MS&E 336 Lecture 8: Supermodular games
Ramesh Johari April 30, 2007

In this lecture, we develop the theory of supermodular garkey references are the papers
of Topkis [7], Vives [8], and Milgrom and Roberts [3]. Our démpment closely follows that of
Milgrom and Roberts, though we will also note other refereangbere necessary.

1 Lattices and Tarski’'s Theorem

We start with some basic definitions and facts about latti€dgen a setX, a binary relation-
is apartial orderingon X if it is reflexive (i.e.,x = z for all x € X); transitive (i.e.x > y and
y = z impliesz > z2); and antisymmetric (i.ex = y andy = x impliesz = y). The relation- is
atotal orderingif = = y ory > z forall x, y.

Given any setS C X, an element: is called anupper boundof S if x = y forall y € S;
similarly, = is called a lower bound of if y > x for all y € S. We say that: is asupremunor
least upper bounaof S in X if x is an upper bound of, and for any other upper bound of S,
we haver’ > z; note that the supremum is unique if it exists. In this casewv x = sup S. We
similarly define infimum (or greatest lower bound), and deribby inf S. We will occasionally
need to be explicit about the underlying set in which we arefating the supremum or infimum;
in such situations, we will writeup y S or infx .S for the supremum of in X, and the infimum
of S'in X, respectively.

The partially ordered sétX, ) is alattice if for all pairs z,y € X, the elementsup{z, y}
andinf{x, y} exist in X. The lattice(X, =) is acomplete latticef in addition, for all nonempty
subsetsS C X, the elementsup S andinf S exist in X. A setS is asublatticeof (X, >) if for
any twox,y € S, the elementsupy{z,y} andinfx{x,y} lie in S. Note that(S, >) can be a
lattice without being a sublattice; i.eypq{z,y} andinfs{z,y} may existinS, butsup y{z,y}
andinf x {z, y} may not lie inS.

The following theorem is a basic result in theory of latticB®te that a functiorf : X — X
is increasing ifr = y implies f(x) = f(y).

Theorem 1 (Tarski) Suppose thatX, ), and f is an increasing function frolX’ — X. Define:
E={xeX: f(z) =2z},

the set ofixed pointsof f. ThenE is nonempty, andF, =) is a complete lattice. In particular,

supy F € E,andinfy F € F.

The last claim of the theorem is straightforward to establisy observing thatupy £ =
supp E, andinf y £ = infg F.
The following example shows that the set of fixed points neda a sublattice.

Example 1 (Vives, [8]) Consider the latticeX = {0, 1,2} x {0, 1,2}, with the usual vector or-
dering: x > y if and only if z; > y; for all i. Define f(x) = x, except forx = (1,2), (2,1), or
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(1,1), which are all mapped t@, 2). Then the set of fixed points is:

E= {(07 O), (07 1)7 (07 2)a (17 O), (27 O)a (27 2)}
This is a complete lattice, but it is not a sublattice, singe,{(0,1),(1,0)} = (1,1) € E.

Zhou [9] has generalized Tarski’'s theorem to increasingesmpondences (i.e., point-to-set
mappings); we do not state it formally here, but simply ndig tonclusions similar to Tarski’'s
theorem hold: namely, an increasing correspondence hasdagoint, and the set of fixed points
is a complete lattice.

For the remainder of the notesg restrict attention to lattices that are subsets of Eudite
space, X C R", with the usual vector orderinfas in the example): fae,y € X, x > y if and
only if x; > y; for all 7. It is easy to see in this case that the lattice is completedfanly if it is
compact.

2 Supermodularity and Increasing Differences

Let (X, ») be a lattice. We say thgt: X — R is supermodulalif for all =,y € X, there holds:

f(x) + fly) < f(inf{z,y}) + f(sup{z, y}).

We sayf is strictly supermodular if the preceding inequality iscitfor all z andy. Note that if>-
is a total ordering, then every functighon X is supermodular. In the case of Euclidean lattices,
if X is one-dimensional, then every function &nis supermodular.

