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Patent idea summary

• We present a technique for automatic generation of Ising Hamiltonians supporting
optimization problems with the following characteristics:

▪ Polynomial objective function.

▪ Equality and inequality polynomial constraints.

▪ Integer variables which can take values in contiguous and non-contiguous finite sets.

• In order to solve this class of problems we also introduce a combination of techniques to
reduce the number of variables in the final Ising Hamiltonian. This is effectively a qubit
reduction procedure.

▪ Casting the problemas a quadratic pseudo-boolean optimization problem.

▪ Use of roof duality and extended roof duality techniques to automatically determine the optimal values
of a subset of the variables – thus reducing the number of variables in the optimization problem.

▪ This results in an automated, problem instance dependent qubit reduction procedure.

▪ This can be useful in the near term for fitting optimization problems on near term quantumcomputers.
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Motivation: constraints and special kinds of integer variables
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• Many real world integer programming problems involve equality and inequality 
constraints.

Example

- Traveling salesman problem: It contains both equality and inequality constraints when posed as a 
discrete optimization problem.

- Job shop scheduling problem, knapsack problem, subset sum problem are other examples where the 
optimization problem involves equality / inequality constraints, and the variables are integers.

• In some problems, integer variables can take values in non-contiguous set of integers.

Example

- Semicontinuous integer variables: These are variables that can take either the value of zero, or integer 
values between some upper and lower bounds. Such variables are typically used to model situations, 
where a certain variable will either not be used, or when used must be in a specific range.

- A typical situation: Suppose an airline company wants to decide whether to fly a plane on a route or 
not. They may decide that they will only fly the plane if the number of passengers is at least 10. If the 
maximum capacity of the plane is 100, then the revenue collected by the airline is either zero (if the 
plane does not fly), or ticket price * N , where N is an integer between 10-100.
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Motivation: pseudo-boolean optimization
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Computer Vision applications

• Many problems in computer vision involve optimization of binary Markov random fields 
(MRFs).

• MRFs (also known as pseudo-boolean functions in the discrete optimization literature) are used 
to solve computer vision problems of the following kinds:

▪ Image segmentation, Texture recognition, Super resolution / view synthesis

• In each case, one needs to minimize the MRF.

▪ Historically a restricted class of MRFs were considered, for e.g. pairwise interactions only, which lead to 
quadratic pseudo-boolean optimization problems (with some exception where triple interactions were 
considered).

▪ This restriction was imposed because of the difficulty of minimizing higher order pseudo-boolean functions 
(even the quadratic case is hard in general). Quadratic reductions of higher order problems were also in 
general avoided, because the reductions often led to non-submodular optimization.

▪ But natural scenes are too rich to be well captured by nearest neighbor interactions.

▪ Ability to optimize such higher order MRFs thus has potential applications in computer vision.
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Problem statement

We describe a technique to formulate efficient Ising Hamiltonians for the following class of integer
optimization problems, followed by an automated qubit reduction procedure, which can then be
solved using quantum optimization algorithms.
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minimize       𝑓 𝑥1, … , 𝑥𝑝

subject to      𝑥𝑖 ∈ 𝐼𝑖 ⊂ ℤ,               𝑖 = 1, … , 𝑝

𝑐𝑗 𝑥1, … , 𝑥𝑝 = 0,          𝑗 = 1,… ,𝑚

𝑑𝑘 𝑥1, … , 𝑥𝑝 ≤ 0,        𝑘 = 1,… , 𝑛.

• The functions 𝑓, 𝑐𝑗 , 𝑑𝑘 are polynomials over ℤ in the integer valued variables 𝑥1,… , 𝑥𝑝.

• The sets 𝐼𝑖 are finite subsets of the integers. These subsets may not be contiguous sets of 

integers.

▪ For example 𝑥1 ∈ 0,1,2 ∪ 5,6,7,8 .
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Outline of the method (1/2)
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The method comprises of the following steps, which we briefly describe below. They are

described in more detail later.

