri of actionai against actiona′i after historyhT is:

IRi(h
T ; ai, a

′
i) =

T−1
∑

t=0

I{ati = ai}
(

Πi(a
′
i,a

t
−i)− Πi(ai,a

t
−i)
)

.

We letqT ∈ ∆(A1 × A2) denote the joint empirical distribution of play play up to timeT − 1:

qT (a1, a2) =
1

T

T−1
∑

t=0

I{at1 = a1, a
t
2 = a2}.

1 Calibration

We assume that, at each timet, player 1 makes aforecastf t
12 ∈ ∆(A2) of the mixed action that

player 2 will play. We defineN(s2, T ) as the number of times that player 1 has forecasts2 in the
first T time steps:

N(s2, T ) =
T−1
∑

t=0

I{f t
12 = s2}.
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We defineρT1 (a2; s2) as the fraction of time that player 2 played actiona2, among those time
periods where player 1 forecasts2, up to timeT − 1:

ρT1 (a2; s2) =

∑T−1
t=0 I{f t

12 = s2, a
t
2 = a2}

∑T−1
t=0 I{f t

12 = s2}
.

(DefineρT1 (a2; s2) = 0 if the denominator in the preceding expression is zero.) We say that the
forecaster used by player 1 iscalibrated if the following limit holds almost surely, regardless of
the (possibly history-dependent) strategy used by player 2:

lim
T→∞

∑

s2∈∆(s2)

∣

∣ρT1 (a2; s2)− s2(a2)
∣

∣

(

N(s2, T )

T

)

= 0, for all a2 ∈ A2. (1)

(Since player 1 has made only finitely many forecasts up to timeT , the sum is well defined for all
finite T .) Thus we look at the limiting fraction of time that player 2 playsa2, whens2 is forecast.
Informally, on this subsequence of time periods, the fraction of time that player 2 playsa2 must
approachs2(a2). The sum weighted byN(s2, T )/T ensures uniformity of calibration in the limit;
i.e., the calibration error must approach zero uniformly over the forecasts chosen by player 1. (We
note that many other, typically weaker, formulations of calibration are often used in the literature;
we refer the reader to [1] for details.)

2 Calibration Implies Internal Regret Minimization

We start with the following simple theorem: best responses to a calibrated forecaster will minimize
internal regret.

Theorem 1 Suppose that player 1 uses a calibrated forecast of player 2’s play, and at each time
t plays a pure best response to this forecast; assume that tiesare broken according to a station-
ary and deterministic tiebreaking rule. Then the resultingstrategy for player 1 is internal regret
minimizing.

Proof. The proof idea is to note that calibration is a form of “internal regret minimization in
forecast space.” We will proceed by first grouping together all the forecasts that would lead to a
given mixed actions1 played by player 1, and then use this interpretation of calibration to establish
internal regret minimization.

Formally, givena1 ∈ A1, let F1(a1) ⊂ ∆(A2) be the set of mixed actions of player 2 for
which a1 is a best response (under the stationary, deterministic tiebreaking rule that has been
chosen). Note that

⋃

a1∈A1
F1(A1) = ∆(A2). Further, note thatF1(a1) ⊂ BR−1

1 (a1), where
BR1 : ∆(A2) → ∆(A1) is the best response map of player 1.
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We start with the following calculation:

qT (a1, a2) =
1

T

T−1
∑

t=0

I{at1 = a1, a
t
2 = a2}

=
1

T

T−1
∑

t=0

I{f t
12 ∈ F1(a1), a

t
2 = a2}

=
1

T

T−1
∑

t=0

∑

f∈F1(a1)

I{f t
12 = f, at2 = a2}

=
1

T

∑

f∈F1(a1)

ρT1 (a2; f)N(f, T )

=
1

T

∑

f∈F1(a1)

f(a2)N(f, T )+

∑

f∈F1(a1)

(

ρT1 (a2; f)− f(a2)
)

(

N(f, T )

T

)

.

The first equality follows by definition of the joint empirical distribution. The second equality uses
the fact that player 1 playsa1 if and only if the forecast lies inF1(a1). The fourth equality uses the
definitions ofρT1 andN .

