
MS&E 336 Lecture 8: Supermodular games
Ramesh Johari April 30, 2007

In this lecture, we develop the theory of supermodular games; key references are the papers
of Topkis [7], Vives [8], and Milgrom and Roberts [3]. Our development closely follows that of
Milgrom and Roberts, though we will also note other references where necessary.

1 Lattices and Tarski’s Theorem

We start with some basic definitions and facts about lattices. Given a setX, a binary relation�
is apartial orderingon X if it is reflexive (i.e.,x � x for all x ∈ X); transitive (i.e.,x � y and
y � z impliesx � z); and antisymmetric (i.e.,x � y andy � x impliesx = y). The relation� is
a total orderingif x � y or y � x for all x, y.

Given any setS ⊂ X, an elementx is called anupper boundof S if x � y for all y ∈ S;
similarly, x is called a lower bound ofS if y � x for all y ∈ S. We say thatx is asupremumor
least upper boundof S in X if x is an upper bound ofS, and for any other upper boundx′ of S,
we havex′ � x; note that the supremum is unique if it exists. In this case wewrite x = sup S. We
similarly define infimum (or greatest lower bound), and denote it by inf S. We will occasionally
need to be explicit about the underlying set in which we are computing the supremum or infimum;
in such situations, we will writesupX S or infX S for the supremum ofS in X, and the infimum
of S in X, respectively.

The partially ordered set(X,�) is a lattice if for all pairs x, y ∈ X, the elementssup{x, y}
andinf{x, y} exist inX. The lattice(X,�) is acomplete latticeif in addition, for all nonempty
subsetsS ⊂ X, the elementssup S andinf S exist inX. A setS is asublatticeof (X,�) if for
any twox, y ∈ S, the elementssupX{x, y} and infX{x, y} lie in S. Note that(S,�) can be a
lattice without being a sublattice; i.e.,supS{x, y} andinfS{x, y} may exist inS, but supX{x, y}
andinfX{x, y} may not lie inS.

The following theorem is a basic result in theory of lattices. Note that a functionf : X → X
is increasing ifx � y impliesf(x) � f(y).

Theorem 1 (Tarski) Suppose that(X,�), andf is an increasing function fromX → X. Define:

E = {x ∈ X : f(x) = x},

the set offixed pointsof f . ThenE is nonempty, and(E,�) is a complete lattice. In particular,
supX E ∈ E, andinfX E ∈ E.

The last claim of the theorem is straightforward to establish, by observing thatsupX E =
supE E, andinfX E = infE E.

The following example shows that the set of fixed points need not be a sublattice.

Example 1 (Vives, [8]) Consider the latticeX = {0, 1, 2} × {0, 1, 2}, with the usual vector or-
dering:x ≥ y if and only if xi ≥ yi for all i. Definef(x) = x, except forx = (1, 2), (2, 1), or
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(1, 1), which are all mapped to(2, 2). Then the set of fixed points is:

E = {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0), (2, 2)}.

This is a complete lattice, but it is not a sublattice, sincesupX{(0, 1), (1, 0)} = (1, 1) 6∈ E.

Zhou [9] has generalized Tarski’s theorem to increasing correspondences (i.e., point-to-set
mappings); we do not state it formally here, but simply note that conclusions similar to Tarski’s
theorem hold: namely, an increasing correspondence has a fixed point, and the set of fixed points
is a complete lattice.

For the remainder of the notes,we restrict attention to lattices that are subsets of Euclidean
space,X ⊂ R

n, with the usual vector ordering(as in the example): forx,y ∈ X, x ≥ y if and
only if xi ≥ yi for all i. It is easy to see in this case that the lattice is complete if and only if it is
compact.

2 Supermodularity and Increasing Differences

Let (X,�) be a lattice. We say thatf : X → R is supermodularif for all x, y ∈ X, there holds:

f(x) + f(y) ≤ f(inf{x, y}) + f(sup{x, y}).

We sayf is strictly supermodular if the preceding inequality is strict for all x andy. Note that if�
is a total ordering, then every functionf on X is supermodular. In the case of Euclidean lattices,
if X is one-dimensional, then every function onX is supermodular.

