
MS&E 336 Lecture 6: Fictitious play
Ramesh Johari April 23, 2007

In this lecture we define several variants of thefictitious playdynamic, and study some of the
properties of fictitious play.

Throughout the section we consider a finiteN -player game, where each playeri has a finite
pure action setAi. We letai denote a pure action for playeri, and letsi ∈ ∆(Ai) denote a mixed
action for playeri. We will typically view si as a vector inRAi , with si(ai) equal to the probability
that playeri places onai. We letΠi(a) denote the payoff to playeri when the composite pure
action vector isa, and by an abuse of notation also letΠi(s) denote the expected payoff to playeri
when the composite mixed action vector iss. We letBRi(s−i) denote the best response mapping
of playeri; heres−i is the composite mixed action vector of players other thani.

We will typically restrict attention to the case whereN = 2.

1 Fictitious Play

In this section we introduce three main variants of fictitious play: discrete time fictitious play
(DTFP), continuous time fictitious play (CTFP), and stochastic fictitious play (SFP, and the asso-
ciated perturbed continuous time fictitious play, PCTFP).

1.1 Discrete-Time Fictitious Play

The basic definition of fictitious play was, by most accounts,introduced by Brown [2], although
Cournot’s best response dynamic is also closely related [3].Fictitious play refers to a dynamic
process where at each stage, players play a (pure) best response to the empirical distribution of their
opponent’s play. Note that whenN > 2, this poses a problem: should players respond to thejoint
empirical distribution of their opponents, or the product of the marginalempirical distributions of
their opponents? Typically, fictitious play considers the product of marginals, although it is worth
noting that this is a point of discussion (see [5], Section 2.2).

Let at
i denote the action played by playeri in time t. Theempirical frequencyof playeri’s play

up to timet is:

γt
i(ai) =

t−1
∑

τ=0

I{aτ
i = ai}. (1)

HereI{A} denotes the indicator function ofA. Thusγt
i is aAi-dimensional vector that counts the

number of times playeri has played each action. Theempirical distributionof playeri’s play up
to (but not including) timet is:

pt
i(ai) =

γt
i(ai)

t
. (2)

We letpt denote the distribution on
∏

i Ai given by taken the independent product of the individual
distributionspt

i.
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In discrete-time fictitious play(DTFP), each player plays an arbitrary action at time0, and at
time t, playeri plays a pure best response to the product of the marginal empirical distributions of
his opponents; i.e., for allt > 0 andi:

at
i ∈ BRi(p

t
−i). (3)

This is the model that was proposed by Brown and studied by Robinson [2, 9]. Note that, in this
model, every player plays apurebest response to his opponents.

We make the following remarks:

1. Note that we assume that players movesimultaneously. Another approach would be to
assume that players alternate moves, though almost all the literature takes the simultaneous-
move approach. There are not significant qualitative differences between the two models.

2. We have assumed that the initial conditions are specified through an arbitrarily chosen pure
actiona0

i . It is often convenient for the purposes of examples to consider instead a situation
where players instead begin with initialbeliefs; in this case, we letp0

i denote an initial distri-
bution giving the expectations of other players about player i’s play at time0. At each time
t ≥ 0, we chooseat

i ∈ BR(pt
−i), and we letpt

i = (γt
i + p0

i )/(t + 1). Effectively, this treats
p0

i as an arbitrary mixed strategy played by playeri at time−1.

3. The update rule that computespt
i can be interpreted in a Bayesian sense. Suppose that players

other thani initially have aDirichlet prior about playeri’s play, with parameter vectorpt
i.

That is, suppose players believe that the probability that player i will play with the mixed
strategysi is given by:

P(si) =
1

∏

ai∈Ai
Γ(pt

i(ai))

∏

ai∈Ai

si(ai)
pt

i
(ai)−1.

HereΓ is the gamma function. It is straightforward to check that inthis model, the expected
value ofsi(ai) is exactlypt

i(ai). Further, after playeri plays at timet, suppose that actionat
i

is realized. It is also straightforward to show that the posterior (or conditional) distribution
of si, given that playeri playedat

i, is a Dirichlet distribution with parameter vectorpt+1
i .

We’ll revisit this Bayesian approach when we study learning.

4. We assume here that players put equal weight on every play in the past. An alternative
approach is to consider weightings that prioritize recent play. One extreme, wherept

i(a
t−1
i ) =

1, andpt
i(ai) = 0 for all other ai, is called thebest response dynamic. (Note that this

terminology is not canonical; some authors even refer to fictitious play as the best response
dynamic.) The best response dynamic is the same one first considered by Cournot. We will
revisit its performance when we study supermodular games.