Supermodularity is closely related to increasing diffees Let X, - x) and(7, >=7) be com-
plete lattices. Therf : X x T" — R hasincreasing differences x andt if for all 2’ > x and
t' = t, there holds:

f(xlvt/) - f([E,t/) > f(I/,t) - f(I,t).
Again, we sayf has strictly increasing differences inandt if the preceding inequality is strict.
Note that we can viewX x T as a lattice, with(z’, t') > (z,t) if and only if 2’ > x x andt’ = t.
Note that if f is supermodular on this lattice, thghhas increasing differences inandt. If the
setsX andT are totally ordered, then supermodularity &nx 7" and increasing differences in
andt coincide.

Checking supermodularity and increasing differences iphii@d when the functiorf is twice
differentiable. Given a lattic& in Euclidean space, a twice differentiable functibn X — R is
supermodular if and only if:

0*f(x)

81’1‘81']'

Similarly, given latticesX andT in Euclidean space, a twice differentiable functipn X x7" — R
has increasing differencesinandt if and only if:

>0, foralli# j.

0 f(x, t)

>0, foralli,j.



The proofs of both these claims are immediate.
The following result of Topkis is central to our analysis. tBlthat a functionf : A — R on
A C R" is upper semicontinuou$ limsup, ., f(x) < f(xo).

Theorem 2 (Topkis) Suppose tha and 7" are complete lattices in Euclidean space. lfet
X x T — R be a function that is supermodular on, has increasing differences inandt, and
is upper semicontinuous in (for fixedt). Then for eacht € T,

o(t) = argmax f(z, t)
is a nonempty complete sublatticeof
Further, ifx’ € ¢(t') andx € ¢(t) witht’ > t, thensup{z,x'} € ¢(t'), andinf{z, 2’} €
¢(t). Thusz(t) = sup ¢(t) andz(t) = inf ¢(t) are both increasing functions froffi to X.

Additional insight is gained with stronger assumptionsfolff f is strictly supermodular, then
¢(t) is totally ordered. Iff has strictly increasing differences, theiitself is “strictly increasing”:
if ' > t,andx’ € ¢(t'), x € ¢(t), thenz’ > x.

We also note that these types of results are catledotone comparative statiessults: they
give results on the monotonicity of optimal solutions, asuaction of parameters in the opti-
mization problem. Milgrom and Shannon [5] derive monotoomparative statics results under
conditions that generalize supermodularity and increpdifierences, calledingle crossing con-
ditions. These conditions have found wide application in econonfiarsexample, single crossing
conditions can be used to characterize equilibrium bidtions in auctions. We direct the reader
to [5] for further details on this theory.

3 Supermodular Games

We consider a finitéV-player game, where each playiehas action set;, and payoff function
II;; we let A = [], A; denote the space of composite strategy vectors. The regputme is
supermodulaif for eachi:

1. A, is a complete (and thus compact) lattice in Euclidean spéce

2. 11;(a;, a_;) is upper semicontinuous i for fixed a_;), and continuous i _; for fixed a;,
with a finite uniform upper bound ia.

3. II;(a;, a_;) is supermodular im;.
4. 11;(a;, a—;) has increasing differencesdnanda_;.

The game istrictly supermodulaif conditions 3 and 4 are strict.

Let BR;(a_;) denote the best response mapping of playeret BR;(a_;) = sup BR;(a_;)
(the “upper” best response), aBd?;(a_;) = inf BR;(a_;) (the “lower” best response). We define
BR : A — A as the mapping where thih coordinate isBR;; and similarly defineBR and BR.



Topkis’ theorem then immediately implies thBR; and BR, always exist, and are increasing
functions. Applying Tarski's theorem tB R and BR then establishes that both have fixed points;
note that this immediately implies that a pure Nash equilarexists for any supermodular game.
(Using the generalization of Tarski’s theorem to corregjgmtes actually establishes that the entire
set of Nash equilibria is a complete lattice, though agaireéd not be a sublattice; see [9].)

