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Abstract

We have developed a supervised learning method for textural classi-
fication of seismic image patches, based on a topological tool called
persistent homology. For each image, persistent homology produces a
list of birth-death pairs which describe how the topology of the image
changes as a function of pixel values. Feature vectors are extracted
from these pairs, which are in turn used to train machine learning
classifiers for the problem. In addition, we study the efficacy of differ-
ent derived textural attributes when used in place of the raw images
in the workflow. Our proposed method is tested on the publicly avail-
able LANDMASS datasets, and our results indicate that these features
can be quite effective at capturing qualitative textural information in
seismic images.

Introduction

Seismic image segmentation is an important activity in hydrocarbon ex-
ploration, which to a large extent is a manual task performed by human
interpreters. Development of seismic attributes to aid interpreters was an
important milestone, and more recently their combination with machine
learning (ML) algorithms has led to partial automation of this process.
A subclass of these methods attempts to perform image segmentation di-
rectly using textural attributes [2]. For example, a salt body looks very
different from a region of sedimentary deposits in a seismic image. An im-
portant recent work by [3] demonstrates that seismic image segmentation
can be performed by breaking up the image into small patches, followed
by using convolutional neural networks (CNNs) to classify these patches
based on their textures.

Our method uses a similar patch-based approach to seismic image classi-
fication, using features derived from topological data analysis (TDA)[4].
These features are theoretically robust to challenges in texture recognition
such as image rotation, scaling, nonlinear deformation, and pixel value
perturbations. In addition to the raw images, we produce images derived
from the raw images using gray-level co-occurrence matrices (GLCM)[5],
and experiment with them as inputs to our workflow.
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Figure: Example images from the LANDMASS-2 data set. Clockwise from top left: flat
horizon, chaotic horizon, fault, salt body.
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Figure: Example sub-level set filtration on a 3× 3 image. Top left: image. Top right:
filtration at homological critical points. Bottom right: persistence barcode. Bottom left:
persistence diagram.

Topological Features

Images may become topological spaces by considering pixels as points,
and using the Freudenthal triangulation of the lattice to add edges to
adjacent points and triangles to fill in 2 × 2 pixel patches. Interesting
information appears by creating a filtration on the space by restricting the
set of active vertices to pixels that have value ≤ t. Persistent homology
tracks how connected components and holes appear and disappear in the
filtration as the filtration parameter increases. The result is a collection of
birth-death pairs: PH0 (for connected components) and PH1 (for holes).
These collections of points can be visualized using persistence diagrams,
which plot the pairs in the plane.

Each image may produce a different number of birth-death pairs. In order
to produce a standard set of features, we use a set of polynomial functions
[6]

p(α; {(bi, di)}i∈J) = 1
|J |

∑
i∈J

∑
j,k

αj,k(di − bi)j(di + bi)k

We use α = δj,k, (j, k) ∈ {0, 1, 2, 3}2 − (0, 0) for homology dimensions
0 and 1. This produces 30 features in total. This can be thought of as
taking integrals of functions over the point measures supported on the
birth-death pairs.
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Figure: Persistence diagrams produced from the example images in the LANDMASS-2
data set.
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Figure: Left: PCA embedding of LANDMASS-1 data set using topological features.
Right: PCA embedding of LANDMASS-2 data set using topological features

Results

We test our method on the publicly available LANDMASS data sets
[7]. We use the 30 topological features from each image, and train three
different black-box classification algorithms: a multi-class support vector
machine (SVM), a random forest (RF), and a simple neural network (NN).
We also use GLCM features to produce additional persistence diagrams.

Attribute Classification Accuracy on Test Set (%)
SVM RF NN

Raw 99.8 / 75.2 / 0.0 / 0.0 99.9 / 98.6 / 95.2 / 93.3 100.0 / 99.6 / 99.7 / 98.4
Image 100.0 / 55.0 / 88.3 / 74.3 100.0 / 98.0 / 100.0 / 96.3 100.0 / 100.0 / 99.0 / 95.0
GLCM 100.0 / 18.6 / 34.1 / 29.3 99.9 / 97.9 / 82.1 / 93.3 100.0 / 97.8 / 92.8 / 97.0
Mean 62.7 / 19.0 / 4.0 / 100.0 100.0 / 97.0 / 97.3 / 91.7 100.0 / 96.0 / 95.7 / 96.3
RMS 100.0 / 1.0 / 0.0 / 0.0 99.3 / 96.1 / 88.0 / 82.0 99.5 / 99.1 / 96.3 / 91.5

Amplitude 74.7 / 85.7 / 71.3 / 61.7 99.7 / 96.0 / 96.0 / 91.7 99.7 / 99.0 / 93.7 / 91.3
GLCM 100.0 / 0.0 / 0.0 / 0.0 99.3 / 94.9 / 80.8 / 91.2 99.8 / 93.6 / 87.7 / 96.7

Correlation 64.7 / 32.0 / 89.3 / 32.3 99.7 / 93.7 / 92.0 / 97.0 100.0 / 95.7 / 93.7 / 98.3
GLCM 96.6 / 94.1 / 92.8 / 67.7 98.5 / 95.7 / 96.3 / 74.0 99.3 / 98.3 / 98.1 / 87.3
Variance 97.3 / 93.3 / 91.7 / 87.0 99.0 / 95.3 / 96.7 / 89.7 99.7 / 99.0 / 99.3 / 95.0
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