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Ramesh Johari April 16, 2007

In this lecture we define stochastic games and Markov perfectequilibrium.

1 Stochastic Games

A (discounted) stochastic game withN players consists of the following elements.

1. A state spaceX (which we assume to be finite for the moment).

2. For each playeri and statex, a setAi(x) of actions available to playeri in statex. (We also
assume eachAi(x) is finite for the moment.)

3. For each playeri, statex, and action vectora ∈
∏

i Ai(x), a stage payoffQi(a; x).

4. For each statex and action vectora ∈
∏

i Ai(x), a transition probabilityP(x′|x, a) that is a
distribution on the state spaceX .

5. A discount factorδ, 0 < δ < 1.

6. An initial statex0.

Play proceeds as follows. The game starts in statex0. At each staget, all players simulta-
neously choose (possibly mixed) actionsat

i, with possible pure actions given by the setAi(x
t).

The stage payoffsQi(a
t; xt) are realized, and the next state is chosen according toP(·|xt,at). All

players observe the entire past history of play before choosing their actions at staget. (This is the
simplest assumption; versions with partial monitoring have also been studied.)

As usual, letsi denote a strategy for playeri in this dynamic game; it is a mapping from
histories (including states and actions) to actions. (After any history leading to statex, playeri’s
strategy must choose an action inAi(x).) Given strategiess1, . . . , sN , the expected discounted
payoff of playeri starting from statex0 is:

Πi(s1, . . . , sN ; x0) = E

[

∞
∑

t=0

δtQi(s1(x
t), . . . , sN(xt); xt)

]

.

Here the expectation is over both randomization in state transitions, and randomization in players’
choice of actions after any history.

2 Markov perfect equilibrium

The overwhelming focus in stochastic games is onMarkov perfect equilibrium. This refers to a
(subgame) perfect equilibrium of the dynamic game where players’ strategies depend only on the
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current state. Whensi is a strategy that depends only on the state, by some abuse of notation we
will let si(x) denote the action that playeri would choose in statex. Such a strategy is called a
Markov strategy.

It is straightforward to check that if all players other thani are playing Markov strategiess−i,
then playeri has a best response that is a Markov strategy. The basic intuition is that if there
exists a best response where playeri playsai after a historyh leading to statex, and playsa′

i after
another historyh′ that also leads to statex, then bothai anda′

i must yield the same expected payoff
to playeri. Thus, for each statex, there exists a valueVi(x; s−i) that is the highest possible payoff
playeri can achieve starting from statex, given that all other players play the Markov strategies
s−i. It then follows that:

Vi(x; s−i) = max
ai∈Ai(x)

E

[

Qi(ai, s−i(x); x) + δ
∑

x′∈X

P(x′|ai, s−i(x), x)Vi(x
′; s−i)

]

.

(This is the standard Bellman equation of dynamic programming.) A Markov best response is then
identified by finding, for each statex, the actionai ∈ Ai(x) that maximizes the right hand side of
the above equation.

3 Existence of MPE

It is straightforward to see that an MPE exists in anyN -player game with a finite state space and
finite action spaces. We use a reduction to a standard finite game.

For each playeri and statex, we create a new player with action spaceÃ(i, x) = Ai(x);
we refer to any player in this new game as anagent. When the actions chosen by all agents are
a = (a(i, x), x ∈ X , i = 1, . . . , N), the payoff to player(i, x) is:

Ri,x(a) = E

[

∑

t≥0

δtQi(a(1, xt), . . . , a(N, xt); xt)
∣

∣

∣
x0 = x

]

.

Note that this game has finitely many players, and each playerhas finitely many actions. Thus the
agent game has a (possibly mixed) Nash equilbrium, where agent (i, x) plays the (possibly mixed)
actiona(i, x).

Define a strategy for playeri wheresi(x) = a(i, x). We claim thats is a MPE. Clearly each
player’s strategy depends only on the current state. Further, observe that by construction, the
strategy of playeri maximizes his payoff among all Markov strategies, givens−i. Since we saw
in the previous section that each playeri has a best response that is a Markov strategy when all
opponents play Markov strategies, we conclude thats must be a MPE.

