Quantum Stabilizer Codes From Graph Embeddings on Manifolds

RA HU L S A R KA R

INSTITUTE FOR COMPUTATIONAL AND MATHEMATICAL ENGINEERING MAY 6, 2020

Joint work with **Ted Yoder** (IBM T.J. Watson Research Center)

Basics of quantum error correction

Operations on qubits can be noisy. For example suppose you have the quantum state $|\psi\rangle = |0\rangle$, and you apply the $X =$ 0 1 1 0 gate to it.

Desired output: $X|\psi\rangle = |1\rangle$ when there is no error in the gate application and measurement process.

Typical situation due to quantum errors: $X|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, where $|\alpha|^2 + |\beta|^2 = 1$. How much error you have in the final output from a quantum circuit depends on the **individual gate errors**, and **depth of the circuit**.

Basics of quantum error correction

Operations on qubits can be noisy. For example suppose you have the quantum state $|\psi\rangle = |0\rangle$, and you apply the $X =$ 0 1 1 0 gate to it.

Desired output: $X|\psi\rangle = |1\rangle$ when there is no error in the gate application and measurement process.

Typical situation due to quantum errors: $X|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, where $|\alpha|^2 + |\beta|^2 = 1$. How much error you have in the final output from a quantum circuit depends on the **individual gate errors**, and **depth of the circuit**.

- Encode K logical qubits in a subspace of $N > K$ physical qubits.
- Such that any $(D 1)$ errors can be detected.
- In principle, any $\left(\frac{D-1}{2} \right)$ errors can be corrected, but it may not be efficient.
- D is called the distance of the quantum code.

Basics of quantum error correction: Stabilizer Codes

Describe a code using a stabilizer group $S \le P_N = \{I, X, Y, Z\}^{\otimes N}$.

- **E.g.** $S = \langle ZZZZ, XXXX \rangle$, with $C(S) = \langle S, XXII, IXXI, ZZII, IZZI \rangle$.
- $|C(S)| = 2^{N+2K}, D = min\{|p|: p \in C(S) S\}.$
- is called the **distance of the stabilizer code**.

Basics of quantum error correction: Stabilizer Codes

Describe a code using a stabilizer group $S \le P_N = \{I, X, Y, Z\}^{\otimes N}$.

- **E.g.** $S = \langle ZZZZ, XXXX \rangle$, with $C(S) = \langle S, XXII, IXXI, ZZII, IZZI \rangle$.
- $|C(S)| = 2^{N+2K}, D = min\{|p|: p \in C(S) S\}.$
- is called the **distance of the stabilizer code**.

Relations between $S, C(S)$ and P_N :

- \mathcal{P}_N is the N qubit Pauli group. $|\mathcal{P}_N| = 4^{N+1}$. If you ignore phases, $|\mathcal{P}_N| = 4^N$.
- S is the **stabilizer group**. It is a subgroup of P_N where all elements commute.
- **•** $\mathcal{C}(\mathcal{S})$ is the **centralizer group** of S. It is a subgroup of \mathcal{P}_N and consist of all elements that commute with each element in S. Thus S is also a subgroup of $C(S)$.
- $K = N \dim(S)$.

Relationships summarized via a diagram

- \blacksquare *D* is the minimum weight of non-trivial logical operators.
- E.g. of weight calculation.
	- \mid $|XYXY| = 4$
	- $|XZZI| = 3$
	- $|IIIX| = 1$

 \mathcal{P}_N

A **graph embedding** of a graph $G(V, E)$ in a manifold M is a "drawing" of the graph on M such that it has some nice properties:

- Faces are **homeomorphic** to open discs.
- Edges don't intersect except at vertices.

A **graph embedding** of a graph $G(V, E)$ in a manifold M is a "drawing" of the graph on M such that it has some nice properties:

- Faces are **homeomorphic** to open discs.
- Edges don't intersect except at vertices.

Question: What is the graph on the right?

