[1. Stabilization of moduli in string
theory |

I Recent developmentsin fixing moduli near black
hole horizon and black hole attractors

1) A striking role of stringy corrections converting
aclassical singularity into aregular black hole
with the singularity covered by the horizon.

12) An emergent relation between black hole
attractors and cosmology with regard to moduli

stabilization. EXplicitly attractive K3.



A SImple Example of Moduli Fixing

Aspinwall, R.K.

We analyze M-theory compactified on K3xK3 with
fluxes and its F-theory limit, which is dual to an
orientifold of the type 1B string on K3 x T2/,

We argue that instanton effects will
generically fix all of the moduli.

Before branes areintroduced

Moduli space is no more



Cosmology, Super symmetry and
Special Geometry

In familiar case of Near Extremal Black Holes

DUALITY SYMMETRY protects exact entropy
formulafrom large quantum corrections

DUALITY SYMMETRY ( )
protects the flatness of the potential

In D3/D7 inflation model from large quantum
corrections



Shift Symmetry of g

m Flatness of the effective supergravity
Inflaton potential follows from the shift

symmetry of G=K+In|W|?
V = e9[|G.|* - 3]

We need models where the position of the
D3 brane after stabilization of the volume is
still a modulus



SHIFT SYMMETRY
and volume stabilization

Distance between branes b = z% + ix>

Volume-axion field p= o+ 10

¢ — ¢ + Ref b—b—d—¢

G(p, i —9) = G(p,p; 0 — )



|nflaton Trench Hsu, RK.
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m Supersymmetric Ground State of Branes in Stabilized VVolume

SHIFT SYMMETRY
The motion of branes does not destabilize the volume



String Theory and
N=2 Special Geometry

Angelantonj, D'Auria, Ferrara and Trigiante

m TypellB string tqeory compactified on

K3 X
L. . space provides snift symmetry
= orientifold with fluxes, dightly broken by quantum

mobile D3 branes and corrections
heavy D7 branes

ZQ | sometry of the compactified

SU(1,1) SO(2.24n3)
Coset Space “TU1) * S0(2)xS0(2+n3)




Special Kahler geometry
N=2 supergravity with vector multiplets

m SymplecticVectors de Wit, Van Proeyen,1984

(1) (¢ 5)() SCo+D.R
K = —log [i(X"Fy — Fax*)]

m Kahler potential 1s a symplectic invariant

m Supersymmetric Black Hole Entropy

Symplectic Invariant | Ferrara, R. K., Strominger, 1996




Duality and symplectic
transformations

L= %(Im Nf\z)}"ﬁuf”uz - %(Re Nﬁz)apvmfﬁufng
— M > coupling constants or functions of scalars

— 1
.:ﬁi. 5 (j'__uu EE';mp.—:rFPﬂ)

Im Fr» = 0  Bianchi identities
L — . i L : oL I3y
O Im G, = 0 Equations of motion G\ = 21&;’-‘“ = Ny FHEt

Jris

DUALITY (£)=s(27)=(4 B)(5)



| nflaton Shift isa Duality
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A'C-C"A=0, B'D-D'B=0, A'TD-C"B=1

Conclusion: G(p,p; ¢ — @)

= No fine-tuning required for slow-roll inflation



A Stringy Cloak for a Null
Si ngul ar |ty Dabholkar, R. K., Maloney

= A first explicitely computableclassof "0
string theory/supergravity models when

C,( R....)? terms modify aclassically singular solution
with vanishing horizon into aregular black hole with
singularity clothed by afinite area of the horizon

Sel = %Acl =0 S= 1A = 4m,/304

C, depends on topology of Calabi-Y au
(second Chern-class coefficient)

— 14—
m Simpleexample, ¢, onK3is24 S =3A=4n/pq



N=2 BPS mass formula, M=|Z]

m The BPS massis equal to the central charge,
which depends on moduli and charges.
symplectic invariant

M%Ps — ‘Z‘Z = [(Q. VHQ — GK‘QIXI(E:?) ~ PIFI(E)‘Q
= The ADM mass of the black holeis equal to

the value of the central charge when moduli
are at infinity

MEDM — ‘Z(Pa q, 200, 500\2



Attractor equations

m [ntroduce a symplectic vector

Y! _
II = ( i ) where Y/ = Z X!
Fr(Y)

m At the attractor point there is an algebraic
relation between the fixed values of moduli
and charges

Yi—v! = '?:])I : F[(Y) — ﬁ[(?) = 1q1



Calabi-Y au black holes

A, - 1
Del = 4Z e \/qODABC'pApB p©

m Classical area=0 if D4Bcp‘4p5pc —0

= Quantum corrected entropy and area
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Stabilization of moduli via
Instantons: breaking the iIsometries
of the manifold

® When isthis possible?

m Can we use fluxes and instanton
correctionsto fix all moduli but the
Inflaton?