4 Two-Player, Zero-Sum Stochastic Games

In this section, following the development of Shapley [1], we consider two-player zero-sum stochas-
tic games. We begin by reviewing theminimax theoremof Von Neumann for static two-player
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zero-sum games. LetP be am×n matrix of payoffs; player 1 hasm actions (given by the setA1),
and player 2 hasn actions (given by the setA2). The entryPij is the payoff to player 1 when(i, j)
is played; since the game is zero-sum, the payoff to player 2 is −Pij in this case. The minimax
theorem states that:

max
s1∈∆(A1)

min
s2∈∆(A2)

s⊤1 P s2 = min
s2∈∆(A2)

max
s1∈∆(A1)

s⊤1 P s2. (1)

Heresi is a mixed strategy for playeri, represented as a vector with entries indexed by the actions
in Ai; ∆(Ai) is the set of all mixed strategies for playeri; ands⊤1 P s2 =

∑

i,j s1(i)s2(j)Pij is
the expected payoff to player 1 when(s1, s2) is played. There are many proofs, some using linear
programming, and others using fixed point theorems. The standard game theoretic proof is that all
finite games have Nash equilibria, and any Nash equilibrium of the minimax theorem yields (1).
Indeed, at any Nash equilibrium, the expected payoff to player 1 is the value given in (1):

val(P ) = max
s1∈∆(A1)

min
s2∈∆(A2)

s⊤1 P s2 = min
s2∈∆(A2)

max
s1∈∆(A1)

s⊤1 P s2. (2)

The scalarval(P ) is called thevalueof the matrix game defined byP .
Shapley showed that the minimax theorem extends to two-player zero-sum stochastic games;

all such games also have a value. The proof is via a technique that is very standard in dynamic
programming, calledvalue iteration. In dynamic programming, value iteration is used to find both
optimal policies and the optimal cost or profit of a stochastic control problem.

We will need the following lemma.

Lemma 1 For any twom × n matricesB,C, there holds:

| val B − val C| ≤ max
i,j

|Bij − Cij|.

Proof of Lemma. Let (s1, s2) be a NE of the zero-sum matrix game defined byB, and let
(s1, s2) be a NE of the zero-sum matrix game defined byC. Thens⊤1 Bs2 ≥ s⊤1 Bs2, ands⊤1 Cs2 ≥
s⊤1 Cs2, by the NE optimality conditions for each player. Thus:

s⊤1 Bs2 − s⊤1 Cs2 ≤ s⊤1 Bs2 − s1Cs2 ≤ max
i,j

|Bij − Cij|.

By symmetry the same claim holds withB andC reversed, proving the result. 2

Now consider a two person zero-sum stochastic game; since the game is zero-sum, we drop the
indexi on the stage payoffQ.

Value iteration proceeds as follows. First, we pick an arbitrary functionα : X → R, called a
value function. For eachx ∈ X , define a matrixRx(α) as follows:

Rx(α)(a1, a2) = Q(a1, a2; x) + δ
∑

x′∈X

P(x′|a1, a2, x)α(x), a1 ∈ A1(x), a2 ∈ A2(x).

Value iteration initializes with a value functionα0. The value functionαk is defined byαk(x) =
val(Rx(αk−1)). It is convenient to define the shorthand operator notation(Tα)(x) = val(Rx(α));

3



with this notation,αk = Tαk−1. (Note that this is analogous to the dynamic programming operator;
indeed, if player 2 only had one action available, this wouldbe exactly the dynamic programming
operator.)

To interpretαk(x) consider a two-player zero-sum game withk stages, where stages are
counted down fromk to 1, and the game starts in statex at stagek. At any stage with a posi-
tive index, payoffs accrue according to the stage game payoff Q, and then play proceeds to the
next state. At the terminal state payoffs are given byα0. Since this game is zero-sum with finitely
many (pure) strategies for each player, it has a value. This value is exactlyαk(x), which is easily
shown by induction: ifαk−1(x

′) is the value of thek − 1 stage game terminating withα0, then
player 1 can guarantee himself a payoff ofαk(x) in thek stage game starting fromx, while player
2 can guarantee herself a payoff−αk(x).