In the last equality, notice that the second summation converges to zero almost surely asT →
∞, by the assumption of calibrated forecasting. Thus we have:

1

T
IR1(h

T ; a1, a
′
1) =

1

T

T−1
∑

t=0

I{at1 = a1}
(

Π1(a
′
1, a

t
2)− Π1(a1, a

t
2)
)

=
∑

a2∈A2

qT (a1, a2)(Π(a
′
1, a2)− Π(a1, a2))

leq
1

T

∑

a2∈A2

∑

f∈F1(a1)

f(a2)N(f, T )(Π(a′1, a2)− Π(a1, a2)) + εT

=
∑

f∈F1(a1)

(

N(f, T )

T

)

∑

a2∈A2

f(a2)(Π(a
′
1, a2)− Π(a1, a2)) + εT

=
∑

f∈F1(a1)

(

N(f, T )

T

)

(Π(a′1, f)− Π(a1, f)) + εT

≤ εT ,

whereεT is an error term that approaches zero asT → ∞. The first equality is the definition of
internal regret. The second equality follows by rewriting the first expression. The first inequality
follows by our expression forqT in terms of calibration error. The remaining equalities follow
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by rearranging terms. Finally, the last inequality followssince for everyf ∈ F1(a1), a1 is a best
response for player 1; thusΠ(a′1, f)− Π(a1, f) ≤ 0.

From the preceding we conclude that for alla1, a
′
1, there holds almost surely:

lim sup
T→∞

1

T
IR1(h

T ; a1, a
′
1) ≤ 0,

as required. 2

Remarks:

1. The original paper of Foster and Vohra actually establishes that if all players use the sug-
gested algorithm (via a calibrated forecaster), then play converges to the set of correlated
equilibria. Of course, this is a trivial consequence of the preceding result, since play con-
verges to the set of correlated equilibria if all players useinternal regret minimizing algo-
rithms.

2. Note that best response to the calibrated forecaster is a form of “fictitious play.” On other
hand, note that the marginal empirical distribution of the opponent need not be a calibrated
forecast, so standard fictitious play is (obviously) not calibrated. (We know this already,
since standard fictitious play need not even minimize external regret.) More generally, it is
not hard to show that no deterministic forecaster can be calibrated.

3 Internal Regret Minimization implies ε-Calibration

We now show that internal regret minimizing algorithms can be used to build calibrated forecasters,
establishing a form of equivalence between the two concepts(taken together with the last section).
For simplicity, we focus attention on the case where player 2has only two actions available:A2 =
{0, 1}. (This is also called the problem ofbinary sequence prediction.) In addition, rather than
asking for exact calibration, we only establish the weaker notion of ε-calibration; this is not an
enormous limitation, as it is possible to show (through an application of the doubling trick) that
the family ofε-calibrated forecasters we build can be used to build a single calibrated forecaster.

Since we are only predicting binary sequences, we interpreta forecast as the probability that the
next play of player 2 will be1; thus a forecast is a real number in[0, 1]. Using notation analogous
to the preceding section, defineρT1 (p) andN(p, T ) as follows:

N(p, T ) =
T−1
∑

t=0

I{f t
12 = p}; ρT1 (p) =

∑T−1
t=0 at2I{f

t
12 = p}

∑T−1
t=0 I{f t

12 = p}
.

Givenε > 0, we seek a forecaster that isε-calibrated, i.e., that satisfies the following almost surely,
regardless of the (possibly history-dependent) strategy of player 2:

lim sup
T→∞

∑

p∈[0,1]

∣

∣ρT1 (p)− p
∣

∣

(

N(p, T )

T

)

≤ ε.
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Again, the sum is well defined for every finiteT .
Our main idea is todiscretizethe forecast space. Fix a positive integerk, and suppose that

forecasts are chosen only from the setF = {0, 1/k, 2/k, . . . , (k − 1)/k, 1}. We consider a “fore-
casting game”, i.e., a game where the loss to player 1 when a forecastf ∈ F is made and player 2
playsa ∈ {0, 1} is:

ℓ(f, a) = (a− f)2.

(Equivalently, the payoff to player 1 is−ℓ(f, a).) Player 1’s goal in this game is to minimize his
loss. We will show that if player 1 uses an internal regret minimizing algorithm in the forecasting
game, andk is large enough, then the resulting forecaster isε-calibrated.

This approach yields the following theorem.

Theorem 2 Given a strategy of player 2, letf t
12 denote the forecast (inF ) chosen at timet by an

internal regret minimizing algorithm in the forecasting game defined above. Then regardless of the
strategy of player 2, the resulting sequence of forecasts{f t

12} is calibrated.

Proof. We first note that it suffices to show:

lim sup
T→∞

∑

p∈[0,1]

(ρT1 (p)− p)2
(

N(p, T )

T

)

≤ ε2.