1.2 Continuous-Time Fictitious Play

We now consider a continuous-time version of the process in the previous section. Incontinuous-
time fictitious play(CTFP), players update the weights they place on the actions available to them,
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in thedirectionof a best response to their opponents’ past actions. Formally, we have:

dpt
i

dt
∈ BR(pt

−i) − pt
i. (4)

(Note the left hand side is anAi-dimensional vector.) To interpret this equation, it is helpful to
think of pt

i as the current empirical distribution of the opposing players’ play. Playeri “adjusts” his
play so that his empirical distribution has a drift towards an element of the best response top

t
−i.

Processes such as (4) are calleddifferential inclusions. It is straightforward but technically
involved to establish that such inclusions have a solution,under reasonable conditions. We refer
to a process{pt} that solves the inclusion (4) as a CTFP process. However, we emphasize that
because selections from the best response mapping are typically highly discontinuous, there may
existmanysolutions to the CTFP differential inclusion. (See [7] for a more detailed discussion of
this issue.)

It is not difficult to establish that CTFP is, in an appropriatesense, a continuous time version
of DTFP. Suppose we are given a CTFP process{pt} defined on(−∞,∞), and definest

i =
pt

i + dpt
i/dt. It follows from the definition of CTFP that:

st
i ∈ BR(pt

−i). (5)

Further, we can establish that:

pt
i =

∫ t

−∞

e−(t−τ)sτ
i dτ. (6)

(Simply differentiate the preceding expression and substitute the definition ofst
i.) We can thus view

st
i as the mixed action profile chosen by playeri at timet, andpt

i as the exponentially weighted
empirical distribution of playeri’s past history of play. In fact, this relationship holds in reverse:
given processesst andp

t that satisfy (5)-(6), the processpt is a CTFP process.
We conclude with one more transformation. If we change time units, letting p̂t

i = plog t
i and

ŝt
i = slog t

i , then it follows that fort ≥ 0 and alli we have:

ŝt
i ∈ BR(p̂t

−i),

and

p̂t
i =

1

t

∫ t

0

ŝ
ˆtau

i d ˆtau.

(We use hats here to emphasize the change of variables required to establish this identity.) Thus,
with an additional change of time units, CTFP is exactly a continuous time generalization of the
DTFP process. Note, however, that this analog tracks the past mixedactions of playeri, not
the realizedpure actions; nevertheless, as Harris shows [7], the preceding relation implies that
asymptotic behavior of CTFP can be used to infer asymptotic behavior of DTFP.

1.3 Stochastic Fictitious Play

DTFP is somewhat strange in its original form, because players only play pure actions at each time
step; this is true even if players actually have in mind a mixed best response. This means that actual
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play can never converge to a mixed Nash equilibrium. Even if we track players’ mixed actions, the
best response mapping may still be multiple valued, raisingsignificant hurdles in the analysis of
fictitious play.

One approach to “smoothing” fictitious play is to introduce randomness into the model. For-
mally, Fudenberg and Kreps took an approach similar to Harsanyi’s purification of Nash equilib-
rium to define stochastic fictitious play [4]. Harsanyi assumed that in a standard simultaneous-
move game, each player privately observed a “shock” to theirpayoffs—a small noise term that
shifted the payoffs slightly. Since the shock to playeri’s payoffs is only observed by playeri, this
makes the original complete information game into a game of incomplete information. Harsanyi’s
purification theorem shows that (under some assumptions) any mixed strategy equilibrium of the
original complete information game is a limit of pure strategy Bayesian equilibria of the perturbed
incomplete information games, as the noise term approacheszero. (Details can be found in any
standard game theory text, e.g., [6].)

1.3.1 The Choice Probability Function and SFP

We can consider the same approach in the fictitious play model. We follow the development of
Hofbauer and Sandholm [8]. Suppose that at each time period,the players privately observe a
random shock to their payoffs; in particular, we letΠi(a)+ εNi denote the payoff to playeri when
the composite action isa and the random shockNi is realized. (In general, the random shock could
depend on the action chosen by playeri, or even on the composite vector of actionsa; all that is
important is that only playeri observes the functional form of the shock to his own payoff.)

In stochastic fictitious play(SFP), at timet, player i chooses an action that maximizes his
perturbed payoff, assuming that each opponent plays according to his (marginal) empirical distri-
bution of play up to timet. Note that the distribution overNi gives rise to a distribution over the
possible actions that will be played by playeri at timet; in particular, we define the distribution
Ci(s−i) according to:

Ci(s−i)(ai) = P

(

arg max
a′

i
∈Ai

[Πi(a
′

i, s−i) + εNi] = ai

)

.

Note that for this to be well defined, we require that the noisehas strictly positive density every-
where inR.

