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In this lecture we define several variants of flatitious playdynamic, and study some of the
properties of fictitious play.

Throughout the section we consider a finiteplayer game, where each playiehas a finite
pure action setl;. We leta, denote a pure action for playgrand lets; € A(A;) denote a mixed
action for player. We will typically view s; as a vector ifR“:, with s;(a;) equal to the probability
that playeri places om;. We letll;(a) denote the payoff to playerwhen the composite pure
action vector isz, and by an abuse of notation alsolg(s) denote the expected payoff to player
when the composite mixed action vectosisWe let BR;(s_;) denote the best response mapping
of playeri; heres_; is the composite mixed action vector of players other than

We will typically restrict attention to the case whe¥e= 2.

1 Fictitious Play

In this section we introduce three main variants of fictiiqulay: discrete time fictitious play
(DTFP), continuous time fictitious play (CTFP), and stocteafgttitious play (SFP, and the asso-
ciated perturbed continuous time fictitious play, PCTFP).

1.1 Discrete-Time Fictitious Play

The basic definition of fictitious play was, by most accoumtspduced by Brown [2], although
Cournot’s best response dynamic is also closely relatedH&jtitious play refers to a dynamic
process where at each stage, players play a (pure) beshsesjacthe empirical distribution of their
opponent’s play. Note that whe¥i > 2, this poses a problem: should players respond tgaiiné
empirical distribution of their opponents, or the produicthee marginalempirical distributions of
their opponents? Typically, fictitious play considers theduct of marginals, although it is worth
noting that this is a point of discussion (see [5], Secti@).2.

Let a! denote the action played by playign time ¢t. Theempirical frequencyf player:’s play
up to timet is:

Yia) =Y T{a] = a;}. (1)
7=0

HereZ{A} denotes the indicator function af. Thus~! is a A;-dimensional vector that counts the
number of times playei has played each action. Tleenpirical distributionof playeri’s play up

to (but not including) time is: t

e, @

We letp’ denote the distribution ofi[; A; given by taken the independent product of the individual
distributionsp!.

pf(ai) =



In discrete-time fictitious playDTFP), each player plays an arbitrary action at tilmand at
time ¢, player: plays a pure best response to the product of the marginarieadistributions of
his opponents; i.e., for atl> 0 andi:

al € BR;(p",). (3)

This is the model that was proposed by Brown and studied by Rohif2, 9]. Note that, in this
model, every player plays@urebest response to his opponents.
We make the following remarks:

1. Note that we assume that players mewaultaneously Another approach would be to
assume that players alternate moves, though almost altéhatiire takes the simultaneous-
move approach. There are not significant qualitative difiees between the two models.

2. We have assumed that the initial conditions are spectiiedigh an arbitrarily chosen pure
actiona?. It is often convenient for the purposes of examples to ctarshstead a situation
where players instead begin with initiagliefs in this case, we let! denote an initial distri-
bution giving the expectations of other players about plageplay at time0. At each time
t > 0, we chooser! € BR(p" ), and we lety! = (7! + p?)/(t + 1). Effectively, this treats
p? as an arbitrary mixed strategy played by playat time—1.

3. The update rule that compuigscan be interpreted in a Bayesian sense. Suppose that players
other thani initially have aDirichlet prior about playei’s play, with parameter vectgr.
That is, suppose players believe that the probability thetqy: will play with the mixed
strategys; is given by:

P(si) = [T si(ae)".
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Herel is the gamma function. It is straightforward to check thatis model, the expected
value ofs;(a;) is exactlyp!(a;). Further, after player plays at timet, suppose that actiot}

is realized. It is also straightforward to show that the poet (or conditional) distribution
of s;, given that playet playeda!, is a Dirichlet distribution with parameter vectg™.
We'll revisit this Bayesian approach when we study learning.

4. We assume here that players put equal weight on every pléyei past. An alternative
approach is to consider weightings that prioritize recémt.fOne extreme, wheyé(a' ') =
1, andpi(a;) = 0 for all othera;, is called thebest response dynamigqNote that this
terminology is not canonical; some authors even refer taifios play as the best response
dynamic.) The best response dynamic is the same one firstleoed by Cournot. We will
revisit its performance when we study supermodular games.

