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Good health and well being

Source: pbs.org

We are in the middle of an epidemic crisis, where more than

ever we realize the importance of faster drug discovery!

Enormous social and economic impact.
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Climate action

Aftermath of Cyclone Amphan from last week.

(Left: Kolkata airport after the storm).

• Estimated 13 bn USD in damages. 

Hurricane Harvey (2017)

• Estimated 125 bn USD in damages. 



Potential use cases for a quantum computer

The best application of a quantum computer is to simulate quantum phenomena, such as molecules,

chemical reactions etc.

Nitrogen fixing fertilizers:

• The Haber-Bosch process uses around 1.5-2% of global energy.

• There are bacteria in nature that can perform the same chemical reaction, and understanding how

they do it requires one to be able to simulate the enzymes and proteins forming such bacteria.
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The best application of a quantum computer is to simulate quantum phenomena, such as molecules,

chemical reactions etc.

Nitrogen fixing fertilizers:

• The Haber-Bosch process uses around 1.5-2% of global energy.

• There are bacteria in nature that can perform the same chemical reaction, and understanding how

they do it requires one to be able to simulate the enzymes and proteins forming such bacteria.

Drug discovery:

• Requires one to be able to model chemical reactions, and understand how drugs interact with

proteins and enzymes in our body.

CO2 capture and catalyst design:

• Currently known catalysts involve precious and rare metals (difficult to deploy on scale). Need to

find cheaper and readily available alternatives.

High Temperature Superconductors / Better Batteries:

• Reduce power transmission losses, increased energy storage capabilities from intermittent sources

such as wind and solar.



Facts about quantum computers

Classical computers manipulate bits of 0s and 1s.

A quantum computer manipulates quantum states, consisting of superpositions of

qubit states, for e.g. | ۧ𝜓 = α| ۧ0 + β| ۧ1 .



Facts about quantum computers

Classical computers manipulate bits of 0s and 1s.

A quantum computer manipulates quantum states, consisting of superpositions of

qubit states, for e.g. | ۧ𝜓 = α| ۧ0 + β| ۧ1 .

Known limits of quantum computation:

While it is known that a quantum computer can efficiently solve any problem that

a classical computer can solve, it is not known whether there exists a problem that

can be efficiently solved on a quantum computer but not on a classical computer.

It is also not known if there is any NP-Complete problem that a quantum computer

can efficiently solve.



Basics of quantum error correction

Operations on qubits can be noisy. For example suppose you have the quantum state | ۧ𝜓 = | ۧ0 ,

and you apply the 𝑋 =
0 1
1 0

gate to it.

Desired output: 𝑋| ۧ𝜓 = | ۧ1 when there is no error in the gate application and measurement

process.

Typical situation due to quantum errors: 𝑋| ۧ𝜓 = α| ۧ0 + β| ۧ1 , where |𝛼|2 + |𝛽|2 = 1.

How much error you have in the final output from a quantum circuit depends on the individual

gate errors, and depth of the circuit.
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Basics of quantum error correction: Stabilizer Codes

Describe a code using a stabilizer group 𝒮 ≤ 𝒫𝑁 = 𝐼, 𝑋, 𝑌, 𝑍 ⨂𝑁.

▪ E.g. 𝒮 = 𝑍𝑍𝑍𝑍, 𝑋𝑋𝑋𝑋 , with 𝒞 𝒮 = 𝒮, 𝑋𝑋𝐼𝐼, 𝐼𝑋𝑋𝐼, 𝑍𝑍𝐼𝐼, 𝐼𝑍𝑍𝐼 .

▪ 𝒞 𝒮 = 2𝑁+2𝐾,𝐷 = 𝑚𝑖𝑛{ 𝑝 : 𝑝 ∈ 𝒞 𝒮 − 𝒮}.

▪ 𝐷 is called the distance of the stabilizer code.

𝒫𝑁

𝒞 𝒮

𝒮

non-trivial logical operators

trivial logical 

operators

▪ 𝐷 is the minimum weight 

of non-trivial logical 

operators. 

▪ E.g. of weight calculation.

- 𝑋𝑌𝑋𝑌 = 4
- 𝑋𝑍𝑍𝐼 = 3
- 𝐼𝐼𝐼𝑋 = 1



Graph Embeddings on Manifolds (2- Manifolds, closed)

A graph embedding of a graph 𝐺(𝑉, 𝐸) in a manifold 𝑀 is a “drawing” of the graph on 𝑀
such that it has some nice properties:

▪ Faces are homeomorphic to open discs.

▪ Edges don’t intersect except at vertices.

E.g. The graph on the right is 𝐾5 embedded on the torus.

Manifolds for us will be 2-manifolds (surfaces), which are closed (meaning does not have a

boundary and are compact). Can be orientable or non-orientable.

▪ Sphere, Torus are orientable manifolds.