We will pursue a different approach to understanding thetBlash equilibria; as in [3], we
focus our attention on the set of actions surviving iterateidt dominance in pure actions (ISD-P)
in a supermodular game. We will need some additional notatieolving ISD-P. Giveril’ C A,
we definel;(T") as follows:

Ui(T) = {a; € A; : forall a; € A;, there existar € T s.t.11;(a;, a_;) > 11;(a;, a_;)}.

In other words,U;(T') is the set of pure actions of playéthat arenot dominated by any pure
action, given that all other players play using action vector§’inWe letU(T") = [[, U;(T). We
also use/*(T') to denote the set of pure strategies remaining afapplications of/ to the sefl’,
with U equal to the identity map.

It is straightforward to check the following claims:

1. Monotonicity If 7' C 1", thenU(T") C U(T").

2. Decreasing sequence property**1(A) c U*(A) for all k. (Note that this need not be true
if we iterateU starting from a sestrictly smallerthan the entire strategy spade since for
an arbitrary sef” we need not hav& (T") C T.)

In light of the second claim, we 1éf>~(A4) = ,., U"(A). Note that this is the set cfrategies
surviving ISD-P -

We emphasize that typically, strict dominance includesedactions; i.e., giverl’ C A, we
can defind/(T') as follows:

Ui(T) = {a; € A; - forall s; € A(4;), there existar € T s.t.11;(a;,a_;) > I;(s;,a_;)};

In other words[J;(T) is the set of pure actions of playethat arenot dominated by any mixed ac-
tion, given that all other players play using action vectorgitwWe defind/*>(A) = (,-,(U)*(A);
this is the set oétrategies surviving iterated strict dominance in mixetiats (ISD-M). The game
is dominance solvablié UY>(A) is a singleton. Itis clear th@f*>(A) c U>(A); in particular,
if U>(A) is a singleton, then the game is dominance solvable.

Our main result is the following theorem.

Theorem 3 (Milgrom and Roberts [3]) Given a supermodular game with composite strategy space
A =1T], A leta* = supU>(A), and leta* = inf U*(A). Then bothe* anda* are pure Nash
equilibria.

Proof. Given a pair of pure action vectois a’, we write[a,a] = {a € A:a < a,a < a}.
(In Euclidean space, this is set of all strategy vectorsliban the “box” with lower cornera and
upper corner.)

We start with the following lemma.



Lemma 4 For any vectorsy, @ € A, there holds:
supU(la,@]) = BR(a); infU([a,a]) = BR(a).

Proof of LemmaSuppose there exists € [a,a)] and a playei such that; £ BR;(a_;). Let
= inf{a;, BR;(a_;)}. Then for anyr € A:

My(as, @) — TLi(inf{as, BR:(@)}, 1) < Ti(as, @) — Ti(inf{as, BR:(a@)}, @)
< Hi(sup{ai,ﬁi(a_i)},ﬁ_i) — HZ<B_RZ(6_1),E_1) < 0.

The first inequality follows by increasing differences, ahd second by supermodularity. The
third uses the fact that; ¥ BR;(a_;), so that we must haveip{a;, BR;(@_;)} > BR;(a_;);
as a resultsup{a;, BR;(a_;)} cannot be a best responsedto;. The calculation shows that is
strictly dominated. Thus it € U([a, @]), thena < BR(a); the claim thata > BR(a) is similar.
To conclude the proof it suffices to note thaR(a), BR(a) € U([a,a]), by definition of best
response. O

To conclude the proof, le&’ = sup A, a’ = inf A. Inductively, definea*™! = BR(a"),
a**' = BR(a*). We prove by induction that’*(A) C [a*,@"]. The claim is trivially true at
k = 0 (we definelU%(A) = A); so assume it holds fdr. Then:

U*(A) c U(la",a@"]) C [BR(a®), BR(@")] = [a"",@"""].