1.2 Continuous-Time Fictitious Play

We now consider a continuous-time version of the procedsdrptevious section. loontinuous-
time fictitious playCTFP), players update the weights they place on the acti@ikshble to them,
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in thedirectionof a best response to their opponents’ past actions. Formadlhave:

dpt
dt

(Note the left hand side is aA;-dimensional vector.) To interpret this equation, it isgfel to
think of p! as the current empirical distribution of the opposing pitayplay. Player “adjusts” his
play so that his empirical distribution has a drift towardsséement of the best responsepto.
Processes such as (4) are caltbffierential inclusions It is straightforward but technically
involved to establish that such inclusions have a solutimdler reasonable conditions. We refer
to a procesqp'} that solves the inclusion (4) as a CTFP process. However, vphasize that
because selections from the best response mapping araltyighly discontinuous, there may
existmanysolutions to the CTFP differential inclusion. (See [7] for amrmdetailed discussion of
this issue.)
It is not difficult to establish that CTFP is, in an appropriaé®se, a continuous time version
of DTFP. Suppose we are given a CTFP procgss defined on(—oo, o), and defines! =
p! + dpt/dt. It follows from the definition of CTFP that:

€ BR(p";) — p.. (4)

s; € BR(p.,). 5)
Further, we can establish that: .
Pt :/ 6_(t_T)SZ— dr. (6)
(Simply differentiate the preceding expression and stilistthe definition of!.) We can thus view
st as the mixed action profile chosen by playet timet, andp! as the exponentially weighted
empirical distribution of playei’s past history of play. In fact, this relationship holds a@verse:
given processes’ andp’ that satisfy (5)-(6), the procegé is a CTFP process.

We conclude with one more transformation. If we change timigsulettingp! = p
§t = 518 then it follows that for > 0 and alli we have:

logt
)

and

and
1 [t - .
Py = —/ st dtau.
tJo

(We use hats here to emphasize the change of variableseddaiestablish this identity.) Thus,
with an additional change of time units, CTFP is exactly a ionaus time generalization of the
DTFP process. Note, however, that this analog tracks thempa®dactions of player, not
the realizedpure actions; nevertheless, as Harris shows [7], the precedilagion implies that
asymptotic behavior of CTFP can be used to infer asymptotialier of DTFP.

1.3 Stochastic Fictitious Play

DTFP is somewhat strange in its original form, because jptayely play pure actions at each time
step; this is true even if players actually have in mind a mhixest response. This means that actual
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play can never converge to a mixed Nash equilibrium. Evereifrack players’ mixed actions, the
best response mapping may still be multiple valued, raisiggificant hurdles in the analysis of
fictitious play.

One approach to “smoothing” fictitious play is to introdue@domness into the model. For-
mally, Fudenberg and Kreps took an approach similar to hgi'sgpurification of Nash equilib-
rium to define stochastic fictitious play [4]. Harsanyi assdnthat in a standard simultaneous-
move game, each player privately observed a “shock” to theyoffs—a small noise term that
shifted the payoffs slightly. Since the shock to playsipayoffs is only observed by playérthis
makes the original complete information game into a gamaaimplete information. Harsanyi’'s
purification theorem shows that (under some assumptionysjnaxed strategy equilibrium of the
original complete information game is a limit of pure stggt®ayesian equilibria of the perturbed
incomplete information games, as the noise term approadres (Details can be found in any
standard game theory text, e.g., [6].)

1.3.1 TheChoice Probability Function and SFP

We can consider the same approach in the fictitious play madfel follow the development of
Hofbauer and Sandholm [8]. Suppose that at each time pahedplayers privately observe a
random shock to their payoffs; in particular, weleta) + ¢ N; denote the payoff to playémwhen
the composite action is and the random shock; is realized. (In general, the random shock could
depend on the action chosen by playeor even on the composite vector of actiarnisall that is
important is that only playerobserves the functional form of the shock to his own payoff.)

In stochastic fictitious playSFP), at timet, playeri chooses an action that maximizes his
perturbed payoff, assuming that each opponent plays aocpia his (marginal) empirical distri-
bution of play up to timeg. Note that the distribution ove¥; gives rise to a distribution over the
possible actions that will be played by playeat timet; in particular, we define the distribution
C;(s_;) according to:

Ci(s—i)(a;)) =P <arg n,leaj([ﬂi(a;, s_i)+eN;] = ai> :
Note that for this to be well defined, we require that the nbie strictly positive density every-
where inR.

