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In the last lecture, we saw an example of reputation anaiysepeated interaction (a sequen-
tial entry game) with one long-lived player and many shived players, where the short-lived
players are unsure of the long-lived player’s type. In teture, we generalize that analysis by
giving an overview of the key results on reputation in repdajames with one long-lived player
and many short-lived players. Our development draws on @hapt of the book by Mailath and
Samuelson [5].

1 An Example

1.1 Complete Information Static Game

Consider a two player simultaneous move game with the foligypiayoff matrix:

Player 2

a b

A1(23)](02)
Player 1

B|(30)](11)

This game has a unique Nash equilibriuiB, b).

1.2 Complete Information Repeated Game

Now suppose that a single Player 1 plays the game againstfiaiteirsequence of short-lived
players with the payoffs of Player 2; number the stage8,y2, . ... At each stage both players
move simultaneously, and all past actions are perfectlemesl. Denote the (possibly mixed)
action played at timeéby playeri asa!. Player 1 discounts payoffs, so he maximizes the following
payoff in the repeated game is:
(1—06)) d'(af, ab), 1)
t>0

where the discount factarlies in (0, 1), andlIl, (-) is player 1's stage game payoff function. Each
Player 2 is short-lived, and so acts to maximize only hislsipgriod payoff at each stage.

Consider the following pair of strategies. After any histéfywhereb has never been played,
player 1 playsA; and otherwise player 1 play8. Similarly, after any history:! where B has
never been played, player 2 playsotherwise player 2 play& It is straightforward to show this
is a subgame perfect Nash equilibriund i 1/2. The strategy of player 2 is clearly a single stage



best response to the strategy of player 1 after any histargp&se player 1 deviates and plays
instead ofA after any history where onli4, a) has been played; in order that this is not profitable,
we must have:

(1=9)3)+(1) <2

The previous expression reducesto 1/2.

1.3 Incomplete Information Repeated Game

Now suppose that prior to beginning play in the repeated g&tature chooses a type for player
1. With probabilityp, player 1 is a “commitment type™, who playsA in every period regardless
of the history. With probabilityt — p, player 1 is a “normal typet that maximizes the discounted
payoff in (1). We assumg > 0.

We will reason about thslashequilibria of this game. Consider a pair of strategies aralsg
to those discussed in the previous section. The normal tiges pl if b has never been played
before, and otherwise plays; similarly, each player 2 playsif B has never been played before,
and otherwise plays

Is this a Nash equilibrium? Let theelief (k') of player 2 be the probability that player 2
assigns to the commitment type of player 1, after the hiskéryAfter any history whereB has
never been played, we hauéh') = p; and if B has been played at least once, th¢h') = 0. In
the latter case, given player 1's strategy, cleaiiy the best response. jf{h') = p, then player 1
will play A regardless of his type, and gas the best response for player 2.

It remains to be checked that the strategy above is optimm@h&normal type. But this calcu-
lation is identical to the complete information case in tihevipus section. We conclude that the
proposed strategy pair is a Nash equilibrium of the repegad@ake with incomplete information.

Note that in equilibrium, regardless of the type of playefA,a) is observed in every period;
and the belief of player 2 remains constanpaflhus there exist equilibria of the repeated game
where the normal type isdistinguishabldrom the commitment type. As we will see below, this
feature rests on the fact that all past actions are perfebdgrved by all players (also callgdmes
with perfect monitoriny

In the incomplete information setting, it is possible toshbat the payoff of the normal type
of player 1 inany Nash equilibrium is bounded below, and in particular bouhaeay from 1 if
the discount factor is large. The intuition is that if the mai type of player 1 chooses to playfor
the initial stages, even at the risk of a lower payoff, evaljiplayer 2 must have high probability
that player 1 is of the commitment type, and plags a best response. But then player 1 will play
A as a best response to player 2, sustaining high payoffs mitbdyi

In our example, we can lower bouipdre strategy Nash equilibriumpayoff of player 1 easily.
Given any pure strategy Nash equilibrium, tdbe the first stage on the equilibrium path where
player 1 playsB. If ¢ = oo, then player 1 always play4, the best response of player Zigvery
stage, and so (1) is 2.

Suppose < oco. Suppose player 1 deviates and playsstead ofB at timet, as well as at
all subsequent stages. Player 2 expects only the commityyanto playA at timet, and thus has
belief u(h') = 1 after player 1 deviates at timte as a result, player 2 will play in every future



stage. The payoff under this strategy to player 1 must beaat ks high as the payoff to player 1
under the Nash strategy. Thus the Nash equilibrium paygstafer 1 is at least:

(L=0)[1+6+-+62) 4+ (8)Q2) + (" + 6+ )] =2(1 — &) + 206"
=2-25(1-90)
> 2.

