Snell Tomography Using Quantum Annealing

(SEP Report 172, Pages 377 - 396)

Rahul Sarkar¹ Stewart A. Levin²

¹Institute for Computational and Mathematical Engineering (ICME) Stanford University

> ²Department of Geophysics Stanford University

SEP Spring Meeting, May 2018

Agenda

Quantum Computing

Snell Tomography Experiment

Algorithms and Results

Conclusions

Quantum Computing - Next Bleeding Edge

Problems that are out of reach of conventional computing technology.

Hard problems:

- ► Large combinatoric optimization problems
- Quantum chemistry & material design
- Quantum cryptography
- ► Financial services
- Quantum machine learning

Kandala et al., Nature 549 (2017)

Veni Vidi Vici

- ▶ We had an opportunity to run on a quantum computer.
- ▶ We came up with a novel combinatoric tomographic challenge.
- ▶ We ran on a D-Wave 2000Q quantum annealer.

4 / 36

D-WAVE 2000Q Quantum Annealer

- Specialized quantum device
- Finds global minimum for a class of non-convex functions

Adiabatic quantum computing: If you change slowly the initial Hamiltonian to the final Hamiltonian, the system will remain in its lowest energy state.

www.dwavesys.com/quantum-computing

Quadratic Unconstrained Binary Optimization (QUBO)

A quantum annealer (as of today) is best suited to solve the following optimization problem :

Model QUBO Problem

minimize
$$x^T Q x$$

subject to $x \in \{0, 1\}^n$
 $Ax \le b$
 $x^T S x = d$

1D Farth Model

- Horizontal layers of unknown thicknesses but known material properties
- ► The receivers are placed on the top of the layers
- ▶ There is one source at the bottom of the lavers
- ▶ We measure both **travel time** and **offset** for every source-receiver pair

The Simplest Possible Case

1 Ray, 2 Materials

- ► Sand 3.0 km/s
- ► Shale 2.5 km/s
- Experiment vertical ray
 - ► Source-receiver distance = 4.5 km
 - ► Source-receiver traveltime = 1.7 s

SAND	1.5 km	-	SHALE		-	SAND	0.75 km
				3.0 km		SHALE	2.0 km
						SAND	0.375 km
SHALE	3.0 km	SAND	1.5 km		SHALE	1.0 km	
						SAND	0.375 km

Many answers; One sand-shale ratio (1:2)

Question: Can we determine the fraction of each material in the macrolayer between the source and receivers?

Fig: Experiment Geometry

Parameterization

Horizontal constant thickness layers : We will assume that we have a finite number N of horizontal sublayers with same thickness δ . So total thickness is $N\delta$.

Finite material set: There are only a finite number of materials M, with **fixed known velocities** given by v_1, \ldots, v_M .

Finite number of rays: We have a finite number of rays with corresponding travel time measurements are given by T_1, \ldots, T_K , and the offsets are given by L_1, \ldots, L_K .

10 / 36

Introduce Binary Variables

Introduce binary variables:

$$x_{ij} = \begin{cases} 1 & \text{if sublayer } i \text{ is material } j \\ 0 & \text{otherwise,} \end{cases}$$

for all i = 1, ..., N and j = 1, ..., M.

Introduce constraints:

To ensure that each sublayer gets assigned to one and only one material we will additionally need the family of constraints

$$\sum_{i=1}^M x_{ij} = 1 \;,\;\; \text{for all } i = 1, \ldots, N.$$

Setup Objective Function

Least Squares Objective Function for k^{th} Ray

$$J_{k} = \frac{1}{v_{\text{max}}^{2}} \left(L_{k} - \sum_{i=1}^{N} \sum_{j=1}^{M} \alpha_{kj} x_{ij} \right)^{2} + \left(T_{k} - \sum_{i=1}^{N} \sum_{j=1}^{M} \beta_{kj} x_{ij} \right)^{2}$$

Assuming that the k^{th} ray has ray-parameter p_k , we have defined:

- $ightharpoonup lpha_{kj}$: Horizontal distance traveled by k^{th} ray with ray-parameter p_k in a layer with velocity v_j .
- $ightharpoonup eta_{kj}$: Time spent by k^{th} ray with ray-parameter p_k in a layer with velocity v_j .

Rahul Sarkar

An Optimization Problem With a Lot of Binary Variables

Leads to a non-convex "mixed integer program":

Sum of Squares Optimization Problem

minimize
$$\sum_{k=1}^K J_k$$
 subject to $x_{ij} \in \{0,1\}$, $\forall i \in \{1,\ldots,N\}$, $\forall j \in \{1,\ldots,M\}$, $\sum_{i=1}^M x_{ij} = 1$, $\forall i \in \{1,\ldots,N\}$.