The distributionC;(s_;) is called thechoice probability functiomf playeri; it gives the proba-
bility that player:i will choose any one of actions, given the composite (mixetipa vector of his
opponents. For this reasan is also called theerturbed best response functiohplayer:; under
this interpretation, we view’;(s_;) as the perturbed-payoff-maximizing mixed action of player
when his opponents play._;.

In comparing with (3), we see that in stochastic fictitiousypthe initial actior:? is arbitrary,
and the action! is randomly drawn according to the distribution specifiedty perturbed best
response&’;(p’ ;).



1.3.2 Perturbed CTFP

Using the choice probability function, we can compute th&ritiution governing the evolution
of SFP. Define the empirical frequency and distribution afypki’s play as in the discrete-time
equations, (1) and (2), respectively. Observe that:

41
1
p:+1 i (tpz LT M) :

t+1 Tt t+1
where by an abuse of notation we Geto denote the indicator function of the actien We note
that conditional orp?, the actiona‘™ is drawn according to the choice probability distribution
C;(p",). It follows that the expected change in playsrempirical distribution is:

1
E[Z c1|p'] —pf) = —— (Ci(p-,) — pl) .

Zyrlp] =) = 75 (CilpL) — 1)
By analogy with our discussion of CTFP, the previous calcotasuggests a natural analog,

which we callperturbed continuous time fictitious pl&yCTFP):

B - pilp] = (

dpt

L = CZ ¢ - ) — t 7
o (p2) — i (7)
Note the similarity to the CTFP process (4): the best responsgion has been replaced by the
choice probability functiorC;. Because the choice probability function is uniquely defjribd
PCTFP dynamics are a differenteduation rather than a differentiahclusion

1.3.3 Reinterpreting the Choice Probability Function

We conclude with a reinterpretation of the choice probgbitinction that helps both intuition and
analysis. It turns out that a convenient simplification isgible from the random utility model
described above. Giveany (continuously differentiable) choice probability furati C;, there
exists a convex functiol; on A(A4;) such that:
Ci(s_;) = arg max (IL;(s;,s_;) — Vi(s:)) .

Si€EA(A;)
(Note that the calculation on the right hand side is the stethtegendre transform of convex anal-
ysis.) One common example is thgit choice probability functionif V;(s;) = —e >, si(a;)log si(a;)
(negative entropy), then the resultiagis:

exp (Ili(as, 5-4)/¢)
Daea, exp (ia}, s-i) /e)

This choice function comes up in a variety of fields: inforiroattheory, statistics, physics, large
deviations, etc.

The preceding transformation is useful, because it allesw® uepresent the PCTFP dynamics
using adeterministicperturbationV;. Further, it is straightforward to interpret the effectigfan-
alytically: while maximization without the perturbatioertn yields a discontinuous best response

Ci(s-i)(a;) =
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mapping, the perturbation “softens” the maximum; in paiac, it guarantees that the perturbed
best responsé€’; is always unique, regardless of opponents’ strategiess dtraightforward to
check that as the coefficientof N; approaches zero, the perturbatigrapproaches zero as well.
In this case the functiof’; more and more closely resembles the true best responsemgafqui
example, it is straightforward to establish thatsas- 0, the logit choice function chooses only
those actions that maximize the unperturbed payoff.

2 Nash Equilibrium

A basic insight behind the definition of fictitious play is thifat “converges”, then it must converge
to a Nash equilibrium of the game. In this section we fornaatltas insight.

21 DTFP

We say that DTFRonvergesf the empirical distributiong! converge for every playérast — oc.
If a fixed pure action profile’ is played at every time > t,, then we calla’ a steady stat®f
DTFP.

It is immediate that ifa’ is a steady state of DTFP, then it must be a Nash equilibriunis i§
because eventually, must also converge to a point mass on the aciigrand thus ifa! is not a
best response @' ;, eventually playet will choose a different action.

It is also similarly obvious that iz is a strict Nash equilibrium—i.e., if; is a strict best
response ta_;,—then oncea is played at timé&, it is played at all subsequent times thereafter. To

see this, note that if playémplaysa; at timet, thena, € BR;(p" ,); in particular, for alla’:
(a;, pL;) = M(a;, pLy).

But all players other thaiplay a_; at timet, and by assumption we have for ajt
(a;, a_;) > (a;,a_;).

Sincep!™ is a convex combination gf and a point mass ait, we conclude that for al’:
J J 7

I(a;, p=5') > T(a;, p7).

Thus player will play a; at all timest’ > t.

