Quantum Stabilizer Codes From Graph
Embeddings on Manifolds

RAHUL SARKAR

INSTITUTE FOR COMPUTATIONAL AND MATHEMATICAL ENGINEERING
MAY 6, 2020

Joint work with Ted Yoder (IBM T.J. Watson Research Center)

Stanford University



Basics of guantum error correction

Operations on qubits can be noisy. For example suppose you have the quantum state [y) = |0),
and you apply the X = [(1) (1)] gate to it.

Desired output: X|y) = |1) when there is no error in the gate application and measurement
process.

Typical situation due to quantum errors: X|) = a|0) + B|1), where |a|? + |B|? = 1.
How much error you have in the final output from a quantum circuit depends on the individual
gate errors, and depth of the circuit.
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Typical situation due to quantum errors: X|) = a|0) + B|1), where |a|? + |B|? = 1.
How much error you have in the final output from a quantum circuit depends on the individual
gate errors, and depth of the circuit.

» Encode K logical qubits in a subspace of N > K physical qubits.
= Such thatany (D — 1) errors can be detected.
= In principle, any [(D — 1)/2] errors can be corrected, but it may not be efficient.

= D is called the distance of the quantum code.
Stanford University



Basics of quantum error correction: Stabilizer Codes

Describe a code using a stabilizer group S < Py = {1, X,Y, Z}®V.
" Eg.8=(ZZZZ,XXXX), with C(S) = (5, XXII,IXXI],ZZIl,1ZZ]I).
= |C(S)| =2V*2K, D = min{|p|:p € C(S) — S}.

= D is called the distance of the stabilizer code.
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Basics of quantum error correction: Stabilizer Codes

Describe a code using a stabilizer group S < Py = {1, X,Y, Z}®V.
" Eg.8=(ZZZZ,XXXX), with C(S) = (5, XXII,IXXI],ZZIl,1ZZ]I).
= |C(S)| =2V*2K, D = min{|p|:p € C(S) — S}.

= D is called the distance of the stabilizer code.

Relations between §, C(8) and Py:
= P, isthe N qubit Pauli group. |Py| = 4V*1 . If you ignore phases, |Py| = 4" .
= S isthe stabilizer group. It is a subgroup of P, where all elements commute.

= C(8) is the centralizer group of . It is a subgroup of P, and consist of all elements that
commute with each element in §. Thus § is also a subgroup of C(S).

= K =N —dim(s).
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Relationships summarized via a diagram

* D is the minimum weight

.. : of non-trivial logical
trivial logical

operators.
operators S
= E.g. of weight calculation.
non-trivial logical operators  ¢($) - |XYXY| =4
- |XZZI| =3
- |HIX]| =1
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Graph Embeddings on Manifolds (2- Manifolds, closed)

A graph embedding of a graph G(V, E) in a manifold M is a “drawing” of the graph on M
such that it has some nice properties:

= Faces are homeomorphic to open discs.
= Edges don’t intersect except at vertices.
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Graph Embeddings on Manifolds (2- Manifolds, closed)

A graph embedding of a graph G(V, E) in a manifold M is a “drawing” of the graph on M
such that it has some nice properties:

= Faces are homeomorphic to open discs.
= Edges don’t intersect except at vertices.

Question: What is the graph on the right?
The graph is Ks.

Manifolds for us will be 2-manifolds (surfaces), which are closed (meaning does not have a
boundary and are compact). Can be orientable or non-orientable.

= Sphere, Torus are orientable manifolds.
= Real projective plane is a non-orientable manifold (these can be difficult to imagine if
you have not encountered them before).
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Examples of graph embeddings

o~

Mobius band A different way to

(just for illustration, represent a Torus
not a closed manifold)

\ J

Source: Wolfram
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Outline of the construction given a closed 2-cell graph embedding

Stabilizer codes from graph embedding:
= Write a cyclically anticommuting list of Paulis
around each vertex.

= Number of qubits to place at a vertex v Is

deg(z")_z if deg(v) = 3 odd or even respectively.