Supermodularity is closely related to increasing differences. Let(X,�X) and(T,�T ) be com-
plete lattices. Thenf : X × T → R hasincreasing differencesin x andt if for all x′ � x and
t′ � t, there holds:

f(x′, t′) − f(x, t′) ≥ f(x′, t) − f(x, t).

Again, we sayf has strictly increasing differences inx andt if the preceding inequality is strict.
Note that we can viewX × T as a lattice, with(x′, t′) � (x, t) if and only if x′ �X x andt′ �T t.
Note that iff is supermodular on this lattice, thenf has increasing differences inx andt. If the
setsX andT are totally ordered, then supermodularity onX × T and increasing differences inx
andt coincide.

Checking supermodularity and increasing differences is simplified when the functionf is twice
differentiable. Given a latticeX in Euclidean space, a twice differentiable functionf : X → R is
supermodular if and only if:

∂2f(x)

∂xi∂xj

≥ 0, for all i 6= j.

Similarly, given latticesX andT in Euclidean space, a twice differentiable functionf : X×T → R

has increasing differences inx andt if and only if:

∂2f(x, t)

∂xi∂tj
≥ 0, for all i, j.
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The proofs of both these claims are immediate.
The following result of Topkis is central to our analysis. Note that a functionf : A → R on

A ⊂ R
n is upper semicontinuousif lim supx→x0

f(x) ≤ f(x0).

Theorem 2 (Topkis) Suppose thatX and T are complete lattices in Euclidean space. Letf :
X × T → R be a function that is supermodular onX, has increasing differences inx andt, and
is upper semicontinuous inx (for fixedt). Then for eacht ∈ T ,

φ(t) = arg max
x∈X

f(x, t)

is a nonempty complete sublattice ofX.
Further, if x′ ∈ φ(t′) andx ∈ φ(t) with t′ ≥ t, thensup{x,x′} ∈ φ(t′), and inf{x,x′} ∈

φ(t). Thusx(t) = sup φ(t) andx(t) = inf φ(t) are both increasing functions fromT to X.

Additional insight is gained with stronger assumptions onf . If f is strictly supermodular, then
φ(t) is totally ordered. Iff has strictly increasing differences, thenφ itself is “strictly increasing”:
if t′ ≥ t, andx′ ∈ φ(t′), x ∈ φ(t), thenx′ ≥ x.

We also note that these types of results are calledmonotone comparative staticsresults: they
give results on the monotonicity of optimal solutions, as a function of parameters in the opti-
mization problem. Milgrom and Shannon [5] derive monotone comparative statics results under
conditions that generalize supermodularity and increasing differences, calledsingle crossing con-
ditions. These conditions have found wide application in economics;for example, single crossing
conditions can be used to characterize equilibrium bid functions in auctions. We direct the reader
to [5] for further details on this theory.

3 Supermodular Games

We consider a finiteN -player game, where each playeri has action setAi, and payoff function
Πi; we let A =

∏

i Ai denote the space of composite strategy vectors. The resulting game is
supermodularif for eachi:

1. Ai is a complete (and thus compact) lattice in Euclidean spaceR
ni .

2. Πi(ai,a−i) is upper semicontinuous inai for fixeda−i), and continuous ina−i for fixedai,
with a finite uniform upper bound ina.

3. Πi(ai,a−i) is supermodular inai.

4. Πi(ai,a−i) has increasing differences inai anda−i.

The game isstrictly supermodularif conditions 3 and 4 are strict.
Let BRi(a−i) denote the best response mapping of playeri. Let BRi(a−i) = sup BRi(a−i)

(the “upper” best response), andBRi(a−i) = inf BRi(a−i) (the “lower” best response). We define
BR : A → A as the mapping where thei’th coordinate isBRi; and similarly defineBR andBR.
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Topkis’ theorem then immediately implies thatBRi andBRi always exist, and are increasing
functions. Applying Tarski’s theorem toBR andBR then establishes that both have fixed points;
note that this immediately implies that a pure Nash equilibrium exists for any supermodular game.
(Using the generalization of Tarski’s theorem to correspondences actually establishes that the entire
set of Nash equilibria is a complete lattice, though again itneed not be a sublattice; see [9].)