Thus for anye > 0, for all large enough anypure strategy Nash equilibrium payoff of player 1 is
lower bounded by — «.

2 The Payoff Bound

In this section we generalize the payoff bound establisbead@ir example. Note that 2 is also
the maximum payoff player 1 could guarantee himself (usipgra action) in &tackelbergame,
where he moves first and player 2 moves second: player 1 wtaydfy and subsequently player 2
would playh. For this reason 2 is also called tB&ackelberg payafandH is called theStackelberg
action

Consider a general repeated game with long-lived playerd shart-lived player 2’s; player
has pure action set;. For simplicity, assume all action sets and the type spacérate. Define:

v = c{?ea}i ageglégl(al)ﬂl(al,ag).

Here BR; is the set of (pure and mixed) best responses of player2 tdhe valuev] is called the
pure action Stackelberg payalf player 1, and the maximize; is thepure Stackelberg actioof
player 1. Among the types of player 1, we assume thereSmekelberg commitment typethat
always plays:;, and anormal typef that (rationally) maximizes the expected payoff (1).

Fudenberg and Levine [3] prove the following theorem.

Theorem 1 Suppose that the prigr over player 1's type hag(t*), p(t) > 0. Then for any > 0,
there existgl € (0, 1) such that ifd < ¢ < 1, the expected discounted pay(f) to player 1 inany
Nash equilibrium of the game is at leagt— ¢.

Note that there may be many more possible types than justtéoeberg and normal types;
the theorem only depends on these types having nonzerogoabability.

3 Imperfect Monitoring

The game discussed in Section 1 hgaifect monitoring all players perfectly observed all past
actions. Now suppose we modify the game so that player 2 ealy asignalof player 1’s action.
Formally, we assume that givén, a’,), a signals’ is realized according to a probability distribu-
tion 7(s|ay, az), independent of all history. (Assume the signal space igef)niAll the player 2
actions are perfectly observable, so player 1 has the igtor= (a9, a9, 5%, ..., at " ab !, st71),

while player 2 only has the histoy, = (a9, s°,al, s, ..., a5t st71).

3



An analogous payoff bound holds here, but by appropriategifying the notions of Stackel-
berg payoff and action. Define tloenfirmed best responséxis(a,)to a (possibly mixed) action
a; as the set of all (pure and mixed) actiopssuch thata, is a best response 8bmea; with
7(-|ay, az) = w(-|a}, asz). Thusifay € BRS(a1), thena, is a best response smmeaction of player
1 that induces the same distribution over signalg,ag he point is that since, is a best response
to a}, and the signal distributions are identical, player 2 caiomalize playinga, even if the true
action of player 1 is;.

Themixed action Stackelberg payaffthis game is:

k% .
v]" = max min Il (aq, az).
a1€A(A1) a2€BRS(a1)

HereA(A,) is the set of all mixed actions for player 1. Note thit > v} for a game with perfect
monitoring. As above, let;* be a (possibly mixed) action achievin{f; we assume such an action
exists, though the subsequent theorem can be proven witkewaasumptions. Denote bY be
commitment type that always play$*, and lett continue to represent the normal type. Fudenberg
and Levine prove the following result [4].

Theorem 2 Suppose that the prigr over player 1's type hag(t**), p(t) > 0. Assume that for
fixeda,, the signal distributions(-|a;, a2) (over all mixedu,) are linearly independent.

Then for anye > 0, there existsl € (0,1) such that ifd < § < 1, the expected discounted
payoff (1) to player 1 inanyNash equilibrium of the imperfect monitoring game is at legist- <.

The intuition for the result is quite similar to the perfecbmitoring case. The linear indepen-
dence condition is needed to ensure that with enough sanguig$wo action profiles of player 2
can be distinguished.

4 Comparing Perfect and Imperfect Monitoring

Note that in the perfect monitoring version of our example, snstructed a Nash equilibrium
(in fact a sequential equilibrium) where the normal typeypld forever on the equilibrium path,
exactly mimicking the commitment type; player 2 always glay This happens despite the fact
that(A, a) is not a NE of the one-shot game.

Intuitively, it seems that the beliefs of player 2 should rigerge” over time, since they are
collecting an increasing amount of data about player 1'stiein Once the beliefs have converged,
then it would seem nothing player 1 does in one time step dantak player 2 beliefs built on an
essentially infinite amount of accumulated past data; amarim this suggest it might be plausible
for player 1 to deviate from playing occasionally, and play instead.