A **graph embedding** of a graph $G(V, E)$ in a manifold M is a "drawing" of the graph on M such that it has some nice properties:

- Faces are **homeomorphic** to open discs.
- Edges don't intersect except at vertices.

Question: What is the graph on the right?

The graph is K_5 .

A **graph embedding** of a graph $G(V, E)$ in a manifold M is a "drawing" of the graph on M such that it has some nice properties:

- Faces are **homeomorphic** to open discs.
- Edges don't intersect except at vertices.

Question: What is the graph on the right?

The graph is K_5 .

Manifolds for us will be 2-manifolds (surfaces), which are closed (meaning does not have a boundary and are compact). Can be orientable or non-orientable.

- Sphere, Torus are orientable manifolds.
- Real projective plane is a non-orientable manifold (these can be difficult to imagine if you have not encountered them before).

Examples of graph embeddings

Torus Mobius band (just for illustration, not a closed manifold)

A different way to represent a **Torus**

Source: Wolfram

Outline of the construction given a closed 2-cell graph embedding

Stabilizer codes from graph embedding:

- Write a cyclically anticommuting list of Paulis around each vertex.
- Number of qubits to place at a vertex v is $\frac{\text{deg}(v)-1}{2}$ or $\frac{\deg(v)-2}{2}$ $\frac{\nu}{2}$ if deg(v) \geq 3 odd or even respectively.
- **The tensor product of Paulis within a face** is a stabilizer.

Cyclically anticommuting lists (CAL): An ordered list of Paulis $\{p_0, p_1, ..., p_{l-1}\}$ is cyclically anticommuting if

1)
$$
\{p_i, p_{i+1 \pmod{l}}\} = 0
$$

\n2) $[p_i, p_j] = 0$ when $j \neq i \pm 1 \pmod{l}$
\nEg. {X, Y, Z} and {X, Z, X, Z} are CALs

Reduction to graphs with degree between 3 and 4

Reduction to graphs with degree between 3 and 4

Clearly, for
$$
l = 3, 4
$$

\n Z
\nSo for $l = 8$
\n p_0
\n p_1
\n p_2
\n p_3
\n p_5
\n p_6
\n p_7
\n p_8
\n p_9
\n p_1
\n p_2
\n p_3
\n p_4
\n p_5
\n p_6
\n p_7
\n p_8
\n p_9
\n p_9
\n p_1
\n p_2
\n p_3
\n p_4
\n p_5
\n p_6
\n p_7
\n p_8
\n p_9
\n p_9
\n p_9
\n p_9
\n p_1
\n p_1
\n p_2
\n p_3
\n p_4
\n p_5
\n p_6
\n p_7
\n p_8
\n p_9
\n p_9
\n p_9
\n p_1
\n p_1
\n p_2
\n p_3
\n p_1
\n p_2
\n p_3
\n p_5
\n p_7
\n p_8
\n p_9
\n p_9

We now have a set of Paulis defined by each face of the graph embedding.

- It turns out that because of the CAL property, this set of Paulis **commute** with each other.
- Hence the group generated by them is a stabilizer group.

We now have a set of Paulis defined by each face of the graph embedding.

- It turns out that because of the CAL property, this set of Paulis **commute** with each other.
- Hence the group generated by them is a stabilizer group.

How many qubits does this code encode?

We now have a set of Paulis defined by each face of the graph embedding.

- It turns out that because of the CAL property, this set of Paulis **commute** with each other.
- Hence the group generated by them is a stabilizer group.

How many qubits does this code encode?

Theorem: A surface code on a genus g manifold with M odd degree vertices encodes K logical qubits given by

$$
K = \left\{ \begin{array}{ll} 2g & , \,\, orientable \\ g & , \,\, non-orientable \end{array} \right\} + \left\{ \begin{array}{ll} 0 & , \,\, checkerboardable \\ (M-2)/2 & , \,\, not \,\, checkerboardable \end{array} \right\}
$$

Here q is the orientable / non-orientable genus of the manifold M .