We will pursue a different approach to understanding the setof Nash equilibria; as in [3], we
focus our attention on the set of actions surviving iteratedstrict dominance in pure actions (ISD-P)
in a supermodular game. We will need some additional notation involving ISD-P. GivenT ⊂ A,
we defineUi(T ) as follows:

Ui(T ) = {ai ∈ Ai : for all a′
i ∈ Ai, there existsa ∈ T s.t.Πi(ai,a−i) ≥ Πi(a

′
i,a−i)}.

In other words,Ui(T ) is the set of pure actions of playeri that arenot dominated by any pure
action, given that all other players play using action vectors inT . We letU(T ) =

∏

i Ui(T ). We
also useUk(T ) to denote the set of pure strategies remaining afterk applications ofU to the setT ,
with U0 equal to the identity map.

It is straightforward to check the following claims:

1. Monotonicity: If T ⊂ T ′, thenU(T ) ⊂ U(T ′).

2. Decreasing sequence property: Uk+1(A) ⊂ Uk(A) for all k. (Note that this need not be true
if we iterateU starting from a setstrictly smallerthan the entire strategy spaceA, since for
an arbitrary setT we need not haveU(T ) ⊂ T .)

In light of the second claim, we letU∞(A) =
⋂

k≥0
Uk(A). Note that this is the set ofstrategies

surviving ISD-P.
We emphasize that typically, strict dominance includesmixedactions; i.e., givenT ⊂ A, we

can defineUM
i (T ) as follows:

Ui(T ) = {ai ∈ Ai : for all si ∈ ∆(Ai), there existsa ∈ T s.t.Πi(ai,a−i) ≥ Πi(si,a−i)};

In other words,Ui(T ) is the set of pure actions of playeri that arenot dominated by any mixed ac-
tion, given that all other players play using action vectors inT . We defineUM∞(A) =

⋂

k≥0
(UM)k(A);

this is the set ofstrategies surviving iterated strict dominance in mixed actions(ISD-M). The game
is dominance solvableif UM∞(A) is a singleton. It is clear thatUM∞(A) ⊂ U∞(A); in particular,
if U∞(A) is a singleton, then the game is dominance solvable.

Our main result is the following theorem.

Theorem 3 (Milgrom and Roberts [3]) Given a supermodular game with composite strategy space
A =

∏

i Ai, let a∗ = sup U∞(A), and leta∗ = inf U∞(A). Then botha∗ anda∗ are pure Nash
equilibria.

Proof. Given a pair of pure action vectorsa,a′, we write[a,a] = {â ∈ A : a ≤ â, â ≤ a}.
(In Euclidean space, this is set of all strategy vectors thatlie in the “box” with lower cornera and
upper cornera.)

We start with the following lemma.
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Lemma 4 For any vectorsa,a ∈ A, there holds:

sup U([a,a]) = BR(a); inf U([a,a]) = BR(a).

Proof of Lemma.Suppose there existsa ∈ [a,a] and a playeri such thatai 6≤ BRi(a−i). Let
xi = inf{ai, BRi(a−i)}. Then for anyx ∈ A:

Πi(ai,x−i) − Πi(inf{ai, BRi(a−i)},x−i) ≤ Πi(ai,a−i) − Πi(inf{ai, BRi(a−i)},a−i)

≤ Πi(sup{ai, BRi(a−i)},a−i) − Πi(BRi(a−i),a−i) < 0.

The first inequality follows by increasing differences, andthe second by supermodularity. The
third uses the fact thatai 6≤ BRi(a−i), so that we must havesup{ai, BRi(a−i)} > BRi(a−i);
as a result,sup{ai, BRi(a−i)} cannot be a best response toa−i. The calculation shows thatai is
strictly dominated. Thus ifa ∈ U([a,a]), thena ≤ BR(a); the claim thata ≥ BR(a) is similar.
To conclude the proof it suffices to note thatBR(a), BR(a) ∈ U([a,a]), by definition of best
response. 2

To conclude the proof, leta0 = sup A, a0 = inf A. Inductively, defineak+1 = BR(ak),
ak+1 = BR(ak). We prove by induction thatUk(A) ⊂ [ak,ak]. The claim is trivially true at
k = 0 (we defineU0(A) = A); so assume it holds fork. Then:

Uk+1(A) ⊂ U([ak,ak]) ⊂ [BR(ak), BR(ak)] = [ak+1,ak+1].

