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Basics of quantum error correction

Operations on qubits can be noisy. For example suppose you have the quantum state | ۧ𝜓 = | ۧ0 ,

and you apply the 𝑋 =
0 1
1 0

gate to it.

Desired output: 𝑋| ۧ𝜓 = | ۧ1 when there is no error in the gate application and measurement

process.

Typical situation due to quantum errors: 𝑋| ۧ𝜓 = α| ۧ0 + β| ۧ1 , where |𝛼|2 + |𝛽|2 = 1.

How much error you have in the final output from a quantum circuit depends on the individual

gate errors, and depth of the circuit.



Basics of quantum error correction

▪ Encode 𝐾 logical qubits in a subspace of 𝑁 > 𝐾 physical qubits.

▪ Such that any (𝐷 − 1) errors can be detected.

▪ In principle, any (𝐷 − 1)/2 errors can be corrected, but it may not be efficient.

▪ 𝐷 is called the distance of the quantum code.
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Basics of quantum error correction: Stabilizer Codes

Describe a code using a stabilizer group 𝒮 ≤ 𝒫𝑁 = 𝐼, 𝑋, 𝑌, 𝑍 ⨂𝑁.

▪ E.g. 𝒮 = 𝑍𝑍𝑍𝑍, 𝑋𝑋𝑋𝑋 , with 𝒞 𝒮 = 𝒮, 𝑋𝑋𝐼𝐼, 𝐼𝑋𝑋𝐼, 𝑍𝑍𝐼𝐼, 𝐼𝑍𝑍𝐼 .

▪ 𝒞 𝒮 = 2𝑁+2𝐾,𝐷 = 𝑚𝑖𝑛{ 𝑝 : 𝑝 ∈ 𝒞 𝒮 − 𝒮}.

▪ 𝐷 is called the distance of the stabilizer code.
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▪ 𝒞 𝒮 = 2𝑁+2𝐾,𝐷 = 𝑚𝑖𝑛{ 𝑝 : 𝑝 ∈ 𝒞 𝒮 − 𝒮}.
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Relations between 𝒮, 𝒞 𝒮 and 𝒫𝑁:

▪ 𝒫𝑁 is the 𝑵 qubit Pauli group. |𝒫𝑁| = 4𝑁+1 . If you ignore phases, |𝒫𝑁| = 4𝑁 .

▪ 𝒮 is the stabilizer group. It is a subgroup of 𝒫𝑁 where all elements commute.

▪ 𝒞 𝒮 is the centralizer group of 𝒮. It is a subgroup of 𝒫𝑁 and consist of all elements that

commute with each element in 𝒮. Thus 𝒮 is also a subgroup of 𝒞 𝒮 .

▪ 𝐾 = 𝑁 − dim(𝒮).



Relationships summarized via a diagram

𝒫𝑁

𝒞 𝒮

𝒮

non-trivial logical operators

trivial logical 

operators

▪ 𝐷 is the minimum weight 

of non-trivial logical 

operators. 

▪ E.g. of weight calculation.

- 𝑋𝑌𝑋𝑌 = 4
- 𝑋𝑍𝑍𝐼 = 3
- 𝐼𝐼𝐼𝑋 = 1



Graph Embeddings on Manifolds (2- Manifolds, closed)

A graph embedding of a graph 𝐺(𝑉, 𝐸) in a manifold 𝑀 is a “drawing” of the graph on 𝑀
such that it has some nice properties:

▪ Faces are homeomorphic to open discs.

▪ Edges don’t intersect except at vertices.
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Graph Embeddings on Manifolds (2- Manifolds, closed)

A graph embedding of a graph 𝐺(𝑉, 𝐸) in a manifold 𝑀 is a “drawing” of the graph on 𝑀
such that it has some nice properties:

▪ Faces are homeomorphic to open discs.

▪ Edges don’t intersect except at vertices.

Question: What is the graph on the right?

The graph is 𝐾5.

Manifolds for us will be 2-manifolds (surfaces), which are closed (meaning does not have a

boundary and are compact). Can be orientable or non-orientable.

▪ Sphere, Torus are orientable manifolds.

▪ Real projective plane is a non-orientable manifold (these can be difficult to imagine if

you have not encountered them before).



Examples of graph embeddings

Torus
Mobius band

(just for illustration, 

not a closed manifold)

A different way to 

represent a Torus

Source: Wolfram



Outline of the construction given a closed 2-cell graph embedding

Stabilizer codes from graph embedding:

▪ Write a cyclically anticommuting list of Paulis

around each vertex.

▪ Number of qubits to place at a vertex 𝑣 is 
deg 𝑣 −1

2

or 
deg 𝑣 −2

2
if deg 𝑣 ≥ 3 odd or even respectively.

▪ The tensor product of Paulis within a face is a 

stabilizer.