For any real vectorx ∈ R
J , let ‖x‖∞ = supj |xj| (this is called the sup norm). Observe that

for any two functionsα, α′ we have:

‖Tα − Tα′‖∞ = max
x∈X

| val(Rx(α) − val(Rx(α
′))|

≤ δ max
x∈X

max
a1∈A1(x),a2∈A2(x)

∣

∣

∣

∣

∣

∑

x′∈X

P(x′|a1, a2, x)(α(x′) − α′(x′))

∣

∣

∣

∣

∣

≤ δ max
x′∈X

|α(x′) − α′(x′)|

= δ‖α − α′‖∞.

(The first inequality follows from our lemma.)
Sinceδ ∈ (0, 1), this argument establishes thatT is acontraction; and thus, regardless of the

initial value functionα0, the sequenceαk converges to a unique limitα∗ that satisfiesα∗ = Tα∗.
We now have two propositions: one that establishes that two-player zero-sum stochastic games

have a value, and the second that finds optimal strategies forthe players.

Theorem 2 Given a two-player zero-sum stochastic game, defineα∗ as the unique solution to
α∗ = Tα∗. A pair of strategies(s1, s2) is a subgame perfect equilibrium if and only if after any
history leading to the statex, the expected discounted payoff to player 1 is exactlyα∗(x).

Proof. Suppose the game is in statex. Suppose that for the nextk periods, player 1 plays an
optimal strategy from thek stage game, with terminal payoffsα0(x

′) = 0 for all x′ ∈ X ; after
the firstk periods, player 1 can play any strategy. Regardless of player2’s strategy, this approach
guarantees player 1 an expected discounted payoff in the infinite game of at worst:

αk(x) −
δk

1 − δ
M, (3)

where:
M = max

x′∈X
max

a1∈A1(x′),a2∈A2(x′)
|Q(a1, a2; x)|.

The guarantee follows by the fact thatαk is the value of thek-stage game with terminal payoffs
α0.
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As k → ∞ in (3), we conclude that player 1 can lower bound his payoff byα∗(x). A similar
argument shows player 2 can lower bound her payoff by−α∗(x). This establishes the claim of the
theorem. 2

An optimal strategyfor player 1 (resp., player 2) is a strategy for player 1 that guarantees player
1 (resp., player 2) a payoff of at leastα∗(x) (resp.,−α∗(x)). Note that although the preceding proof
establishes that all stochastic games have a value, it does not provide optimal stationary strategies
for each player. We provide these in the following proposition.

Proposition 3 Let s1(x), s2(x) be optimal (possibly mixed) strategies for players 1 and 2 inzero-
sum game defined by the matrixRx(α

∗). Thens1, s2 are optimal strategies in the stochastic game
for both players; in particular,(s1, s2) is an MPE.

Proof. Fix a (possibly history dependent) strategyŝ2 for player 2. We first consider ak stage
game, where terminal payoffs are given byα∗. In this game, it follows that player 1 can guarantee
a payoff of at leastα∗(x) by playing the strategys1 given in the proposition, regardless of the
strategy of player 2. Thus we have:

E

[

k−1
∑

t=0

δtQ(s1(x
t), ŝ2(x

t); xt) + δkα∗(xk)
∣

∣

∣
x0 = x

]

≥ α∗(x).

The preceding implies:

E

[

k−1
∑

t=0

δtQ(s1(x
t), ŝ2(x

t); xt)
∣

∣

∣
x0 = x

]

≥ α∗(x) − δk‖α∗‖∞.

This in turn implies:

Π(s1, ŝ2; x) ≥ α∗(x) − δk‖α∗‖∞ −
δk

1 − δ
M.

As k → ∞, the right hand side approachesα∗(x), as required; the proof for player 2 is symmetric.
2

Note that although such an approachguaranteesthat player 1 will do no worse thanα∗, in prac-
tice “mistakes” by player 2 may allow player 1 to develop strategies that perform better thanα∗.
The study of learning in zero-sum stochastic games is devoted to exactly this problem: achieving
α∗ against an adversary, but also exploiting possibilities for further gain when the opponent is not
adversarial.
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