New Class Ol Intlationary moaeisin
string theory

KKLMMT brane-anti-brane inflation

D3/D7 brane inflation

Dasgupta, Herdeiro,
Hirano, R.K.

¥

Racetrack modular inflation

Blanco-Pilado, Burgess, Cline, Escoda,
Gomes-Reino, Kallosh, Linde, Quevedo

DBI inflation, Silverstein et al



Major problem

The mechanism of volume stabilization Iin
this (and many other models of string
theory) does not seem to work.




Witten 1996: in type IIB compactifications under certain conditions
there can be corrections to the superpotential coming from Euclidean
D3 branes. His argument was based on the M-theory counting of the
fermion zero modes in the Dirac operator on the M5 brane wrapped
on a 6-cycle of a Calabi-Yau four-fold. He found that

such corrections are possible
only in case that the four-fold admits divisors of arithmetic genus one,

xp = X (-1)"0n) = 1

In the presence of such instantons, there is a correction to the
superpotential which at large volume yields a new term

Winst ~ exp(—ap)

In type 1IB string theory the leading exponential dependence comes from
the action of an Euclidean D3 brane wrapping a 4-cycle.



Counting fermionic zero modes M5
with fluxes

= New computation of the normal bundle U(1)
anomaly

xp(F) = xp — (h(02) —n)

m Heren 1sthe dimension of solutions of the
constraint equation which depends on fluxes.

m To haveinstantonsweneed  xp(F) =1

n—=hr01) L p(03) xp#1



Witten’ s condition is generalized

xp 7+ 1

xp =1

m New vacuawith xp(F) =1

m |t seems the landscape just got another
factor 10500 bigger

m Examplesinclude “friendly” parts of the

landscape ‘



Example of A3 x K3 compactification

An M5 brane wrapps a 6-cycle D = K3 x P! of the 4-fold X = K3 x K3. Since
both K3 and P! only have even cohomology, the same is true for the cohomology
of the 6-cycle by the Kiinneth formula. The Dirac equation in the fluxless case
hence only has positive chirality solutions

e =) + o) .

Consider a flux which is a (2,0) 4 (0, 2) form on K3

:Qlf\Qg—l—Qlf\ﬂg

m

We need to contract the flux with ©; and project onto the non-harmonic piece.
This amounts to contracting €7 with €, which is a number by covariant con-
stancy of the complex structure. We are left with €25, the harmonic projection of
which is itself. €21 hence does not solve the constraint. Thus we lose a zero mode
of the Dirac operator, namely qﬁagfﬁb|fl), upon turning on flux. In particular,
XD = 2, while yp(F') = 1.

Stabilization of Kahler moduli is possible!



Choose (0,4) and (4,0) FLUX

m Thisflux breaks susy in Minkowski and in
AdS

m Count the fermionic zero modes on Dirac
operator

® (0,0) mode is cut out but (0,2) survives
m |nstanton corrections are possible!

m With account of exp. Termsin the
superpotential, susy isrestored in AdS

m Moore, Les Houches



FLUX VACUA AND
SUPERSYMMETRIC ATTRACTORS

= \We conjecture a universal formulation of supersymmetric
attractor equations. It isvalid for the flux vacuaor for
BPS black holes, depending on the choice of the
components of flux either in the compact space or in 4d
Space.

= Asan example, we define flux vacuawith arigid
explicitly attractive K3 surface where a class of moduli
are fixed by fluxes. The explicit values of complex
structures are extracted from the previously known
solution of the attractor equation for the black holes with
the same symmetry.



FLUX VACUA AND
ATTRACTORS

Explicitly attractive K3 surfaces

m Attractive K3 surfaces are awaysrigid - any infinitesmal deformation
of complex structure would always decrease the rank of the Picard
lattice on K3, which is equal to 20.

m Toreli'stheorem definesthe complex structure of the
attractive K3 surface

= However, we may use the solutions of the
compl ete set of attractor equations and give the
explicit answer for all moduli in terms of fluxes.



Part of these attractor equations were already used in the definition of
the attractive K3 surface by Moore. Moreover, he has proposed the
interpretation of the attractor value of the

1213, = 0%¢* — (p- 9)D)V/2 = 4

as an area of the unit cell in the transcendental lattice of the K3 surface.

We found an explicit definition of the attractive K3 surface, where the
axion-dilaton and all 20 complex structure moduli are given at the fixed
points as functions of all fluxes.

S S (. (.2
N P> ’
i mplogt _
t'= .oo1=2,...,n+1

("t =p?)~(¢"T1-¢")

We used a known solution of the attractor equation for
some particular black holes!
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