Step 1: Represent each integer variable as linear sums of binary variables. Depending on

the representation, one may end up introducing additional equality constraints.

Step 2: Introduce additional slack variables to change all inequality constraints to equality

constraints. The slack variables are integer variables, that are represented using the same

techniques used in Step1. Depending on the method used, the representation of the integer

variables may introduce additional equality constraints.
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Outline of the method (2/2)
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Step 3: Create an unconstrained pseudo-boolean optimization problem, by squaring and adding all
the equality constraints, with a large weight to the objective function.

Step 4: Quadratize the pseudo-boolean optimization problem, using the best known current
techniques that minimize the number of additional variables used. This gives an equivalent
quadratic pseudo-boolean function (QPBF) to optimize. This is a qubit reduction step.

Step 5: Reduce the number of variables in the QPBF using roof duality and extended roof duality
techniques (which have polynomial runtime). This determines the values of a subset of the boolean
variables. We thus obtain a new QPBF with fewer number of boolean variables. This is a qubit
reduction step.

The output of Step 5 is the final QPBF that is solved using a quantum optimization algorithm.

**Note: Step 5 can be applied to any quadratic Ising Hamiltonian (that the user may wish to
solve using quantum optimization algorithms, like QAOA[2], and VQE[1]).
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Step 1: Representing integer variables
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• Integer variables can be of two types:

▪ Contiguous set valued. 
For e.g. 𝑥 ∈ 5,6,7,8 .

▪ Non-contiguous set valued. 
For e.g. 𝑦 ∈ 0,1,2 ∪ 5,6,7,8 .

Sets are assumed to be finite.

• Methods to encode integer variables

Contiguous set valued Non-contiguous set valued

Log encoding

One hot encoding

Discrete slack method

Greedy decomposition method

One hot encoding

Efficient encoding scheme

Existing methods in literature.

Methods introduced in patent application draft 95762203 (Matsuo, Imamichi, Worner, Pistoia, Sarkar), 2019.
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Equivalent problem after Step 1

After Step 1, all integer variables have been replaced with binary variables, but potentially

new equality constraints have been added.
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minimize       𝑓 𝑥1, … , 𝑥𝑝′

subject to      𝑥𝑖 ∈ {0,1},                    𝑖 = 1,… , 𝑝′

𝑐𝑗 𝑥1, … , 𝑥𝑝′ = 0,          𝑗 = 1,… ,𝑚′

𝑑𝑘 𝑥1, … , 𝑥𝑝′ ≤ 0,        𝑘 = 1,… , 𝑛′.

• The functions 𝑓, 𝑐𝑗 , 𝑑𝑘 are polynomials in the binary variables 𝑥1, … , 𝑥𝑝′.
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• Since we can not directly write Ising Hamiltonians with inequality constraints, we need to transform 
inequality constraints into equality constraints. Assuming finite precision, we can always convert an 
inequality constraint to an equality constraint with an additional integer variable without loss of generality.

▪ 𝑓(𝑥) ≤ 𝑐 → 𝑓(𝑥) + 𝑠 = 𝑐

▪ 𝑓 𝑥 = σ𝑖𝑎𝑖 𝑥𝑖 +σ𝑖 𝑏𝑖 𝑦𝑖

▪ 𝑓 ≤ 𝑓(𝑥) ≤ 𝑓

▪ 𝑥𝑖:binary variable, 𝑦𝑖:integer variable, 𝑎𝑖, 𝑏𝑖:coefficients, c: constant

▪ s: contiguous set valued integer variable with range 0, 𝑐 − 𝑓

▪ Similarly: 𝑓 𝑥 ≥ 𝑐 → 𝑓 𝑥 − 𝑠 = 𝑐

▪ s: contiguous set valued integer variable with range 0, 𝑓 − 𝑐

• By applying above methods to an additional integer variable 𝑠 (as in the above expressions), we can 
transform an inequality constraint into an equality constraint with less additional binary variables 
compared to applying existing methods to the additional integer variable 𝑠.
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Step 2: Convert inequality constraints to equality constraints