Thus the induction is complete. This observation also showsthat[ak+1,ak+1] ⊂ [ak,ak] for all k,
so thatak andak are both monotonic sequences. By compactness they must have limits a anda,
respectively, and our induction yieldsU∞ ⊂ [a,a].

To complete the proof, it suffices to show thata anda are both Nash equilibria. By definition
of best response, for fixedi andk and arbitraryai we have:

Πi(ai,a
k
−i) ≤ Πi(a

k+1

i ,ak
−i).

As k → ∞, by continuity ina−i, the left hand side approachesΠi(ai,a−i). On the right hand side,
by upper semicontinuity ofΠi, we have:

lim sup
k→∞

Πi(a
k+1

i ,ak
−i) ≤ Πi(ai,a−i).

(Note thatΠi(a) is upper semicontinuous ina because it is upper semicontinuous inai for fixed
a−i, and continuous ina−i for fixedai.) We conclude that:

Πi(ai,a−i) ≤ Πi(ai,a−i),

which establishes thata is a Nash equilibrium, so thata = sup U∞(A). The argument thata is a
Nash equilibrium, so thata = inf U∞(A), is similar. 2
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The proof has several strong implications. First, we can findNash equilibria by application of
strict dominance in pure or mixed strategies. Second, for any Nash equilibriuma, we havea ≤ a∗,
anda∗ ≤ a. Thus the infimum and supremum of the set of strategies surviving ISD-P or ISD-M
are also the largest and smallest Nash equilibrium. Further, if U∞(A) is a singleton the game is
dominance solvable; the theorem then implies that if the game has a unique Nash equilibrium, the
game is dominance solvable.

We conclude with a some additional important observations about supermodular games, pre-
sented in the following subsections.

3.1 Best Response Dynamics

Let a0 ∈ A be an initial action vector, and letat ∈ BR(at−1); these are the discrete best response
dynamics. Note that if we start witha0 ≥ a∗, then in the notation of the proof of Theorem 3,
we havea0 ≥ a0 ≥ a∗. If we now inductively defineak = BR(ak−1), then the proof of the
theorem and the fact thatBR is an increasing function givesak ≥ ak ≥ a∗. Taking the limit as
k → ∞ yields thatak → a∗. In other words, if in the best response dynamic we always apply the
upper best response, then starting from any strategy vectorabovea∗, the dynamics converge toa∗.
Similarly, starting from any strategy vector belowa∗, if we always apply the lower best response,
the dynamics will converge toa∗. See [8] for a slightly more refined version of these statements; in
particular, Vives shows that best response dynamics alwaysconverge to a Nash equilibrium starting
from abovea∗ or belowa∗. In Lecture 9 we show in a far more general setting that best response
dynamics, as well as fictitious play, for supermodular gamesalways converge to the set[a∗,a∗];
see also [4].

3.2 Comparative Statics

Suppose that for each playeri, the payoff functionΠi(a, τ) is indexed by a parameterτ , and that
Πi has increasing differences ina andτ ; this is afamily of supermodular games indexed byτ .
Let a∗(τ) anda∗(τ) be the largest and smallest Nash equilibria, respectively,in the supermodular
game with fixedτ . It is straightforward to show that the functionsa∗ anda∗ are both increasing in
τ . This property can be used to study the behavior of Nash equilibria as an external parameter of
the game is changed.

3.3 Pareto Efficiency

Simple results on Pareto efficiency follow easily for supermodular games under some additional
conditions. For example, suppose that for alli, Πi(ai,a−i) is increasing ina−i; then it follows that
for all i, and for any other Nash equilibriuma, Πi(a

∗) ≥ Πi(a). Thus the largest Nash equilibrium
is Pareto efficient in the set of Nash equilibria in this case.Milgrom and Roberts discuss some other
(minor) refinements of this observation [3].

6



4 Examples

In this section we briefly present two examples of supermodular games: games with network
effects, and wireless interference games.

4.1 Network Effects

Supermodular games capture network effects and positive externalities very well, because net-
work effects are inherently about complementarity: typically, the payoff to a player increases with
increasing effort from his opponents when there are positive externalities.