The distributionCi(s−i) is called thechoice probability functionof playeri; it gives the proba-
bility that playeri will choose any one of actions, given the composite (mixed) action vector of his
opponents. For this reasonCi is also called theperturbed best response functionof playeri; under
this interpretation, we viewCi(s−i) as the perturbed-payoff-maximizing mixed action of playeri,
when his opponents plays−i.

In comparing with (3), we see that in stochastic fictitious play, the initial actiona0
i is arbitrary,

and the actionat
i is randomly drawn according to the distribution specified bythe perturbed best

responseCi(p
t
−i).
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1.3.2 Perturbed CTFP

Using the choice probability function, we can compute the distribution governing the evolution
of SFP. Define the empirical frequency and distribution of playeri’s play as in the discrete-time
equations, (1) and (2), respectively. Observe that:

pt+1
i =

γt+1
i

t + 1
=

1

t + 1

(

tpt
i + Iat+1

i

)

,

where by an abuse of notation we useIai
to denote the indicator function of the actionai. We note

that conditional onpt, the actionat+1
i is drawn according to the choice probability distribution

Ci(p
t
−i). It follows that the expected change in playeri’s empirical distribution is:

E[pt+1
i − pt

i|p
t] =

1

t + 1

(

E[Iat+1

i

|pt] − pt
i

)

=
1

t + 1

(

Ci(p
t
−i) − pt

i

)

.

By analogy with our discussion of CTFP, the previous calculation suggests a natural analog,
which we callperturbed continuous time fictitious play(PCTFP):

dpt
i

dt
= Ci(p

t
−i) − pt

i. (7)

Note the similarity to the CTFP process (4): the best responsefunction has been replaced by the
choice probability functionCi. Because the choice probability function is uniquely defined, the
PCTFP dynamics are a differentialequation, rather than a differentialinclusion.

1.3.3 Reinterpreting the Choice Probability Function

We conclude with a reinterpretation of the choice probability function that helps both intuition and
analysis. It turns out that a convenient simplification is possible from the random utility model
described above. Givenany (continuously differentiable) choice probability function Ci, there
exists a convex functionVi on∆(Ai) such that:

Ci(s−i) = arg max
si∈∆(Ai)

(Πi(si, s−i) − Vi(si)) .

(Note that the calculation on the right hand side is the standard Legendre transform of convex anal-
ysis.) One common example is thelogit choice probability function: if Vi(si) = −ε

∑

ai
si(ai) log si(ai)

(negative entropy), then the resultingCi is:

Ci(s−i)(ai) =
exp (Πi(ai, s−i)/ε)

∑

a′

i
∈Ai

exp (Πi(a′

i, s−i)/ε)
.

This choice function comes up in a variety of fields: information theory, statistics, physics, large
deviations, etc.

The preceding transformation is useful, because it allows us to represent the PCTFP dynamics
using adeterministicperturbationVi. Further, it is straightforward to interpret the effect ofVi an-
alytically: while maximization without the perturbation term yields a discontinuous best response
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mapping, the perturbation “softens” the maximum; in particular, it guarantees that the perturbed
best responseCi is always unique, regardless of opponents’ strategies. It is straightforward to
check that as the coefficientε of Ni approaches zero, the perturbationVi approaches zero as well.
In this case the functionCi more and more closely resembles the true best response mapping; for
example, it is straightforward to establish that asε → 0, the logit choice function chooses only
those actions that maximize the unperturbed payoff.

2 Nash Equilibrium

A basic insight behind the definition of fictitious play is that if it “converges”, then it must converge
to a Nash equilibrium of the game. In this section we formalize this insight.

2.1 DTFP

We say that DTFPconvergesif the empirical distributionspt
i converge for every playeri, ast → ∞.

If a fixed pure action profileat is played at every timet ≥ t0, then we callat a steady stateof
DTFP.

It is immediate that ifat is a steady state of DTFP, then it must be a Nash equilibrium. This is
because eventuallypt

i must also converge to a point mass on the actionat
i; and thus ifat

i is not a
best response toat

−i, eventually playeri will choose a different action.
It is also similarly obvious that ifa is a strict Nash equilibrium—i.e., ifai is a strict best

response toa−i—then oncea is played at timet, it is played at all subsequent times thereafter. To
see this, note that if playeri playsai at timet, thenai ∈ BRi(p

t
−i); in particular, for alla′

i:

Π(ai,p
t
−i) ≥ Π(a′

i,p
t
−i).

But all players other thani playa−i at timet, and by assumption we have for alla′

i:

Π(ai,a−i) > Π(a′

i,a−i).

Sincept+1
j is a convex combination ofpt

j and a point mass onat
j, we conclude that for alla′

i:

Π(ai,p
t+1
−i ) > Π(a′

i,p
t+1
−i ).