▪ Real projective plane is a non-orientable manifold (these can be difficult to imagine if

you have not encountered them before).



Examples of graph embeddings

Torus
Mobius band

(just for illustration, 

not a closed manifold)

A different way to 

represent a Torus

Source: Wolfram



Outline of the construction given a closed 2-cell graph embedding

Stabilizer codes from graph embedding:

▪ Write a cyclically anticommuting list of Paulis

around each vertex.

▪ Number of qubits to place at a vertex 𝑣 is 
deg 𝑣 −1

2

or 
deg 𝑣 −2

2
if deg 𝑣 ≥ 3 odd or even respectively.

▪ The tensor product of Paulis within a face is a 

stabilizer.

Cyclically anticommuting lists (CAL):

An ordered list of Paulis 𝑝0, 𝑝1, … , 𝑝𝑙−1 is cyclically 

anticommuting if

1) 𝑝𝑖 , 𝑝𝑖+1 (𝑚𝑜𝑑 𝑙) = 0

2) 𝑝𝑖 , 𝑝𝑗 = 0 when 𝑗 ≠ 𝑖 ± 1 (𝑚𝑜𝑑 𝑙)

Eg. 𝑋, 𝑌, 𝑍 and 𝑋, 𝑍, 𝑋, 𝑍 are CALs



Reduction to graphs with degree between 3 and 4

Clearly, for 𝑙 = 3, 4

So for 𝑙 = 7



Reduction to graphs with degree between 3 and 4

Clearly, for 𝑙 = 3, 4

So for 𝑙 = 8



Number of encoded qubits

We now have a set of Paulis defined by each face of the graph embedding.

▪ It turns out that because of the CAL property, this set of Paulis commute with each other.

▪ Hence the group generated by them is a stabilizer group.

How many qubits does this code encode?

Theorem: A surface code on a genus 𝑔 manifold with 𝑀 odd degree vertices encodes 

𝐾logical qubits given by 

Here 𝑔 is the orientable / non-orientable genus of the manifold 𝑀.

A graph is checkerboardable if its faces can be two-colored, with adjacent faces colored 

differently.



Checkerboarding examples

NOT Checkerboardable, 𝐾 = 1 Checkerboardable, 𝐾 = 2



Example: Cyclic Toric Code

▪ Parameterize by relatively prime, positive integers 𝑎, 𝑏, with 𝑏 > 𝑎 ≥ 1.

▪ Draw lines  𝑦 =
𝑏

𝑎
𝑥 &   𝑦 = −

𝑎

𝑏
𝑥.

An example on the right with 𝑎, 𝑏 = (1, 2).



Example: Cyclic Toric Code

▪ Parameterize by relatively prime, positive integers 

𝑎, 𝑏, with 𝑏 > 𝑎 ≥ 1.

▪ Draw lines  𝑦 =
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𝑏
𝑥.

Code Parameters 𝑁,𝐾, 𝐷

▪ 𝑁 = 𝑎2 + 𝑏2

▪ If 𝑁 is odd, 𝐾 = 1 and 𝐷 = 𝑎 + 𝑏

▪ If 𝑁 is even, 𝐾 = 2 and 𝐷 = max(𝑎, 𝑏)

This code achieves 𝑁 = 𝐾𝐷2/2 in two regimes, when 

𝑎 = 𝑏 − 1 or when 𝑎 = 1 and 𝑏 is odd.

**Proving the distance is non-trivial.

𝑎, 𝑏 = (3, 5)



General bounds on distance 𝐷

We need to use a construction called the decoding graph, obtained from the original graph 

𝐺 𝑉, 𝐸 .

Without loss of generality, we only need the case for degree 3 and 4 vertices.
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Decoding graph example

(a)

(b)

(c)

(d)

(e)

(f)
Stabilizers: a,b,c

Logical X: d,e

Logical Z: f



Efficient algorithm to get distance bounds

1. Given graph 𝐺, create its decoding graph 𝐺𝑑𝑒𝑐.

2. Find a minimum cycle basis (MCB) of 𝐺𝑑𝑒𝑐. A MCB is a basis of the cycle space 

𝑐1, 𝑐2, … , 𝑐𝑏 such that Σ𝑖|𝑐𝑖| is minimized. This can be done with Horton’s algorithm

or more efficient, more recent alternatives.

3. Convert each 𝑐𝑖 to a Pauli 𝑃𝑖. Find nontrivial 𝑐𝑖, those for which 𝑃𝑖 anticommutes with 

some other 𝑃𝑗.

4. Let 𝑊 be the length of the shortest nontrivial 𝑐𝑖.

Theorem: If the graph is checkerboardable, 𝐷 = 𝑊. If the graph is not checkerboardable, 

𝑊/2 ≤ 𝐷 ≤ 𝑊.
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Questions

For questions, you can email me at rsarkar@stanford.edu

Questions?


