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In this lecture we define stochastic games and Markov peefggtibrium.

1 Stochastic Games

A (discounted) stochastic game with players consists of the following elements.
1. A state spacet’ (which we assume to be finite for the moment).

2. For each playerand stater, a setA;(x) of actions available to playérn statex. (We also
assume eacH;(z) is finite for the moment.)

3. For each player, statez, and action vectoe € [ [, A;(z), a stage payoff);(a; x).

4. For each state and action vectoa € [[. A;(x), atransition probabilityP(z'|z, a) that is a
distribution on the state spaéé

5. A discount factop, 0 < § < 1.
6. An initial statez”.

Play proceeds as follows. The game starts in stdteAt each stage, all players simulta-
neously choose (possibly mixed) actiafjs with possible pure actions given by the sgtz?!).
The stage payoff@;(a’; ') are realized, and the next state is chosen accordiftg- o', a’). All
players observe the entire past history of play before dhgdkeir actions at stage (This is the
simplest assumption; versions with partial monitoringéhaiso been studied.)

As usual, lets; denote a strategy for playerin this dynamic game; it is a mapping from
histories (including states and actions) to actions. (Adiey history leading to state, playeri's
strategy must choose an actionAp(z).) Given strategies, ..., sy, the expected discounted
payoff of player: starting from state? is:

Mi(s1,..,sn;2%) =E | ) 6" Qi(s1(a"), ..., sn(a'); )
t=0

Here the expectation is over both randomization in statesttians, and randomization in players’
choice of actions after any history.

2 Markov perfect equilibrium

The overwhelming focus in stochastic games isMarkov perfect equilibrium This refers to a
(subgame) perfect equilibrium of the dynamic game whergguia strategies depend only on the



current state. Whes, is a strategy that depends only on the state, by some abusdabion we
will let s;(z) denote the action that playémwould choose in state. Such a strategy is called a
Markov strategy

It is straightforward to check that if all players other thaare playing Markov strategies ;,
then player; has a best response that is a Markov strategy. The basitiontis that if there
exists a best response where playplaysa; after a historyh leading to state, and plays:; after
another history:’ that also leads to staig then bothu; anda; must yield the same expected payoff
to playeri. Thus, for each state, there exists a valug(z; s_;) that is the highest possible payoff
player: can achieve starting from state given that all other players play the Markov strategies
s_,. It then follows that:

V;(ZL‘,S_Z): max [ Qi(az; —z +5Z |CL,, —z IL‘)V;(ZE,,S_Z)

a; €A;(x) oy

(This is the standard Bellman equation of dynamic progrargmiA Markov best response is then
identified by finding, for each state the actioru; € A;(x) that maximizes the right hand side of
the above equation.

3 Existence of MPE

It is straightforward to see that an MPE exists in aplayer game with a finite state space and
finite action spaces. We use a reduction to a standard fimbe ga

For each playei and stater, we create a new player with action spaég, z) = A;(z);
we refer to any player in this new game asamgent When the actions chosen by all agents are
a= (a(i,x),x € X,i=1,...,N), the payoff to playe(i, x) is:

- E Z(Sth , e (N,IL'), )

(a(1,2") a B2 = x] :
>0

Note that this game has finitely many players, and each pla®finitely many actions. Thus the
agent game has a (possibly mixed) Nash equilbrium, whenet&ge ) plays the (possibly mixed)
actiona(i, ).

Define a strategy for playérwheres;(xz) = a(i, ). We claim thats is a MPE. Clearly each
player’s strategy depends only on the current state. Rurtdiserve that by construction, the
strategy of playei maximizes his payoff among all Markov strategies, gisen Since we saw
in the previous section that each playdras a best response that is a Markov strategy when all
opponents play Markov strategies, we conclude shaust be a MPE.

4 Two-Player, Zero-Sum Stochastic Games

In this section, following the development of Shapley [1¢ @onsider two-player zero-sum stochas-
tic games. We begin by reviewing tmeinimax theorenof Von Neumann for static two-player
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zero-sum games. L&t be am x n matrix of payoffs; player 1 has actions (given by the set,),
and player 2 has actions (given by the set,). The entryP,; is the payoff to player 1 whefi, j)
is played; since the game is zero-sum, the payoff to player-2A;; in this case. The minimax
theorem states that:

max  min SITPSQ min  max s 1 Ps,. Q)
sleA(Al) SQGA(AQ) SQEA(AQ) sleA(Al)

Heres; is a mixed strategy for playér represented as a vector with entries indexed by the actions
in A;; A(A;) is the set of all mixed strategies for playgrand s Ps, = > i s1(i)s2(d) Py is
the expected payoff to player 1 wheés, s-) is played. There are many proofs, some using linear
programming, and others using fixed point theorems. Thelatdrgame theoretic proof is that all
finite games have Nash equilibria, and any Nash equilibrifith@ minimax theorem vyields (1).
Indeed, at any Nash equilibrium, the expected payoff togrdyis the value given in (1):

val(P) = max min s/ Ps, = min max s, Ps,. (2)
s1€A(A1) s2€A(A2) SQEA(AQ) s1€A(A1)
The scalawal(P) is called thevalueof the matrix game defined b .

Shapley showed that the minimax theorem extends to twaeplagro-sum stochastic games;
all such games also have a value. The proof is via a technivaias very standard in dynamic
programming, called@alue iteration In dynamic programming, value iteration is used to find both
optimal policies and the optimal cost or profit of a stoctwastintrol problem.

