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In the last lecture, we saw an example of reputation analysisin repeated interaction (a sequen-
tial entry game) with one long-lived player and many short-lived players, where the short-lived
players are unsure of the long-lived player’s type. In this lecture, we generalize that analysis by
giving an overview of the key results on reputation in repeated games with one long-lived player
and many short-lived players. Our development draws on Chapter 15 of the book by Mailath and
Samuelson [5].

1 An Example

1.1 Complete Information Static Game

Consider a two player simultaneous move game with the following payoff matrix:

Player 2
a b

A (2,3) (0,2)

Player 1
B (3,0) (1,1)

This game has a unique Nash equilibrium,(B, b).

1.2 Complete Information Repeated Game

Now suppose that a single Player 1 plays the game against an infinite sequence of short-lived
players with the payoffs of Player 2; number the stages by0, 1, 2, . . .. At each stage both players
move simultaneously, and all past actions are perfectly observed. Denote the (possibly mixed)
action played at timet by playeri asat

i
. Player 1 discounts payoffs, so he maximizes the following

payoff in the repeated game is:
(1 − δ)

∑

t≥0

δtΠ1(a
t

1, a
t

2), (1)

where the discount factorδ lies in (0, 1), andΠ1(·) is player 1’s stage game payoff function. Each
Player 2 is short-lived, and so acts to maximize only his single period payoff at each stage.

Consider the following pair of strategies. After any historyht whereb has never been played,
player 1 playsA; and otherwise player 1 playsB. Similarly, after any historyht whereB has
never been played, player 2 playsa; otherwise player 2 playsb. It is straightforward to show this
is a subgame perfect Nash equilibrium ifδ ≥ 1/2. The strategy of player 2 is clearly a single stage
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best response to the strategy of player 1 after any history. Suppose player 1 deviates and playsB
instead ofA after any history where only(A, a) has been played; in order that this is not profitable,
we must have:

(1 − δ)(3) + δ(1) ≤ 2.

The previous expression reduces toδ ≥ 1/2.

1.3 Incomplete Information Repeated Game

Now suppose that prior to beginning play in the repeated game, Nature chooses a type for player
1. With probabilityp, player 1 is a “commitment type”t∗, who playsA in every period regardless
of the history. With probability1 − p, player 1 is a “normal type”t that maximizes the discounted
payoff in (1). We assumep > 0.

We will reason about theNashequilibria of this game. Consider a pair of strategies analogous
to those discussed in the previous section. The normal type plays A if b has never been played
before, and otherwise playsB; similarly, each player 2 playsa if B has never been played before,
and otherwise playsb.

Is this a Nash equilibrium? Let thebelief µ(ht) of player 2 be the probability that player 2
assigns to the commitment type of player 1, after the historyht. After any history whereB has
never been played, we haveµ(ht) = p; and ifB has been played at least once, thenµ(ht) = 0. In
the latter case, given player 1’s strategy, clearlyb is the best response. Ifµ(ht) = p, then player 1
will play A regardless of his type, and soa is the best response for player 2.

It remains to be checked that the strategy above is optimal for the normal type. But this calcu-
lation is identical to the complete information case in the previous section. We conclude that the
proposed strategy pair is a Nash equilibrium of the repeatedgame with incomplete information.

Note that in equilibrium, regardless of the type of player 1,(A, a) is observed in every period;
and the belief of player 2 remains constant atp. Thus there exist equilibria of the repeated game
where the normal type isindistinguishablefrom the commitment type. As we will see below, this
feature rests on the fact that all past actions are perfectlyobserved by all players (also calledgames
with perfect monitoring).

In the incomplete information setting, it is possible to show that the payoff of the normal type
of player 1 inanyNash equilibrium is bounded below, and in particular bounded away from 1 if
the discount factor is large. The intuition is that if the normal type of player 1 chooses to playA for
the initial stages, even at the risk of a lower payoff, eventually player 2 must have high probability
that player 1 is of the commitment type, and playa as a best response. But then player 1 will play
A as a best response to player 2, sustaining high payoffs indefinitely.

In our example, we can lower boundpure strategy Nash equilibriumpayoff of player 1 easily.
Given any pure strategy Nash equilibrium, lett be the first stage on the equilibrium path where
player 1 playsB. If t = ∞, then player 1 always playsA, the best response of player 2 isa every
stage, and so (1) is 2.

Supposet < ∞. Suppose player 1 deviates and playsA instead ofB at timet, as well as at
all subsequent stages. Player 2 expects only the commitmenttype to playA at timet, and thus has
belief µ(ht) = 1 after player 1 deviates at timet; as a result, player 2 will playa in every future
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stage. The payoff under this strategy to player 1 must be at least as high as the payoff to player 1
under the Nash strategy. Thus the Nash equilibrium payoff ofplayer 1 is at least:

(1 − δ)[(1 + δ + · · · + δt−1)(2) + (δt)(2) + (2)(δt+1 + δt+2 + · · · )] = 2(1 − δt) + 2δt+1

= 2 − 2δt(1 − δ)

> 2δ.