This follows by using Jensen’s inequality and the definitionof calibration.
Let wt

1 denote the mixed action overF played by player 1 at timet in the forecasting game,
according to the internal regret minimizing algorithm. (Note that this isa mixed action over fore-
casts!) For p ∈ F , define:

ρT1 (p) =

∑T−1
t=0 at2w

t
1(p)

∑T−1
t=0 wt

1(p)
.

We start by showing that, in an appropriate sense, actual play can be replaced by expectations.
Using a standard argument (via the Azuma-Hoeffding inequality and the Borel-Cantelli Lemma),
it follows that for allp ∈ F (almost surely):

lim
T→∞

1

T

∣

∣

∣

∣

∣

T−1
∑

t=0

at2w
t
1(p)−

T−1
∑

t=0

at2I{f
t
12 = p}

∣

∣

∣

∣

∣

= 0,

and

lim
T→∞

1

T

∣

∣

∣

∣

∣

T−1
∑

t=0

wt
1(p)−

T−1
∑

t=0

I{f t
12 = p}

∣

∣

∣

∣

∣

= 0.

From these two limits, it follows also that:

lim
T→∞

∣

∣

∣

∣

∣

∑

p∈F

(ρT1 (p)− p)2
(

N(p, T )

T

)

− (ρT1 (p)− p)2

(

∑T−1
t=0 wt

1(p)

T

)∣

∣

∣

∣

∣

= 0.
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Thus it suffices to show that:

lim sup
T→∞

∑

p∈F

(ρT1 (p)− p)2

(

∑T−1
t=0 wt

1(p)

T

)

≤ ε.

Note that:

E

[

I

{

f t
12 =

i

k

}(

ℓ

(

i

k
, at2

)

− ℓ

(

j

k
, at2

))]

= wt
1

(

i

k

)

(

(

at2 −
i

k

)2

−

(

at2 −
j

k

)2
)

.

(The expectation is only with respect to player 1’s randomization.)
Noting that(at2 − i/k)2 − (at2 − j/k)2 = (2at2 − i/k − j/k)(j/k − i/k), we have:

E

[

IR1

(

hT ;
i

k
,
j

k

)]

=
T−1
∑

t=0

E

[

I

{

f t
12 =

i

k

}(

ℓ

(

i

k
, at2

)

− ℓ

(

j

k
, at2

))]

=
T−1
∑

t=0

wt
1

(

i

k

)(

j − i

k

)(

2at2 −
i+ j

k

)

=

(

T−1
∑

t=0

wt
1

(

i

k

)

)

(

j − i

k

)(

2ρT1

(

i

k

)

−
i+ j

k

)

=

(

T−1
∑

t=0

wt
1

(

i

k

)

)(

(

ρT1

(

i

k

)

−
i

k

)2

−

(

ρT1

(

i

k

)

−
j

k

)2
)

.

Minimizing the right hand side overj, note that we can always choosej/k to be within at most
1/k of ρT1 (i/k), sinceF is a1/k-discretization of[0, 1]. Thus there exists at least one choice ofj
for which we have:

(

∑T−1
t=0 wt

1(i/k)

T

)

(

ρT1

(

i

k

)

−
i

k

)2

≤
1

T
E

[

IR1

(

hT ;
i

k
,
j

k

)]

+
1

k2
.

If we sum overi on the left hand side and take the sup overi on the right hand side, we obtain:

∑

p∈F

(ρT1 (p)− p)2

(

∑T−1
t=0 wt

1(p)

T

)

≤ (k + 1)

(

sup
p,p′∈F

1

T
E[IR1(h

T ; p, p′)]

)

+ (k + 1)/k2,

sincei ranges from0 to k. Choosingk sufficiently large (in particular, so that(k + 1)/k2 < ε2),
and takingT → ∞ yields the desired result. 2

Remarks:

1. The choice of loss function matters in the proof. For example, trying to prove the result using
standardL1 loss will fail (i.e., directly defining the loss as the absolute forecasting error).
You are encouraged to check this for yourself; see also [1] for further details.
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2. It is worth emphasizing that in the preceding result, the regret bound scales linearly with the
number of forecasts in the discretization. In particular, if player 2 has general finite action
setA2, the number of points in anε-discretization of∆(A2) scalesexponentiallyin the size
of A2. Thus calibration is ultimately creating a virtual forecasting game in which the action
space of player 1 is siginificantly expanded, and then applying internal regret minimization
in that space. On the other hand, the application of calibration to establish internal regret
minimization in the preceding section amounts to acompressionof the forecast space, by
grouping together forecasts that lead to the same (pure) best response by player 1.
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