*  The technique in this slide is based on the patent P201809806 [4]. 
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Equivalent problem after Step 2

After Step 2, all inequality constraints have been replaced with equality constraints, and

new binary variables have been added to the problem.
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minimize       𝑓 𝑥1, … , 𝑥𝑝′′

subject to      𝑥𝑖 ∈ {0,1},                    𝑖 = 1,… , 𝑝′′

𝑐𝑗 𝑥1, … , 𝑥𝑝′′ = 0,          𝑗 = 1,… ,𝑚′′.

• The functions 𝑓, 𝑐𝑗 are polynomials in the binary variables 𝑥1, … , 𝑥𝑝′′. Such polynomials 

are also known as pseudo-boolean functions (PBF), and we will use this terminology in 

the next slides.
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Step 3: Create an unconstrained optimization problem

• The next step is to convert the optimization problem into an equivalent unconstrained

optimization problem.

▪ Square the equality constraints.

▪ Add the squared equality constraints to the objective function with a large weight parameter 𝜆.

▪ Such a parameter 𝜆 always exists.

▪ No extra variables are added to the problem.

The new objective function is given by
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Equivalent problem after Step 3

After Step 3, we have an unconstrained pseudo-boolean optimization problem.
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minimize       𝑔 𝑥1,… , 𝑥𝑝′′

subject to      𝑥𝑖 ∈ {0,1},                    𝑖 = 1,… , 𝑝′′.

• The function 𝑔 is a pseudo-boolean function.
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Step 4: Quadratization of the pseudo-boolean function

• The next step involves quadratization of the pseudo-boolean function. At a high level it

achieves the following (explained in detail in the next slides):

▪ Creates an equivalent quadratic pseudo-boolean function (QPBF).

▪ Introduces additional binary variables into the problem.

• Quadratization

Given the pseudo-boolean function 𝑔 𝑥1, … , 𝑥𝑝′′ , its quadratization is a new quadratic pseudo-boolean

functionℎ 𝑥1,… , 𝑥𝑝′′ , 𝑤1, … , 𝑤𝑠 which has the following property:

𝑔 𝑥1,… , 𝑥𝑝′′ = min
𝑤1 ,…,𝑤𝑠

ℎ 𝑥1, … , 𝑥𝑝′′ , 𝑤1, … , 𝑤𝑠 .

Thus minimization of 𝑔 𝑥1,… , 𝑥𝑝′′ over 𝑥1, … , 𝑥𝑝′′ , is the same as the minimization of

ℎ 𝑥1,… , 𝑥𝑝′′ , 𝑤1, … , 𝑤𝑠 over all the variables 𝑥1, … , 𝑥𝑝′′ , 𝑤1 , … , 𝑤𝑠.
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Step 4: Quadratization procedure

• The quadratization strategy that we follow is term-by-term quadratization.

▪ Each monomial term of the pseudo-boolean function is quadratized separately.

▪ Use a different set of new binary variables to quadratize each monomial term.

▪ Add all the monomial quadratizations to get the quadratizationof the original pseudo-boolean function.

▪ The total number of new binary variables introduced into the problem is the sum of the number of binary

variables introduced to quadratize each monomial term.

• Example

▪ Suppose we want to quadratize the function : 𝑔 𝑥1, 𝑥2, 𝑥3, 𝑥4 = 𝑥1 + 2𝑥2𝑥3 − 𝑥1𝑥2𝑥3 − 3𝑥1𝑥2𝑥3𝑥4.

▪ The first two terms 𝑥1 and 2𝑥2𝑥3 are already quadratized.

▪ Let 𝑢(𝑥1, 𝑥2, 𝑥3,𝑤1) be a quadratization of −𝑥1𝑥2𝑥3 (only 1 extra binary variable is needed).