Thus for anyε > 0, for all large enoughδ anypure strategy Nash equilibrium payoff of player 1 is
lower bounded by2 − ε.

2 The Payoff Bound

In this section we generalize the payoff bound established for our example. Note that 2 is also
the maximum payoff player 1 could guarantee himself (using apure action) in aStackelberggame,
where he moves first and player 2 moves second: player 1 would playH, and subsequently player 2
would playh. For this reason 2 is also called theStackelberg payoff, andH is called theStackelberg
action.

Consider a general repeated game with long-lived player 1, and short-lived player 2’s; playeri
has pure action setAi. For simplicity, assume all action sets and the type space are finite. Define:

v∗
1 = max

a1∈A1

min
a2∈BR2(a1)

Π1(a1, a2).

HereBR2 is the set of (pure and mixed) best responses of player 2 toa1. The valuev∗
1 is called the

pure action Stackelberg payoffof player 1, and the maximizera∗
1 is thepure Stackelberg actionof

player 1. Among the types of player 1, we assume there is aStackelberg commitment typet∗ that
always playsa∗

1, and anormal typet that (rationally) maximizes the expected payoff (1).
Fudenberg and Levine [3] prove the following theorem.

Theorem 1 Suppose that the priorp over player 1’s type hasp(t∗), p(t) > 0. Then for anyε > 0,
there existsd ∈ (0, 1) such that ifd ≤ δ < 1, the expected discounted payoff(1) to player 1 inany
Nash equilibrium of the game is at leastv∗

1 − ε.

Note that there may be many more possible types than just the Stackelberg and normal types;
the theorem only depends on these types having nonzero priorprobability.

3 Imperfect Monitoring

The game discussed in Section 1 hadperfect monitoring: all players perfectly observed all past
actions. Now suppose we modify the game so that player 2 only sees asignalof player 1’s action.
Formally, we assume that given(at

1, a
t
2), a signalst is realized according to a probability distribu-

tion π(s|a1, a2), independent of all history. (Assume the signal space is finite.) All the player 2
actions are perfectly observable, so player 1 has the history ht

1 = (a0
1, a

0
2, s

0, . . . , at−1
1 , at−1

2 , st−1),
while player 2 only has the historyht

2 = (a0
2, s

0, a1
2, s

1, . . . , at−1
2 , st−1).

3



An analogous payoff bound holds here, but by appropriately modifying the notions of Stackel-
berg payoff and action. Define theconfirmed best responsesBRc

2(a1)to a (possibly mixed) action
a1 as the set of all (pure and mixed) actionsa2 such thata2 is a best response tosomea′

1 with
π(·|a1, a2) = π(·|a′

1, a2). Thus ifa2 ∈ BRc
2(a1), thena2 is a best response tosomeaction of player

1 that induces the same distribution over signals asa1. The point is that sincea2 is a best response
to a′

1, and the signal distributions are identical, player 2 can rationalize playinga2 even if the true
action of player 1 isa1.

Themixed action Stackelberg payoffin this game is:

v∗∗
1 = max

a1∈∆(A1)
min

a2∈BRc

2
(a1)

Π1(a1, a2).

Here∆(A1) is the set of all mixed actions for player 1. Note thatv∗∗
1 ≥ v∗

1 for a game with perfect
monitoring. As above, leta∗∗

1 be a (possibly mixed) action achievingv∗∗
1 ; we assume such an action

exists, though the subsequent theorem can be proven with weaker assumptions. Denote byt∗∗ be
commitment type that always playsa∗∗

1 , and lett continue to represent the normal type. Fudenberg
and Levine prove the following result [4].

Theorem 2 Suppose that the priorp over player 1’s type hasp(t∗∗), p(t) > 0. Assume that for
fixeda1, the signal distributionsπ(·|a1, a2) (over all mixeda2) are linearly independent.

Then for anyε > 0, there existsd ∈ (0, 1) such that ifd ≤ δ < 1, the expected discounted
payoff (1) to player 1 inanyNash equilibrium of the imperfect monitoring game is at leastv∗∗

1 −ε.

The intuition for the result is quite similar to the perfect monitoring case. The linear indepen-
dence condition is needed to ensure that with enough samples, any two action profiles of player 2
can be distinguished.

4 Comparing Perfect and Imperfect Monitoring

Note that in the perfect monitoring version of our example, we constructed a Nash equilibrium
(in fact a sequential equilibrium) where the normal type plays A forever on the equilibrium path,
exactly mimicking the commitment type; player 2 always plays a. This happens despite the fact
that(A, a) is not a NE of the one-shot game.

Intuitively, it seems that the beliefs of player 2 should “converge” over time, since they are
collecting an increasing amount of data about player 1’s behavior. Once the beliefs have converged,
then it would seem nothing player 1 does in one time step can alter the player 2 beliefs built on an
essentially infinite amount of accumulated past data; and inturn, this suggest it might be plausible
for player 1 to deviate from playingA occasionally, and playB instead.

