Quantum Stabilizer Codes From Graph Embeddings on Manifolds

RAHUL SARKAR

INSTITUTE FOR COMPUTATIONAL AND MATHEMATICAL ENGINEERING MAY 6, 2020

Joint work with Ted Yoder (IBM T.J. Watson Research Center)

Basics of quantum error correction

Operations on qubits can be noisy. For example suppose you have the quantum state $|\psi\rangle = |0\rangle$, and you apply the $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ gate to it.

Desired output: $X|\psi\rangle = |1\rangle$ when there is no error in the gate application and measurement process.

Typical situation due to quantum errors: $X|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, where $|\alpha|^2 + |\beta|^2 = 1$. How much error you have in the final output from a quantum circuit depends on the **individual** gate errors, and depth of the circuit.

Basics of quantum error correction

Operations on qubits can be noisy. For example suppose you have the quantum state $|\psi\rangle = |0\rangle$, and you apply the $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ gate to it.

Desired output: $X|\psi\rangle = |1\rangle$ when there is no error in the gate application and measurement process.

Typical situation due to quantum errors: $X|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, where $|\alpha|^2 + |\beta|^2 = 1$. How much error you have in the final output from a quantum circuit depends on the **individual** gate errors, and depth of the circuit.

- Encode *K* logical qubits in a subspace of N > K physical qubits.
- Such that any (D-1) errors can be detected.
- In principle, any $\lfloor (D-1)/2 \rfloor$ errors can be corrected, but it may not be efficient.
- *D* is called the distance of the quantum code.

Basics of quantum error correction: Stabilizer Codes

Describe a code using a stabilizer group $S \leq \mathcal{P}_N = \{I, X, Y, Z\}^{\otimes N}$.

- E.g. $S = \langle ZZZZ, XXXX \rangle$, with $C(S) = \langle S, XXII, IXXI, ZZII, IZZI \rangle$.
- $|\mathcal{C}(\mathcal{S})| = 2^{N+2K}, D = min\{|p|: p \in \mathcal{C}(\mathcal{S}) \mathcal{S}\}.$
- *D* is called the **distance of the stabilizer code**.

Basics of quantum error correction: Stabilizer Codes

Describe a code using a stabilizer group $S \leq \mathcal{P}_N = \{I, X, Y, Z\}^{\otimes N}$.

- E.g. $S = \langle ZZZZ, XXXX \rangle$, with $C(S) = \langle S, XXII, IXXI, ZZII, IZZI \rangle$.
- $|\mathcal{C}(\mathcal{S})| = 2^{N+2K}, D = min\{|p|: p \in \mathcal{C}(\mathcal{S}) \mathcal{S}\}.$
- *D* is called the **distance of the stabilizer code**.

Relations between $\mathcal{S}, \mathcal{C}(\mathcal{S})$ and \mathcal{P}_N :

- \mathcal{P}_N is the *N* qubit Pauli group. $|\mathcal{P}_N| = 4^{N+1}$. If you ignore phases, $|\mathcal{P}_N| = 4^N$.
- S is the **stabilizer group**. It is a subgroup of \mathcal{P}_N where all elements commute.
- $\mathcal{C}(S)$ is the **centralizer group** of S. It is a subgroup of \mathcal{P}_N and consist of all elements that commute with each element in S. Thus S is also a subgroup of $\mathcal{C}(S)$.
- $K = N \dim(S)$.

Relationships summarized via a diagram

- *D* is the minimum weight of non-trivial logical operators.
- E.g. of weight calculation.
 - |XYXY| = 4
 - |XZZI| = 3
 - |IIIX| = 1

 \mathcal{P}_N

A graph embedding of a graph G(V, E) in a manifold M is a "drawing" of the graph on M such that it has some nice properties:

- Faces are **homeomorphic** to open discs.
- Edges don't intersect except at vertices.

A graph embedding of a graph G(V, E) in a manifold M is a "drawing" of the graph on M such that it has some nice properties:

- Faces are **homeomorphic** to open discs.
- Edges don't intersect except at vertices.

Question: What is the graph on the right?

A graph embedding of a graph G(V, E) in a manifold M is a "drawing" of the graph on M such that it has some nice properties:

- Faces are **homeomorphic** to open discs.
- Edges don't intersect except at vertices.

Question: What is the graph on the right?

The graph is K_5 .

A graph embedding of a graph G(V, E) in a manifold M is a "drawing" of the graph on M such that it has some nice properties:

- Faces are **homeomorphic** to open discs.
- Edges don't intersect except at vertices.

Question: What is the graph on the right?

The graph is K_5 .

Manifolds for us will be 2-manifolds (surfaces), which are closed (meaning does not have a boundary and are compact). Can be orientable or non-orientable.

- Sphere, Torus are orientable manifolds.
- Real projective plane is a non-orientable manifold (these can be difficult to imagine if you have not encountered them before).

Examples of graph embeddings

Mobius band (just for illustration, not a closed manifold)

A different way to represent a **Torus**

Source: Wolfram

Outline of the construction given a closed 2-cell graph embedding

Stabilizer codes from graph embedding:

- Write a cyclically anticommuting list of Paulis around each vertex.
- Number of qubits to place at a vertex v is $\frac{\deg(v)-1}{2}$ or $\frac{\deg(v)-2}{2}$ if $\deg(v) \ge 3$ odd or even respectively.
- The **tensor product of Paulis within a face** is a stabilizer.