Thus playeri will play ai at all timest′ ≥ t.
Finally, suppose that DTFP converges, i.e.,pt

i → pi ast → ∞ for all i. The key insight is that
the limiting product of empirical distributionsp is a Nash equilibrium. Suppose not; in particular,
suppose for some playeri and pure actionai we have:

Πi(ai,p−i) > Πi(p).

Then for all sufficiently larget, say fort ≥ t0, we have:

Πi(ai,p
t
−i) > Πi(pi,p

t
−i).
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But then for allt ≥ t0, playeri would never play any of the actions on which he places positive
weight inpi. This contradicts the assumption that the empirical distribution of playeri converges
to pi.

It is the preceding simple argument that justifies fictitiousplay: it is the most natural update
rule in which a player plays a best response to his opponent’sbehavior (or perhaps second best,
after best response dynamics). Thus, asymptotically, if DTFP converges, all players are playing
best responses to each other – a Nash equilibrium.

2.2 CTFP

We define convergence for CTFP in the obvious way: we say that a CTFP processpt convergesif
pt

i converges for every playeri, ast → ∞. Since this also implies thatdpt
i/dt → 0 ast → ∞, we

conclude that the limiting empirical distributionp must satisfypi ∈ BRi(p−i); i.e., it is a Nash
equilibrium, matching the discrete-time result.

2.3 SFP and PCTFP

Convergence for SFP is slightly more subtle, since it defines astochastic process rather than a
deterministic dynamical system. For simplicity, we only define convergence here for games that
admit a unique Nash equilibrium; in general, convergence for stochastic play must be defined by
considering the limit points of the trajectory, and we referthe reader to [8] as well as [5], Chapter
4, for the details.

For our purposes, we will say that the SFP dynamicsconvergeto p if P(pt → p) = 1 (i.e.,
the empirical distributions almost surely converge top). Suppose that the perturbed game—i.e.,
the game where each player maximizesΠ(s) + Vi(si)—has a unique (possibly mixed) Nash equi-
librium s. (We will later see conditions under which we can guarantee this.) Then by reasoning
analogous to the discrete-time setting, it follows that if SFP converges top, thenp must be the
unique Nash equilibriums.

By reasoning analogous to the continuous-time setting, we can also see that if PCTFP con-
verges (i.e., if the resulting processp

t converges to a limitp), then the limiting empirical distribu-
tionsp must be the unique Nash equilibrium of the perturbed game. Asthe size of the perturbation
ε approaches zero, we can establish that the limiting empirical distributions approach a Nash equi-
librium of the original game (see Proposition 3.1 in [8]).

We conclude with a comment on the relationship between convergence of SFP and convergence
of PCTFP. Note that in SFP, we can write the update of empiricaldistributions as follows:

pt+1
i − pt

i =
Ci(p

t
−i) − pt

i

t + 1
+

ξt
i

t + 1
,

whereξt
i = Iat

i
− Ci(p

t
−i) is a zero mean random variable. Now ast → ∞, the last term on

the right approaches zero; further, the cumulative variance of the noise terms is bounded, since
∑

t 1/t2 < ∞. Informally, this suggests that the limiting behavior of the stochasticprocesspt can

7



be inferred from the limiting behavior of the followingdeterministicprocess:

p̂t+1
i − p̂t

i =
Ci(p̂

t
−i) − p̂t

i

t + 1
.

In turn the limiting behavior of the preceding deterministic process is characterized by the limiting
behavior of the PCTFP process. Thus we conjecture that if the PCTFP process converges to a
unique limit p

∗ regardless of initial condition, then the SFP dynamics should converge almost
surely to the same limit.

Indeed, this is the approach of the theory ofstochastic approximations, a tool that has found
great use in studying stochastic fictitious play. Fudenbergand Kreps apply this approach to study
2× 2 matrix games with a unique Nash equilibrium [4]. Of course,the story is significantly more
complicated in general, and in particular when the PCTFP process is not globally asymptotically
stable. For further details, we refer the reader to [1, 8] as well as [5], chapter 4.

2.4 A Warning on Convergence Notions

We close with a warning on the notions of convergence used in the analysis of fictitious play.
Typically, the desired convergence is in the empirical distributions of the players. However, it is
frequently the case that results are proved instead for the payoffs of the players; in particular, a
common statement is that fictitious play “converges” if for all i:

lim
t→∞

max
si∈∆(Ai)

Πi(si,p
t
−i) − Πi(p

t) = 0.

This is convergence of payoffs: i.e., the payoff at the empirical distribution for playeri approaches
the best possible payoff playeri could achieve against stationary opponents playingp

t
−i. Payoff

convergence is a useful notion if the empirical distributions may oscillate, even when payoffs have
stabilized.
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