Thus the induction is complete. This observation also shbaiga*+!, a**!] C [a*, @*] for all k,
so thata* anda” are both monotonic sequences. By compactness they mustitmitged anda,
respectively, and our induction yield&° C [a, a].

To complete the proof, it suffices to show tleaainda are both Nash equilibria. By definition
of best response, for fixadandk and arbitrarys; we have:

Mi(a;,@t,) < Mi(a; ™, @)

As k — oo, by continuity ina_;, the left hand side approachdga;, @_;). On the right hand side,
by upper semicontinuity dfl;, we have:

limsup IL; (@, @" ) < 1L;(a;, a;).

k—oo

(Note thatlI;(a) is upper semicontinuous i@ because it is upper semicontinuouszjrfor fixed
a_;, and continuous i _; for fixed a;.) We conclude that:

i(as, @) < 1i(@;, @),

which establishes that is a Nash equilibrium, so that = sup U>(A). The argument that is a
Nash equilibrium, so thai = inf U*(A), is similar. O



The proof has several strong implications. First, we canadh equilibria by application of
strict dominance in pure or mixed strategies. Second, fpNash equilibriuma, we haven < @*,
anda* < a. Thus the infimum and supremum of the set of strategies sngvi6D-P or ISD-M
are also the largest and smallest Nash equilibrium. Furithéi>(A) is a singleton the game is
dominance solvable; the theorem then implies that if theeghas a unique Nash equilibrium, the
game is dominance solvable.

We conclude with a some additional important observatidomiasupermodular games, pre-
sented in the following subsections.

3.1 Best Response Dynamics

Leta® € A be an initial action vector, and lef € BR(a'!); these are the discrete best response
dynamics. Note that if we start with® > @*, then in the notation of the proof of Theorem 3,
we havea’ > a’ > @*. If we now inductively definex* = BR(a*!), then the proof of the
theorem and the fact th&R is an increasing function givas® > a* > a*. Taking the limit as

k — oo yields thata® — @*. In other words, if in the best response dynamic we alway$/ahp
upper best response, then starting from any strategy valtvmea*, the dynamics converge @'
Similarly, starting from any strategy vector belaw, if we always apply the lower best response,
the dynamics will converge t@*. See [8] for a slightly more refined version of these statds)em
particular, Vives shows that best response dynamics ale@ygerge to a Nash equilibrium starting
from abovea™ or belowa*. In Lecture 9 we show in a far more general setting that begiorese
dynamics, as well as fictitious play, for supermodular gaaiesys converge to the sgi*, a*|;
see also [4].

3.2 Comparative Statics

Suppose that for each playgithe payoff functionll;(a, 7) is indexed by a parameter and that
I1; has increasing differences imand; this is afamily of supermodular games indexed fiy
Leta*(7) anda*(7) be the largest and smallest Nash equilibria, respectiretiie supermodular
game with fixedr. It is straightforward to show that the functioas anda* are both increasing in
7. This property can be used to study the behavior of Nashibgaias an external parameter of
the game is changed.

3.3 Pareto Efficiency

Simple results on Pareto efficiency follow easily for supedoiar games under some additional
conditions. For example, suppose that foriall; (a;, a_;) is increasing ira_;; then it follows that
for all 7, and for any other Nash equilibriuay I1;(a*) > II;(a). Thus the largest Nash equilibrium
is Pareto efficient in the set of Nash equilibria in this cdgggrom and Roberts discuss some other
(minor) refinements of this observation [3].



4 Examples

In this section we briefly present two examples of supermardghmes: games with network
effects, and wireless interference games.

4.1 Network Effects

Supermodular games capture network effects and posititerretities very well, because net-
work effects are inherently about complementarity: tyjyc#he payoff to a player increases with
increasing effort from his opponents when there are peséxternalities.