A graph is **checkerboardable** if its faces can be two-colored, with adjacent faces colored differently.**Stanford University**

Checkerboarding examples

Example: Cyclic Toric Code

- Parameterize by relatively prime, positive integers a, b , with $b > a \ge 1$.
- **•** Draw lines $y = \left(\frac{b}{a}\right)$ $\left(\frac{b}{a}\right)x \& y = \left(-\frac{a}{b}\right)$ $\frac{a}{b}$) x.

An example on the right with $(a, b) = (1, 2)$.

Example: Cyclic Toric Code

- Parameterize by relatively prime, positive integers a, b, with $b > a \geq 1$.
- **•** Draw lines $y = \left(\frac{b}{a}\right)$ $\left(\frac{b}{a}\right)x \& y = \left(-\frac{a}{b}\right)$ $\frac{a}{b}$) x.
- **Code Parameters** $\llbracket N,K,D \rrbracket$
- $N = a^2 + b^2$
- If N is odd, $K = 1$ and $D = a + b$
- **Fig. 1** If N is even, $K = 2$ and $D = \max(a, b)$

This code achieves $N = KD^2/2$ in two regimes, when $a = b - 1$ or when $a = 1$ and b is odd.

****Proving the distance is non-trivial.**

 $(a, b) = (3, 5)$

General bounds on distance D

We need to use a construction called the decoding graph, obtained from the original graph $G(V, E)$.

Definition 4.2. The decoding graph $G_{\text{dec}} = (V_{\text{dec}}, E_{\text{dec}})$ of a closed 2-cell embedded graph $G = (V, E, F)$ is constructed so that $V_{\text{dec}} = F$, while edges E_{dec} are associated to vertices V in a many-to-one fashion. For each vertex $v \in V$, draw an edge between vertices $v'_1, v'_2 \in V_{\text{dec}}$ (associated to faces $f_1, f_2 \in F$) if there is a Pauli supported on qubits at v that anticommutes with S_{f_1} and S_{f_2} but commutes with all other stabilizers S_f .

General bounds on distance D

We need to use a construction called the decoding graph, obtained from the original graph $G(V, E)$.

Definition 4.2. The decoding graph $G_{\text{dec}} = (V_{\text{dec}}, E_{\text{dec}})$ of a closed 2-cell embedded graph $G = (V, E, F)$ is constructed so that $V_{\text{dec}} = F$, while edges E_{dec} are associated to vertices V in a many-to-one fashion. For each vertex $v \in V$, draw an edge between vertices $v'_1, v'_2 \in V_{\text{dec}}$ (associated to faces $f_1, f_2 \in F$) if there is a Pauli supported on qubits at v that anticommutes with S_{f_1} and S_{f_2} but commutes with all other stabilizers S_f .

Without loss of generality, we only need the case for degree 3 and 4 vertices.

Decoding graph properties

- Each edge represents a Pauli that anticommutes with exactly two faces.
- Any Pauli at a vertex can be represented by taking some subset of edges.
- **Logical operators are cycles in the decoding graph!**
- These are consequences of the CAL construction.

Decoding graph example

Efficient algorithm to get distance bounds

- 1. Given graph G, create its decoding graph G_{dec} .
- 2. Find a minimum cycle basis (MCB) of G_{dec} . A MCB is a basis of the cycle space $(c_1, c_2, ..., c_b)$ such that $\Sigma_i |c_i|$ is minimized. This can be done with Horton's algorithm or more efficient, more recent alternatives.
- 3. Convert each c_i to a Pauli P_i . Find nontrivial c_i , those for which P_i anticommutes with some other P_j .
- 4. Let *W* be the length of the shortest nontrivial c_i .

Theorem: If the graph is checkerboardable, $D = W$. If the graph is not checkerboardable, $W/2 \le D \le W$.

Questions?

For questions, you can email me at rsarkar@stanford.edu

Acknowledgments

Rahul Sarkar was partially funded by the Schlumberger Innovation Fellowship 2020, for the duration of this work.