Minimizers of an objective function that generalizes CG and MINRES lie on low dimensional affine subspaces

Léopold Cambier, Rahul Sarkar

ICME, Stanford University
May 2020

Motivation

Hallman and $\mathrm{Gu}[1]$ showed that the LSMB iterates
$\left(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, x \in \mathbb{R}^{n}, m \geq n, K_{k}=\operatorname{Krylov}\left(A^{T} A, A^{T} b, k\right)\right.$, $\omega \geq 0$)

$$
x_{\omega}=\underset{x \in K_{k}}{\arg \min }\left\|\left(A^{T} A+\omega I\right)^{-1 / 2} A^{T}(A x-b)\right\|_{2}
$$

are s.t. $(0 \leq \lambda \leq 1)$

$$
x_{\omega}=\lambda x_{0}+(1-\lambda) x_{\infty} \Rightarrow\left\{x_{\omega}-x_{0}\right\} \subseteq 1 \text {-dimensional subspace }
$$

Proof is complex and does not explain why.

Problem statement

We generalize

$$
x_{b, \omega}=\underset{x \in \mathcal{S}}{\arg \min }\left\|(A+\omega /)^{-1 / 2}(A x-b)\right\|
$$

for an arbitrary subspace \mathcal{S}.
If $\mathcal{S}=\operatorname{Krylov}(A, b, k)$

- x_{0} is CG solution;
- x_{∞} is MINRES solution.

We ask

$$
\left\{x_{\omega}-x_{0} \mid \omega \geq 0\right\} \subseteq \text { Low dimensional subspace ? }
$$

Index of invariance

We define

$$
\operatorname{Ind}_{A}(\mathcal{S})=\operatorname{dim}(\mathcal{S}+A \mathcal{S})-\operatorname{dim}(\mathcal{S})
$$

- If \mathcal{S} is invariant, $\operatorname{Ind}_{A}(\mathcal{S})=0$
- If \mathcal{S} is Krylov (but not invariant), then $\operatorname{Ind}_{A}(\mathcal{S})=1$

Let V span \mathcal{S}, $\left[\begin{array}{ll}V & V^{\prime}\end{array}\right]$ span $\mathcal{S}+A \mathcal{S}$ and $V^{\prime \prime}$ the complement, we have the decomposition

$$
\left[\begin{array}{c}
V^{*} \\
V^{\prime *} \\
V^{\prime \prime *}
\end{array}\right] A\left[\begin{array}{lll}
V & V^{\prime} & V^{\prime \prime \prime}
\end{array}\right]=\left[\begin{array}{c|c|c}
T & B^{*} & 0 \\
\hline B & C & D^{*} \\
\hline 0 & D & E
\end{array}\right]
$$

Main result

Let A be hermitian and invertible, $\omega>\omega_{\min }=-\lambda_{\min }(A), \mathcal{S}$ a subspace,

$$
x_{b, \omega}=\underset{x \in \mathcal{S}}{\arg \min }\left\|(A+\omega /)^{-1 / 2}(A x-b)\right\|
$$

Then [2]

$$
\left\{x_{b, \omega}-x_{b, 0} \mid \omega>\omega_{\min }\right\} \subseteq \operatorname{span}\left(V\left(T^{*} T+B^{*} B\right)^{-1} B^{*}\right)=U
$$

where

$$
\operatorname{dim}(U) \leq \operatorname{Ind}_{A}(\mathcal{S})
$$

- U does not change with b;
- If \mathcal{S} invariant: $U=\{0\}$;
- If \mathcal{S} Krylov: $U=1$-dimensional.

Weak converse holds

For any $d \in \operatorname{span}\left(V\left(T^{*} T+B^{*} B\right)^{-1} B^{*}\right)$, there exist b and ω such that

$$
d=x_{b, \omega}-x_{b, 0}
$$

Strong converse does not hold

There exist a matrix A such that for all b

$$
\left\{x_{b, \omega}-x_{b, 0} \mid \omega>-\lambda_{\min }(A)\right\} \subseteq U^{\prime}
$$

where

$$
\operatorname{dim}\left(U^{\prime}\right)<\operatorname{Ind}_{A}(\mathcal{S})
$$

References

囯 Eric Hallman and Ming Gu.
LSMB: Minimizing the backward error for least-squares problems.
SIAM Journal on Matrix Analysis and Applications, 39(3):1295-1317, 2018.
Rehul Sarkar and Léopold Cambier.
Minimizers of an objective function that generalizes CG and MINRES lie on low-dimensional affine subspaces.
In preparation.