This intuition is incorrect in the perfect monitoring cas#ith perfect monitoring, any player
2 knows that if the past history contains then player Inustbe the normal type. This condition
holds regardless of how much past data has been accumukasea result, even if beliefs have
converged, they can be substantially altered by a singige giay of B by player 1. Indeed, in the
NE above in the perfect monitoring case, note that the Isatiglayer 2 remain constantzator all
time on the equilibrium path—they never know with certaimtiyether they are playing a normal
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or commitment type, exactly because the normal and committype are indistinguishable on
the equilibrium path.

The imperfect monitoring case is quite different. Hereypta2 imperfectly observes the past
actions of player 1; instead, only the signals are recortfeall signals have positive probability
under all action pairs, then player 2's Bayesian updatingjleéld not only to converged beliefs,
but beliefs that are not altered by any single action takeplayer 1.

Consider the following imperfect monitoring analog of thet 2 game constructed above. As
one example, suppose that the signal spa¢e,ig). }, with the following distribution:

p, ifa; =4

T(y1l(ar, az2)) = 1 — m(y2far, az) = { q, Ifay = B.

Here we assumeé < ¢ < p < 1; then all signals have positive probability under any acpoofile.
As the history grows, player 2's beliefs must converge, sayt. But then in the limit, the normal
type of player 1 has no incentive to plaly by deviating and playing, hedoes nosubstantively
alter the belief of player 2, since monitoring is imperfentd B is a strict dominant strategy in the
stage game. But if this happens often enough, eventuallepynust discover player 1 is of the
normal type, contradicting the fact that beliefs had cogedr

Note that in this example, the best response of player 2 t&thekelberg actionl is a; and
the best response of player 1das B. Our intuitive argument suggests that in this situatioe, th
only possibility is that in the limit player 2 must discovdayer 1's true type. This is the content
of the following theorem of Cripps et al. [1].

Theorem 3 In a repeated game with imperfect monitoring: assume thatighals have positive
probability under any action profile. Assume that for fixgdthe signal distributionsr(-|ay, as)
(over all purea,) are linearly independent; and the same if wedfixand vary over all pure;.

Leta; be the (possibly mixed) action of the commitment type oeplhyassume that player 2
has a unique (possibly mixed) best respaiis® a, in the one shot game, and thatis not a best
response t@, in the one shot game. Then if player 1 has normal tyg&,) — 0 ast — oo (with
probability 1).

The key step in the proof is a lemma showing that when playesinermal typeu(hb)|ja; —
E[s1(h'™1)|h]|| converges to zero with probability 1. (The norm is the supmpin other words,
either the belief converges to zero, or in the limit playersIpiaying (in expectation) like the
commitment type.

How is this lemma used? Suppose that when player 1 has noypglthere exists a positive
probability set of histories where(h}) remains bounded away from zero. Since the belief con-
verges, in the limit we have(h}) — u> > 0. (We show rigorously below that beliefs converge.)
From the previous lemma, on these histories the normal tygneepl must play like the com-
mitment type eventually. On such histories, player 2 ewahticomes to believe that with high
probability, that she will be playing the best respofs¢o a, in the future. But in turn, it can be
shown that with positive probability, player 1 will evenllygprefer to play a best response dgo
along these histories, which is n@f; this contradicts the assumption that player 1 plays lile th
commitment type along these histories.



The moral of the theorem is that ultimately, in imperfect m@mng games, reputations are
temporary—a normal type cannot masquerade forever as a itovam type. There are several
approaches to preventing such a result. First, one coularesthe type of player 1 varies stochas-
tically over time; some references using this approach aesemted at the end of the introduction
of Cripps et al. [1].

Alternatively, one could designraputation systerthat only allows player 2 access to a limited
amount of history, e.g., perhaps only a fixed finite numbetaas into the past. This ensures that
the beliefs of player 2 never converge, and then reputaaorbe sustained indefinitely. This is a
clever approach to motivating the use of reputation systanwas pursued by Ekmekci [2].

5 Convergence of Beliefs

We conclude with a simple martingale argument that shows libhefs must converge in the
repeated games considered (with or without imperfect mani). Given an equilibriuns =
(s1(+), s2(+)), Nature’s initial selection of the type of player 1 togetheth the strategy profiles
induce a distribution over histories. Letbe a random variable that isf player 1 is the commit-
ment type, and if player 1 is the normal type. Then the belief of player 2 aftstory 1! is the
conditional expectation of given the history; i.e.:

pu(h') = E[x|n].
But then we have:
pu(h') = E[x|h'] = E[E[x|h"*]|A"] = E[u(h)|A].

(This follows by the computation rule for nested conditioegpectations.) The computation im-
plies that the beliefs are martingalewith respect to the history; further, sinée< u(h') < 1,
this martingale is bounded, and so converges (with proihahi) by the martingale convergence
theorem.
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