Cyclically anticommuting lists (CAL): An ordered list of Paulis $\{p_0, p_1, ..., p_{l-1}\}$ is cyclically anticommuting if

1)
$$\{p_i, p_{i+1 \pmod{l}}\} = 0$$

2) $[p_i, p_j] = 0$ when $j \neq i \pm 1 \pmod{l}$
Eg. $\{X, Y, Z\}$ and $\{X, Z, X, Z\}$ are CALs

Reduction to graphs with degree between 3 and 4

Reduction to graphs with degree between 3 and 4

Clearly, for
$$l = 3, 4$$

 $X Z Y$
So for $l = 8$
 $y Z Z X$
 $Z Z X X Z Z$
 $y Z Z Z X X Z Z$
 $y Z Z Z X X Z Z X$
 $z Z Z X X Z Z X$
 $z Z Z X X Z Z X$
 $z Z Z X X Z Z X$
Stanford University

We now have a set of Paulis defined by each face of the graph embedding.

- It turns out that because of the CAL property, this set of Paulis **commute** with each other.
- Hence the group generated by them is a stabilizer group.

We now have a set of Paulis defined by each face of the graph embedding.

- It turns out that because of the CAL property, this set of Paulis **commute** with each other.
- Hence the group generated by them is a stabilizer group.

How many qubits does this code encode?

We now have a set of Paulis defined by each face of the graph embedding.

- It turns out that because of the CAL property, this set of Paulis **commute** with each other.
- Hence the group generated by them is a stabilizer group.

How many qubits does this code encode?

Theorem: A surface code on a genus g manifold with M odd degree vertices encodes Klogical qubits given by

$$K = \left\{ \begin{array}{ccc} 2g & , \ orientable \\ g & , \ non-orientable \end{array} \right\} + \left\{ \begin{array}{ccc} 0 & , \ checkerboardable \\ (M-2)/2 & , \ not \ checkerboardable \end{array} \right\}$$

Here g is the orientable / non-orientable genus of the manifold M.

A graph is **checkerboardable** if its faces can be two-colored, with adjacent faces colored differently. Stanford University

Checkerboarding examples

Example: Cyclic Toric Code

- Parameterize by relatively prime, positive integers a, b, with $b > a \ge 1$.
- Draw lines $y = \left(\frac{b}{a}\right)x$ & $y = \left(-\frac{a}{b}\right)x$.

An example on the right with (a, b) = (1, 2).

Example: Cyclic Toric Code

- Parameterize by relatively prime, positive integers a, b, with $b > a \ge 1$.
- Draw lines $y = \left(\frac{b}{a}\right)x$ & $y = \left(-\frac{a}{b}\right)x$.
- **Code Parameters** [[*N*, *K*, *D*]]
- $N = a^2 + b^2$
- If N is odd, K = 1 and D = a + b
- If N is even, K = 2 and $D = \max(a, b)$

This code achieves $N = KD^2/2$ in two regimes, when a = b - 1 or when a = 1 and b is odd.

****Proving the distance is non-trivial.**

(a,b) = (3,5)

General bounds on distance D

We need to use a construction called the decoding graph, obtained from the original graph G(V, E).

Definition 4.2. The decoding graph $G_{dec} = (V_{dec}, E_{dec})$ of a closed 2-cell embedded graph G = (V, E, F) is constructed so that $V_{dec} = F$, while edges E_{dec} are associated to vertices V in a many-to-one fashion. For each vertex $v \in V$, draw an edge between vertices $v'_1, v'_2 \in V_{dec}$ (associated to faces $f_1, f_2 \in F$) if there is a Pauli supported on qubits at v that anticommutes with S_{f_1} and S_{f_2} but commutes with all other stabilizers S_f .

General bounds on distance D

We need to use a construction called the decoding graph, obtained from the original graph G(V, E).

Definition 4.2. The decoding graph $G_{dec} = (V_{dec}, E_{dec})$ of a closed 2-cell embedded graph G = (V, E, F) is constructed so that $V_{dec} = F$, while edges E_{dec} are associated to vertices V in a many-to-one fashion. For each vertex $v \in V$, draw an edge between vertices $v'_1, v'_2 \in V_{dec}$ (associated to faces $f_1, f_2 \in F$) if there is a Pauli supported on qubits at v that anticommutes with S_{f_1} and S_{f_2} but commutes with all other stabilizers S_f .

Without loss of generality, we only need the case for degree 3 and 4 vertices.

Decoding graph properties

- Each edge represents a Pauli that anticommutes with exactly two faces.
- Any Pauli at a vertex can be represented by taking some subset of edges.
- Logical operators are cycles in the decoding graph!
- These are consequences of the CAL construction.

Decoding graph example

Efficient algorithm to get distance bounds

- 1. Given graph G, create its decoding graph G_{dec} .
- 2. Find a minimum cycle basis (MCB) of G_{dec} . A MCB is a basis of the cycle space $\{c_1, c_2, ..., c_b\}$ such that $\Sigma_i |c_i|$ is minimized. This can be done with Horton's algorithm or more efficient, more recent alternatives.
- 3. Convert each c_i to a Pauli P_i . Find nontrivial c_i , those for which P_i anticommutes with some other P_j .
- 4. Let *W* be the length of the shortest nontrivial c_i .

Theorem: If the graph is checkerboardable, D = W. If the graph is not checkerboardable, $W/2 \le D \le W$.

Questions?

For questions, you can email me at rsarkar@stanford.edu

Acknowledgments

Rahul Sarkar was partially funded by the Schlumberger Innovation Fellowship 2020, for the duration of this work.