We start with an example of a game studied by Farrell and Saloner in an influential paper [1].
Suppose that a setN of users can use one of two technologies,X or Y . We letBi(S,X) denote
the payoff to playeri when the subsetS of users is using technologyX, andi ∈ S; implicitly,
the subsetN \ S is using technologyY . We similarly defineBi(S, Y ) as the payoff toi when the
subset of usersS is using technologyY , andi ∈ S. Intuitively, a network effect exists if playeri
is better off when more users use the same technology as him; i.e.:

Bi(S, k) ≤ Bi(S
′, k), if S ⊂ S ′.

We now show that this assumption leads to a natural supermodular game.
Consider a simultaneous move game where the action of a playeris the technology they choose

to use, eitherX or Y . We impose a lattice structure on the action space by assuming Y � X.
Given an action vectora, let X(a) = {i ∈ N : ai = X}, and letY (a) = {i ∈ N : ai = Y }. We
define the payoff to a player as follows:

Πi(ai,a−i) =

{

Bi(X(a), X), if ai = X;
Bi(Y (a), Y ), if ai = Y.

It is then straightforawrd to check that under our assumption onS, this is a supermodular game.
Another network effects model can be provided with continuous action spaces as follows. Sup-

pose each playeri chooses an “effort”ei ∈ [0, Bi]. This was initially motivated in terms of the
search for trading partners in a market:ei is the effort expended by a player to try to find a match
for a trade (see [3]). We assume the payoff to playeri is as follows:

Πi(ei,e−i) = αiei

∑

j 6=i

ej − ci(ei),

whereαi > 0 andci(ei) is increasing and continuous. It is easy to see that∂2Πi/∂ei∂ej = αi > 0,
so this is a supermodular game. Note that hereΠi(ei,e−i) is increasing ine−i for all i, so (not
surprisingly) the Pareto preferred Nash equilibrium is theequilibrium where agents exert the most
effort. We also observe thatΠi(ei,e−i; αi) has increasing differences inαi; thus if the vector of
externality coefficientsα increases (in the usual Euclidean lattice), then our comparative statics
result shows that the effort exerted in the largest Nash equilibrium will increase as well.

These basic models are the foundation for far more sophisticated analysis in the literature. For
some recent papers that include network structure in modelsof network effects, see [2] and [6].
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4.2 Wireless Interference Games

Consider a collection ofN wireless devices, where devicei can choose a transmission power level
pi ∈ [0, Pi]. Thesignal to interference-plus-noise ratio(SINR) of devicei when power levelsp
are chosen is:

γi(p) =
pi

∑

j 6=i pj + Ni

,

whereNi > 0 is the noise level seen by devicei. (Note that we are ignoring channel gains here.)
We assume that each node incurs a cost for power usage, given by ci(pi); we assumeci is increasing
and continuous. We assume that the utility to a node is a function of its SINR; thus:

Πi(p) = Ui(γi(p)) − ci(pi).

HereUi is an increasing, twice differentiable function. To show that this game is supermodular, it
suffices to check that∂2Πi/∂pi∂pj ≥ 0. This will hold as long as:

εi(x) = −
xU ′′

i (x)

U ′
i(x)

≥ 1, for all x ≥ 0.

The constantεi(x) is theelasticityof the marginal utility functionU ′
i at x; it gives the percentage

decrease in marginal utility for a 1% change in SINR. SinceU ′
i > 0, the condition also requires

thatU ′′
i < 0; i.e., the utility function must be strictly concave.

It is worth noting that ifUi(x) = log(1 + x), which is the expression for Shannon capacity
in a Gaussian interference channel with SINRx, the elasticity condition does not hold. Indeed,
one can show that for this utility function the resulting game exhibitsdecreasingdifferences, i.e.,
∂2Πi/∂pi∂pj < 0. One possible solution that works with two players is to change the ordering on
one of the player’s strategy spaces. In particular, define:

Π̂i(p1, p2) = Πi(p1,−p2), i = 1, 2.

Then it is straightforward to check that whenUi(x) = log(1+x), the payoffsΠ̂i exhibit increasing
differences. However, we also observe this “trick” only works with two players: with more than
two players, no consistent order reversal can change decreasing differences to increasing differ-
ences.
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