We will need the following lemma.

Lemmal For any twom x n matricesB, C, there holds:
| val B — ValC] S max |B’Lj - C’Lj|
2y
Proof of Lemma Let (s, s2) be a NE of the zero-sum matrix game definedBy and let

(51, 52) be a NE of the zero-sum matrix game definedlyThens| Bs, > s Bs,, ands] Cs, >
s] C3,, by the NE optimality conditions for each player. Thus:

SIBSQ — §1TC§2 < slTBEQ — 5105y < max |B;; — Cjjl.
2,
By symmetry the same claim holds with andC' reversed, proving the result. O

Now consider a two person zero-sum stochastic game; sie@gthe is zero-sum, we drop the
index: on the stage payofp.

Value iteration proceeds as follows. First, we pick an aajt functiona : X — R, called a
value function For eache € X, define a matrixR,(«) as follows:

Ry(a)(a1,a2) = Q(ar, a;2) + 6 Y P(a'|ar, ap, x)o(x), a1 € Ai(x), ap € Ay(x).

r'eX

Value iteration initializes with a value functien,. The value functiony; is defined by, (z) =
val(R,(ax_1)). Itis convenient to define the shorthand operator notdfian) (x) = val(R,(«));
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with this notationpy, = T'ay, 1. (Note that this is analogous to the dynamic programmingaipe
indeed, if player 2 only had one action available, this wdiddexactly the dynamic programming
operator.)

To interpretay(z) consider a two-player zero-sum game withstages, where stages are
counted down fronk to 1, and the game starts in stateat stagek. At any stage with a posi-
tive index, payoffs accrue according to the stage game p#yoand then play proceeds to the
next state. At the terminal state payoffs are givermpySince this game is zero-sum with finitely
many (pure) strategies for each player, it has a value. Tdlisevis exactlyy,(x), which is easily
shown by induction: ifo,_;(2’) is the value of thé: — 1 stage game terminating witly, then
player 1 can guarantee himself a payofihgfz) in the k stage game starting from while player
2 can guarantee herself a payeffy.(x).

For any real vector € R, let||z||. = sup, |x;| (this is called the sup norm). Observe that
for any two functionsy, o’ we have:

ITa —Td || = max | val( R, (o) — val(R, ()
S

< Omax . max P(2'|as, az, z)(a(a’) — o/ (2/
= reX aleA1($),a2€A2(m) Z}( ( ‘ 1 2 )( ( ) ( ))

< dmax |a(z') — o (2)]
x'eX
=0l — o[l

(The first inequality follows from our lemma.)

Sinced € (0, 1), this argument establishes tHats acontraction and thus, regardless of the
initial value functionag, the sequence;, converges to a unique limit* that satisfies* = Ta*.

We now have two propositions: one that establishes thaptayer zero-sum stochastic games
have a value, and the second that finds optimal strategid¢sdqilayers.

Theorem 2 Given a two-player zero-sum stochastic game, defih@s the unique solution to
o = Ta*. A pair of strategieg sy, s9) is a subgame perfect equilibrium if and only if after any
history leading to the state, the expected discounted payoff to player 1 is exactly).

Proof. Suppose the game is in state Suppose that for the nektperiods, player 1 plays an
optimal strategy from thé stage game, with terminal payoffg(z') = 0 for all 2’ € X; after
the firstk periods, player 1 can play any strategy. Regardless of pliyestrategy, this approach
guarantees player 1 an expected discounted payoff in tméten§ame of at worst:

5k
1—-9

ag(z) — M, 3)
where:

M = max max ai, as;x)|.
x’GXa1€A1(x’),a26A2(a:’)‘Q( 1> %2 )|

The guarantee follows by the fact thaf is the value of the:-stage game with terminal payoffs
ag.



As k — oo in (3), we conclude that player 1 can lower bound his payoftbir). A similar
argument shows player 2 can lower bound her payoffby(x). This establishes the claim of the
theorem. 0

An optimal strategyor player 1 (resp., player 2) is a strategy for player 1 thetrgntees player
1 (resp., player 2) a payoff of at least(x) (resp.,—a*(z)). Note that although the preceding proof
establishes that all stochastic games have a value, it digsovide optimal stationary strategies
for each player. We provide these in the following propositi

Proposition 3 Let s (z), so(z) be optimal (possibly mixed) strategies for players 1 and 25iro-
sum game defined by the matf.(a*). Thens,, s, are optimal strategies in the stochastic game
for both players; in particular(s,, s2) is an MPE.

Proof. Fix a (possibly history dependent) strategyfor player 2. We first consider fa stage
game, where terminal payoffs are givendsy In this game, it follows that player 1 can guarantee
a payoff of at leastv*(z) by playing the strategy; given in the proposition, regardless of the
strategy of player 2. Thus we have:

i 6'Q(s1(xh), o(xh); ") + 5’“0(*@’“))1:0 = J;] > a*(x).

t=0

E

The preceding implies:

This in turn implies:
5k
[ M
As k — oo, the right hand side approacheqz), as required; the proof for player 2 is symmetric.
O

(51, 825 7) > a*(z) — 6F||a*||e0 —

Note that although such an approaglaranteeshat player 1 will do no worse thaa*, in prac-
tice “mistakes” by player 2 may allow player 1 to develop &gges that perform better thari.
The study of learning in zero-sum stochastic games is dévotexactly this problem: achieving
o* against an adversary, but also exploiting possibilitiefdaher gain when the opponent is not
adversarial.
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