▪ Let 𝑣(𝑥1, 𝑥2, 𝑥3, 𝑥4,𝑤2) be a quadratization of −𝑥1𝑥2𝑥3𝑥4 (only 1 extra binary variable is needed).

▪ Then the quadratization of 𝑔 𝑥1, 𝑥2, 𝑥3, 𝑥4 is given by the quadratic pseudo-boolean function

ℎ 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑤1, 𝑤2 = 𝑥1 + 2𝑥2𝑥3+ 𝑢(𝑥1, 𝑥2, 𝑥3, 𝑤1) + 3𝑣(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑤2).
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Step 4: Quadratization of negative monomials

• We use the currently best known quadratization schemes to quadratize each monomial.

• Negative monomials

Suppose we have the negative monomial −𝑥1… 𝑥𝑛 which we want to quadratize. Let us define the set

𝑆 = {𝑥1, … , 𝑥𝑛}. Then a quadratization of the monomial is given in [6] by

−𝑥1… 𝑥𝑛 = min
𝑤∈{0,1}

𝑆 − 1 − 

𝑥𝑖∈𝑆

𝑥𝑖 𝑤 .

• This quadratization scheme introduces 1 extra binary variable for each negative monomial

term.
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Step 4: Quadratization of positive monomials

• Positive monomials

Suppose we have the positive monomial 𝑥1… 𝑥𝑛 which we want to quadratize. First define the functions

Then the quadratization of the monomial is given in [7] by

where 𝑘 = 𝑓𝑙𝑜𝑜𝑟
𝑛−1

2
, and 𝑐𝑖,𝑛 = ቊ

1 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑, 𝑎𝑛𝑑 𝑖 = 𝑘
2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

• This quadratization scheme introduces new binary variables. The number of these extra

variables is approximately ½ the number of original variables in the positive monomial.
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Equivalent problem after Step 4

After Step 4, we have an unconstrained pseudo-boolean optimization problem.
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minimize       ℎ 𝑥1, … , 𝑥𝑝′′ ,𝑤1, … , 𝑤𝑠

subject to      𝑥𝑖 ∈ {0,1},                    𝑖 = 1,… , 𝑝′′
𝑤𝑗 ∈ {0,1},                    𝑗 = 1,… , 𝑠.

• The function ℎ is a quadratic pseudo-boolean function (QPBF).
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Step 5: Determination of optimal values for subset of variables

• The last step involves running a polynomial time algorithm to find the optimal values of a

subset of the variables.

▪ The tools used are techniques known as roof duality and extended roof duality.

▪ The process does not add any new binary variables to the problem.

• The following steps are carried out under Step5:

▪ Step 5a: Finding optimal values of a subset of the variables using roof duality.

- Run the quadratic pseudo-boolean optimization (QPBO) algorithm.

- This involves solving a flow optimization problemon a graph.

▪ Step 5b: Find optimal values of some more variables that could not be determined by Step 5a / reduce

the number of variables by identifying which variables take the same value in an optimal solution.

- Probing.
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Step 5a: Using roof duality to determine optimal values of a 
subset of variables

• Roof duality technique[8]

▪ The quadratic pseudo-boolean optimization problem can be put in one-to-one correspondence with a

capacitative network, where the capacities of the edges are related to the coefficients of the QPBF.

▪ A max flow problemis solved using this capacitative network (see [8] for details)

▪ The solution of this max flow problem gives rise to a cut, or partition of the nodes of the capacitative

network.

▪ This cut is used to infer which variables have been fixed to their optimal values using the roof duality

technique.

• Roof duality gives the first subset of variables which have been fixed to their optimal

values.

• These variables can be eliminated from the problem.
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Equivalent problem after Step 5

After Step 5, we have an unconstrained pseudo-boolean optimization problem, with less

number of binary variables than after Step 4.
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minimize       ෨ℎ 𝑦1, … , 𝑦𝑞

subject to      𝑦𝑖 ∈ {0,1},                    𝑖 = 1,… ,𝑞.