Cyclically anticommuting lists (CAL):

An ordered list of Paulis 𝑝0, 𝑝1, … , 𝑝𝑙−1 is cyclically 

anticommuting if

1) 𝑝𝑖 , 𝑝𝑖+1 (𝑚𝑜𝑑 𝑙) = 0

2) 𝑝𝑖 , 𝑝𝑗 = 0 when 𝑗 ≠ 𝑖 ± 1 (𝑚𝑜𝑑 𝑙)

Eg. 𝑋, 𝑌, 𝑍 and 𝑋, 𝑍, 𝑋, 𝑍 are CALs



Reduction to graphs with degree between 3 and 4

Clearly, for 𝑙 = 3, 4

So for 𝑙 = 7



Reduction to graphs with degree between 3 and 4

Clearly, for 𝑙 = 3, 4

So for 𝑙 = 8



Number of encoded qubits

We now have a set of Paulis defined by each face of the graph embedding.

▪ It turns out that because of the CAL property, this set of Paulis commute with each other.

▪ Hence the group generated by them is a stabilizer group.
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Number of encoded qubits

We now have a set of Paulis defined by each face of the graph embedding.

▪ It turns out that because of the CAL property, this set of Paulis commute with each other.

▪ Hence the group generated by them is a stabilizer group.

How many qubits does this code encode?

Theorem: A surface code on a genus 𝑔 manifold with 𝑀 odd degree vertices encodes 

𝐾logical qubits given by 

Here 𝑔 is the orientable / non-orientable genus of the manifold 𝑀.

A graph is checkerboardable if its faces can be two-colored, with adjacent faces colored 

differently.



Checkerboarding examples

NOT Checkerboardable, 𝐾 = 1 Checkerboardable, 𝐾 = 2



Example: Cyclic Toric Code

▪ Parameterize by relatively prime, positive integers 𝑎, 𝑏, with 𝑏 > 𝑎 ≥ 1.

▪ Draw lines  𝑦 =
𝑏

𝑎
𝑥 &   𝑦 = −

𝑎

𝑏
𝑥.

An example on the right with 𝑎, 𝑏 = (1, 2).



Example: Cyclic Toric Code

▪ Parameterize by relatively prime, positive integers 

𝑎, 𝑏, with 𝑏 > 𝑎 ≥ 1.

▪ Draw lines  𝑦 =
𝑏

𝑎
𝑥 &   𝑦 = −

𝑎

𝑏
𝑥.

Code Parameters 𝑁,𝐾, 𝐷

▪ 𝑁 = 𝑎2 + 𝑏2

▪ If 𝑁 is odd, 𝐾 = 1 and 𝐷 = 𝑎 + 𝑏

▪ If 𝑁 is even, 𝐾 = 2 and 𝐷 = max(𝑎, 𝑏)

This code achieves 𝑁 = 𝐾𝐷2/2 in two regimes, when 

𝑎 = 𝑏 − 1 or when 𝑎 = 1 and 𝑏 is odd.

**Proving the distance is non-trivial.

𝑎, 𝑏 = (3, 5)



General bounds on distance 𝐷

We need to use a construction called the decoding graph, obtained from the original graph 

𝐺 𝑉, 𝐸 .



General bounds on distance 𝐷

We need to use a construction called the decoding graph, obtained from the original graph 

𝐺 𝑉, 𝐸 .

Without loss of generality, we only need the case for degree 3 and 4 vertices.



Decoding graph properties

▪ Each edge represents a Pauli that anticommutes with exactly two faces.

▪ Any Pauli at a vertex can be represented by taking some subset of edges.

▪ Logical operators are cycles in the decoding graph!

▪ These are consequences of the CAL construction.



Decoding graph example

(a)

(b)

(c)

(d)

(e)

(f)
Stabilizers: a,b,c

Logical X: d,e

Logical Z: f



Efficient algorithm to get distance bounds

1. Given graph 𝐺, create its decoding graph 𝐺𝑑𝑒𝑐.

2. Find a minimum cycle basis (MCB) of 𝐺𝑑𝑒𝑐. A MCB is a basis of the cycle space 

𝑐1, 𝑐2, … , 𝑐𝑏 such that Σ𝑖|𝑐𝑖| is minimized. This can be done with Horton’s algorithm

or more efficient, more recent alternatives.

3. Convert each 𝑐𝑖 to a Pauli 𝑃𝑖. Find nontrivial 𝑐𝑖, those for which 𝑃𝑖 anticommutes with 

some other 𝑃𝑗.

4. Let 𝑊 be the length of the shortest nontrivial 𝑐𝑖.

Theorem: If the graph is checkerboardable, 𝐷 = 𝑊. If the graph is not checkerboardable, 

𝑊/2 ≤ 𝐷 ≤ 𝑊.



Questions

For questions, you can email me at rsarkar@stanford.edu

Questions?
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