= The tensor product of Paulis within a face is a
stabilizer.

deg(v)—1

or

Cyclically anticommuting lists (CAL):
An ordered list of Paulis {py, p1, ..., p;—1} is cyclically
anticommuting if

1) {pi, Pi+1 (moan} =0
2) |pipj] = 0 whenj = i + 1 (mod I)
Fa X Y Zland {X 7 X 7 are CALS

Stanford University



Reduction to graphs with degree between 3 and 4

Clearly, forl = 3,4
X v X.Z
/ Z | X
Soforl =7
X4 Z1X X
Z\xx1z z1*
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Reduction to graphs with degree between 3 and 4

Clearly, forl = 3,4
X v X.Z
/ Z | X
Soforl =8
XI|Z Z1X X1 Z
ZIX X1 Z Z1X
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Number of encoded qubits

We now have a set of Paulis defined by each face of the graph embedding.

= |t turns out that because of the CAL property, this set of Paulis commute with each other.
= Hence the group generated by them is a stabilizer group.
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Number of encoded qubits

We now have a set of Paulis defined by each face of the graph embedding.

= |t turns out that because of the CAL property, this set of Paulis commute with each other.
= Hence the group generated by them is a stabilizer group.

How many qubits does this code encode?

Theorem: A surface code on a genus g manifold with M odd degree vertices encodes
Klogical qubits given by

K- 2g , orientable 0 . checkerboardable
| g , non-orientable (M —2)/2 , not checkerboardable

Here g is the orientable / non-orientable genus of the manifold M.

A graph is checkerboardable if its faces can be two-colored, with adjacent faces colored
differently.
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Checkerboarding examples

K= 2g , orientable 0 , checkerboardable
| g . non-orientable (M —2)/2 | not checkerboardable

NOT Checkerboardable, K = 1 Checkerboardable, K = 2
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Example: Cyclic Toric Code

= Parameterize by relatively prime, positive integers a, b, with b > a > 1.

= Draw lines y = (Z)x & y= (—%)x.

An example on the right with (a, b) = (1, 2).
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Example: Cyclic Toric Code

= Parameterize by relatively prime, positive integers
ab,withb >a > 1. (a,b) = (3,5)

= Draw lines y = (g)x & y= (——)x.

Code Parameters [N, K, D]

= N =a?+ b?

» IfNisodd, K =1andD =a+b

= IfNiseven, K =2 and D = max(a,b)

This code achieves N = KD?/2 in two regimes, when
a=b—1orwhena = 1andb is odd.

**Proving the distance is non-trivial.
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General bounds on distance D

We need to use a construction called the decoding graph, obtained from the original graph
G(V,E).

degree 3 degree 4 degree 5 degree 6

T

Definition 4.2. The decoding graph Gaec = (Vaec, Fdec) of a closed 2-cell embedded graph G = (V, E, F)
1s constructed so that V.. = F', while edges F ;.. are associated to vertices V in a many-to-one fashion. For
each vertex v € V', draw an edge between vertices v],v5 € Vi (associated to faces fi, fo € F) if there is a

Pauli supported on qubits at v that anticommutes with Sy, and Sy, but commutes with all other stabilizers
Sy.
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General bounds on distance D

We need to use a construction called the decoding graph, obtained from the original graph
G(V,E).

degree 3 degree 4

Definition 4.2. The decoding graph Gaee = (Viec, Fdec) of a closed 2-cell embedded graph G = (V, E, F)
1s constructed so that V.. = F, while edges F4.. are associated to vertices V' in a many-to-one fashion. For
each vertex v € V', draw an edge between vertices v}, v} € Vie. (associated to faces fi, fo € F) if there is a
Pauli supported on qubits at v that anticommutes with Sy, and Sy, but commutes with all other stabilizers

S

Without loss of generality, we only need the case for degree 3 and 4 vertices.
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Decoding graph properties

Each edge represents a Pauli that anticommutes with exactly two faces.

Any Pauli at a vertex can be represented by taking some subset of edges.

Logical operators are cycles in the decoding graph!

These are consequences of the CAL construction.
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Decoding graph example

(f)
Stabilizers: a,b,c C (d /.\

Logical X: d,e

Logical Z: f C
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Efficient algorithm to get distance bounds

1. Given graph G, create its decoding graph G4...

2. Find a minimum cycle basis (MCB) of G4... A MCB is a basis of the cycle space
{c1,Cy, ..., cp} such that ;| c;| is minimized. This can be done with Horton’s algorithm
or more efficient, more recent alternatives.

3. Convert each c; to a Pauli P;. Find nontrivial c;, those for which P; anticommutes with
some other P;.

4. Let W be the length of the shortest nontrivial c;.

Theorem: If the graph is checkerboardable, D = W. If the graph is not checkerboardable,
W/2<D<W.
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Questions?

For questions, you can email me at rsarkar@stanford.edu
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