• The function ෨ℎ is also a quadratic pseudo-boolean function (QPBF).
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Step 5b: Using extended roof duality to eliminate more 
variables from the problem

• Extended roof duality technique[9]

▪ In this work we only use the technique of probing, which is part of the extended roof duality

techniques.

▪ A variable that was unlabeled in Step 5a is selected.

▪ Two instances of the optimization problem is created, one by fixing this variable to 0 and another by

fixing this variable to 1.

▪ In both cases roof duality (or Step 5a) is run.

▪ The variables that get assigned their optimal values in both cases (i.e. intersection of the variables) can

be reliably eliminated from the problem.

▪ This process is repeated till no more variables are eliminated (see [9] for details).

• After Step 5b, we have the final optimization problem.
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An example of qubit reduction

Suppose that after Step 4, we have the following unconstrained quadratic pseudo-boolean optimization problem, or

suppose that the user obtained this problem (by some other means) which he/she wants to solve using some quantum

optimization algorithm.
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minimize       𝑎 𝑥1 + 𝑏 𝑥2𝑥3 + 𝑐 𝑥1𝑥2 + 𝑑 𝑥3𝑥4

subject to      𝑥𝑖 ∈ {0,1},              𝑖 = 1,2,3,4
𝑎, 𝑏, 𝑐, 𝑑 are integers

We show how roof duality (Step 5a) will work for example, and reduce qubit requirements.

• We construct the capacitative network consisting of the nodes 𝑥1, 𝑥2 , 𝑥3 , 𝑥4 , 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4, 𝑥0 , 𝑥0, where 𝑥0 , 𝑥0 are the source and

sink nodes (see [8] for details).

• Suppose after solving the max-flow problem on this capacitative network, we extract the corresponding min-cut.

• Suppose the source side cut is 𝑥0 , 𝑥1 , 𝑥2 , 𝑥3 , 𝑥3 , and the sink side cut is {𝑥0 , 𝑥1 , 𝑥2 , 𝑥4 , 𝑥4}.
• This gives the following partial assignment:

➢ 𝑥1 = 0, 𝑥2 = 1 . They are assigned as complements appear in different cuts.

➢ 𝑥3 , 𝑥4 are unassigned as variable and its complement appear in the same cut.

• The Ising Hamiltonian now simplifies to

• The number of qubits reduced is thus 2.

• Exact number of variables that can be reduced depends on the problem instance.

minimize       𝑏 𝑥3 + 𝑑 𝑥3𝑥4

subject to      𝑥𝑖 ∈ {0,1},              𝑖 = 3,4
𝑏, 𝑑 are integers
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Comparisons with prior art

• We have referenced several existing patents applications (P201901382, P201809806, 

patent application draft 95762203), all of which combined address the following points:

➢ How to handle binary and integer variables.

➢ How to transform problems with linear equality and inequality constraints, to Ising Hamiltonians.

➢ Deals with only quadratic objective functions.

• None of these existing techniques address more general polynomial constraints or 

polynomial objective functions of integer variables.

• Novel features of this patent application

➢ How to incorporate polynomial constraints and polynomial objective function of the integer variables.

➢ Qubit reduction procedure to get the final Ising Hamiltonian for quantum optimization.
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Individual contributions

Rahul Sarkar and Marco Pistoia jointly contributed to the following:

▪ Procedure to formulate optimization problems with polynomial constraints and polynomial objective 

function as Ising Hamiltonians.

▪ The idea that quadratization techniques can be applied to reduce pseudo-boolean functions to QPBFs.

▪ Idea to reduce the number of variables in the optimization problem using roof duality and extended roof 

duality techniques, before solving the problem using quantum optimization algorithms, which lowers 

the qubit requirement costs.
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