We start with an example of a game studied by Farrell and 8aioran influential paper [1].
Suppose that a sé{ of users can use one of two technologi&sor Y. We let B;(S, X) denote
the payoff to playet when the subse$ of users is using technology, and: € S; implicitly,
the subsetV \ S is using technology”. We similarly defineB;(S,Y") as the payoff ta when the
subset of users§' is using technology’, andi € S. Intuitively, a network effect exists if player
is better off when more users use the same technology as.kim; i

Bi(S, k) < Bi(S', k), ifScS.

We now show that this assumption leads to a natural supefarogame.

Consider a simultaneous move game where the action of a ptatyertechnology they choose
to use, eithetX or Y . We impose a lattice structure on the action space by asgurhin X.
Given an action vectat, let X(a) = {i € N : a; = X}, and letY(a) = {i € N : aq; = Y}. We
define the payoff to a player as follows:

Bi(X(a),X), ifa; =X;
Ii(ai, a_;) = { Bi(Y(a),Y), ifa; =Y.

It is then straightforawrd to check that under our assumpioS, this is a supermodular game.

Another network effects model can be provided with contusiaction spaces as follows. Sup-
pose each playerchooses an “efforte; € [0, B;]. This was initially motivated in terms of the
search for trading partners in a marketis the effort expended by a player to try to find a match
for a trade (see [3]). We assume the payoff to playieras follows:

Hi(eia B—i) = Q¢ Z €5 — Cz’(ei)a

JFi

wherea; > 0 andc;(e;) is increasing and continuous. It is easy to see @Bt /de;0e; = a; > 0,
so this is a supermodular game. Note that Hée;, e ;) is increasing ine_; for all 7, so (not
surprisingly) the Pareto preferred Nash equilibrium isefailibrium where agents exert the most
effort. We also observe that;(e;, e_;; ;) has increasing differences in; thus if the vector of
externality coefficientgx increases (in the usual Euclidean lattice), then our coatpar statics
result shows that the effort exerted in the largest NasHhibgum will increase as well.

These basic models are the foundation for far more sopaisticanalysis in the literature. For
some recent papers that include network structure in mad@stwork effects, see [2] and [6].
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4.2 Wireless Interference Games

Consider a collection oV wireless devices, where devitean choose a transmission power level
pi € [0, P]. Thesignal to interference-plus-noise rat{8INR) of device: when power levelp
are chosen is:

%(p) = =

>z + Ni

whereN; > 0 is the noise level seen by devite(Note that we are ignoring channel gains here.)
We assume that each node incurs a cost for power usage, givgiph); we assume; is increasing
and continuous. We assume that the utility to a node is aifamof its SINR; thus:

IL;(p) = Ui(vi(p)) — ci(pi)-

HereU; is an increasing, twice differentiable function. To shoattthis game is supermodular, it
suffices to check tha®*I1;/dp;dp; > 0. This will hold as long as:
xUf (z)
82(1') = W 2 ]_, for all z Z 0.
The constant;(z) is theelasticityof the marginal utility function; at x; it gives the percentage
decrease in marginal utility for a 1% change in SINR. Sifi¢e> 0, the condition also requires
thatU!” < 0; i.e., the utility function must be strictly concave.

It is worth noting that ifU;(z) = log(1 + x), which is the expression for Shannon capacity
in a Gaussian interference channel with SINRhe elasticity condition does not hold. Indeed,
one can show that for this utility function the resulting gaexhibitsdecreasindifferences, i.e.,
0*11;/0p;0p; < 0. One possible solution that works with two players is to deathe ordering on
one of the player’s strategy spaces. In particular, define:

A

1L (p1, p2) = i(p1, —p2), i=1,2.

Then it is straightforward to check that wh&z) = log(1+ z), the payoffd1; exhibit increasing
differences. However, we also observe this “trick” only W®wvith two players: with more than
two players, no consistent order reversal can change dacgedifferences to increasing differ-
ences.
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