Finally, suppose that DTFP converges, ix¢..— p; ast — oo for all i. The key insight is that
the limiting product of empirical distributiong is a Nash equilibriumSuppose not; in particular,
suppose for some playéand pure actiom; we have:

I (a;, p_;) > 1L(p).

Then for all sufficiently large, say fort > t,, we have:
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But then for allt > t,, player: would never play any of the actions on which he places pe@sitiv
weight inp;. This contradicts the assumption that the empirical distion of player; converges
to p;.

It is the preceding simple argument that justifies fictitiplesy: it is the most natural update
rule in which a player plays a best response to his opponkaltiavior (or perhaps second best,
after best response dynamics). Thus, asymptotically, iIFPTonverges, all players are playing
best responses to each other — a Nash equilibrium.

22 CTFP

We define convergence for CTFP in the obvious way: we say thatFP@Focesp’ convergesf

pt converges for every playérast — oo. Since this also implies thap!/dt — 0 ast — oo, we
conclude that the limiting empirical distributign must satisfyp; € BR;(p_;); i.e., it is a Nash
equilibrium, matching the discrete-time result.

2.3 SFPand PCTFP

Convergence for SFP is slightly more subtle, since it define®ehastic process rather than a
deterministic dynamical system. For simplicity, we onlyfide convergence here for games that
admit a unique Nash equilibrium; in general, convergencetiochastic play must be defined by
considering the limit points of the trajectory, and we rdfex reader to [8] as well as [5], Chapter
4, for the detalls.

For our purposes, we will say that the SFP dynancimsvergeto p if P(p' — p) = 1 (i.e.,
the empirical distributions almost surely convergep)o Suppose that the perturbed game—i.e.,
the game where each player maximizgs) + V;(s;)—has a unique (possibly mixed) Nash equi-
librium s. (We will later see conditions under which we can guarariée)t Then by reasoning
analogous to the discrete-time setting, it follows thatFPSconverges t@, thenp must be the
unique Nash equilibriurs.

By reasoning analogous to the continuous-time setting, wieatso see that if PCTFP con-
verges (i.e., if the resulting procegsconverges to a limip), then the limiting empirical distribu-
tionsp must be the unique Nash equilibrium of the perturbed gamehd@size of the perturbation
€ approaches zero, we can establish that the limiting engpidistributions approach a Nash equi-
librium of the original game (see Proposition 3.1 in [8]).

We conclude with a comment on the relationship between ecgewee of SFP and convergence
of PCTFP. Note that in SFP, we can write the update of empidisaibutions as follows:

i bi t+1 t+1’

where{! = Z,. — Ci(p;) is a zero mean random variable. Nowtas- oo, the last term on
the right approaches zero; further, the cumulative vagaosfcthe noise terms is bounded, since
>, 1/t* < oo. Informally, this suggests that the limiting behavior of gtochastigrocesg’ can



be inferred from the limiting behavior of the followirdgterministicprocess:

ﬁz§+1 o ﬁt, _ CZ(ZA)t—J - ﬁf
1 7 t+1 *

In turn the limiting behavior of the preceding determirggirocess is characterized by the limiting
behavior of the PCTFP process. Thus we conjecture that if @EHP process converges to a
unique limit p* regardless of initial condition, then the SFP dynamics Bhaonverge almost
surely to the same limit.

Indeed, this is the approach of the theorystdchastic approximations tool that has found
great use in studying stochastic fictitious play. FudenbeKreps apply this approach to study
2 x 2 matrix games with a unique Nash equilibrium [4]. Of coutke,story is significantly more
complicated in general, and in particular when the PCTFPga®¢s not globally asymptotically
stable. For further details, we refer the reader to [1, 8] elé &6 [5], chapter 4.

2.4 A Warning on Convergence Notions

We close with a warning on the notions of convergence usetenanalysis of fictitious play.
Typically, the desired convergence is in the empiricalrdistions of the players. However, it is
frequently the case that results are proved instead for dlyeffs of the players; in particular, a
common statement is that fictitious play “converges” if fbria

1. Hz I t- _Hz ¢ :0

Jm max Tls: o) = TL(p)
This is convergence of payoffs: i.e., the payoff at the eroglidistribution for playes approaches
the best possible payoff playércould achieve against stationary opponents playihg Payoff

convergence is a useful notion if the empirical distribontanay oscillate, even when payoffs have
stabilized.
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