This intuition is incorrect in the perfect monitoring case.With perfect monitoring, any player
2 knows that if the past history containsB, then player 1mustbe the normal type. This condition
holds regardless of how much past data has been accumulated.As a result, even if beliefs have
converged, they can be substantially altered by a single stage play ofB by player 1. Indeed, in the
NE above in the perfect monitoring case, note that the beliefs of player 2 remain constant atp for all
time on the equilibrium path—they never know with certaintywhether they are playing a normal
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or commitment type, exactly because the normal and commitment type are indistinguishable on
the equilibrium path.

The imperfect monitoring case is quite different. Here, player 2 imperfectly observes the past
actions of player 1; instead, only the signals are recorded.If all signals have positive probability
under all action pairs, then player 2’s Bayesian updating will lead not only to converged beliefs,
but beliefs that are not altered by any single action taken byplayer 1.

Consider the following imperfect monitoring analog of the 2× 2 game constructed above. As
one example, suppose that the signal space is{y1, y2}, with the following distribution:

π(y1|(a1, a2)) = 1 − π(y2|a1, a2) =

{

p, ifa1 = A;
q, ifa1 = B.

Here we assume0 < q < p < 1; then all signals have positive probability under any action profile.
As the history grows, player 2’s beliefs must converge, say to µ∞. But then in the limit, the normal
type of player 1 has no incentive to playA: by deviating and playingB, hedoes notsubstantively
alter the belief of player 2, since monitoring is imperfect;andB is a strict dominant strategy in the
stage game. But if this happens often enough, eventually player 2 must discover player 1 is of the
normal type, contradicting the fact that beliefs had converged.

Note that in this example, the best response of player 2 to theStackelberg actionA is a; and
the best response of player 1 toa is B. Our intuitive argument suggests that in this situation, the
only possibility is that in the limit player 2 must discover player 1’s true type. This is the content
of the following theorem of Cripps et al. [1].

Theorem 3 In a repeated game with imperfect monitoring: assume that allsignals have positive
probability under any action profile. Assume that for fixeda1, the signal distributionsπ(·|a1, a2)
(over all purea2) are linearly independent; and the same if we fixa2, and vary over all purea1.

Let â1 be the (possibly mixed) action of the commitment type of player 1; assume that player 2
has a unique (possibly mixed) best responseâ2 to â1 in the one shot game, and thatâ1 is not a best
response tôa2 in the one shot game. Then if player 1 has normal type,µ(ht

2) → 0 ast → ∞ (with
probability 1).

The key step in the proof is a lemma showing that when player 1 has normal type,µ(ht
2)‖â1 −

E[s1(h
t+1)|ht]‖ converges to zero with probability 1. (The norm is the sup norm.) In other words,

either the belief converges to zero, or in the limit player 1 is playing (in expectation) like the
commitment type.

How is this lemma used? Suppose that when player 1 has normal type, there exists a positive
probability set of histories whereµ(ht

2) remains bounded away from zero. Since the belief con-
verges, in the limit we haveµ(ht

2) → µ∞ > 0. (We show rigorously below that beliefs converge.)
From the previous lemma, on these histories the normal type player 1 must play like the com-
mitment type eventually. On such histories, player 2 eventually comes to believe that with high
probability, that she will be playing the best responseâ2 to â1 in the future. But in turn, it can be
shown that with positive probability, player 1 will eventually prefer to play a best response toâ2

along these histories, which is notâ1; this contradicts the assumption that player 1 plays like the
commitment type along these histories.

5



The moral of the theorem is that ultimately, in imperfect monitoring games, reputations are
temporary—a normal type cannot masquerade forever as a commitment type. There are several
approaches to preventing such a result. First, one could assume the type of player 1 varies stochas-
tically over time; some references using this approach are presented at the end of the introduction
of Cripps et al. [1].

Alternatively, one could design areputation systemthat only allows player 2 access to a limited
amount of history, e.g., perhaps only a fixed finite number of stages into the past. This ensures that
the beliefs of player 2 never converge, and then reputation can be sustained indefinitely. This is a
clever approach to motivating the use of reputation systems, and was pursued by Ekmekci [2].

5 Convergence of Beliefs

We conclude with a simple martingale argument that shows that beliefs must converge in the
repeated games considered (with or without imperfect monitoring). Given an equilibriums =
(s1(·), s2(·)), Nature’s initial selection of the type of player 1 togetherwith the strategy profiles
induce a distribution over histories. Letχ be a random variable that is1 if player 1 is the commit-
ment type, and0 if player 1 is the normal type. Then the belief of player 2 after historyht is the
conditional expectation ofχ given the history; i.e.:

µ(ht) = E[χ|ht].

But then we have:

µ(ht) = E[χ|ht] = E[E[χ|ht+1]|ht] = E[µ(ht+1)|ht].

(This follows by the computation rule for nested conditional expectations.) The computation im-
plies that the beliefs are amartingalewith respect to the history; further, since0 ≤ µ(ht) ≤ 1,
this martingale is bounded, and so converges (with probability 1) by the martingale convergence
theorem.
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