- \triangleright Continuous variables : The ray-parameters p_1, \ldots, p_K
- ▶ Binary variables : Layer assignments $x_{11}, ..., x_{NM}$
- ► These are typically hard problems

Alternating Minimization

Continuous Optimization Problem:

- ► Hold x_{ij} 's fixed, and minimize over p_k 's
- ► Trivial ray tracing

Discrete Optimization Problem:

- ▶ Hold p_k 's fixed, and minimize over x_{ij} 's
- ► Combinatorial challenge

Classical Computer Trials

- ► Take total vertical thickness of 1 km
- Number of materials M=3.
- Materials
 - ► Sandstone 3.0 km / s
 - ► Shale 2.5 km / s
 - ► Salt 4.6 km / s
- Number of sublayers was varied from $N = 2, \dots, 32$.
- Number of rays was varied from K = 2, 4, 8.
- \triangleright For each combination of N and K, 50 independent problem instances were created. For each instance, uniformly spaced p_{ν} 's were used to generate the "true" data.
- ▶ Each instance was solved 50 times and statistics were gathered.

Classical Results: Reduction In Objective Function

Pretty good reduction in objective function.

Rahul Sarkar

Classical Results: Number of Iterations to Converge

The alternating algorithm converges quite fast in a small number of iterations.

SEP Spring Meeting 2018

Classical Results: Wall Clock Time to Convergence

Time to convergence increases with number of layers.

Classical Results: Mean Layer Assignment Error

With the right scaling, errors are constant over number of layers.

19 / 36

Classical Results: Mean Ray-Parameter Error

With the right scaling, errors are constant over number of layers.

20 / 36

SEP Spring Meeting 2018

Preliminary Quantum Solve Trials

- Same experimental setup as in the classical case.
- We varied N = 2, ..., 16, and K = 2, 4, 8.
- ▶ For each combination of N and K. 10 independent problem instances were created. For each instance, uniformly spaced p_k 's were used to generate the "true" data.
- ▶ We solved each instance of the QUBO problem on the D-WAVE 2000Q quantum annealer 1000 times and gathered statistics on the total time to solution.

Quantum Annealing Results: Time to Solution

The average time per anneal cycle is about same as the time taken to solve the optimization problem on a classical computer.

Quantum Annealing Results: Stochasticity of Annealing

The quantum annealing process has inbuilt stochasticity. Solutions are recovered close to the lowest energy "ground state" of the objective function or Hamiltonian.

Conclusions

- ▶ Solution times were comparable between laptop runs and annealing runs for the small problems.
- For number of binary variables beyond 100, solving the problem through enumeration is nearly impossible for a classical computer.
- ► This method can also be useful for a kind of "uncertainty quantification", as you can potentially generate an ensemble of solutions that satisfy a given error tolerance.

24 / 36

SEP Spring Meeting 2018

Future Work

- ➤ Sometime after the quantum runs shown in this talk, we obtained a full QUBO formulation. Details in report.
- More accurate benchmarking of the annealing metrics on D-Wave 2000Q.
- ► Analyze how annealing affects the performance of the alternating optimization algorithm.

Rahul Sarkar Snell Tomography

Acknowledgments

- ▶ We thank Peter L. McMahon for many discussions on quantum computing.
- ▶ We thank QC Ware, Corp and D-Wave Systems Inc for giving us permissions to publish the preliminary quantum computing results.

26 / 36

Q & A

Thank You

Questions?

SEP Spring Meeting 2018

Complexity Diagram

BQP = Bounded-error quantum polynomial time

Problem Structure

▶ The continuous problem is separable over each ray! So each J_k can be minimized independently.

$$J_k = \frac{1}{v_{\text{max}}^2} \left(L_k - \sum_{i=1}^N \sum_{j=1}^M \alpha_{kj} x_{ij} \right)^2 + \left(T_k - \sum_{i=1}^N \sum_{j=1}^M \beta_{kj} x_{ij} \right)^2$$
Objective Function:
$$\sum_{k=1}^K J_k$$

► The discrete problem is a *Quadratic Binary Optimization Problem*. Number of binary variables is **NM**.

Question: Can we reduce the number of binary variables ?

Rahul Sarkar Snell Tomography

Towards a Better Combinatorial Optimization Problem: Symmetry of Composition

Symmetry of Composition:

Given an assignment of layers, the objective function is unchanged under arbitrary permutation of layers (this holds because of the horizontal layer assumption). This is a kev observation.

Key idea: Just count number of times a material repeats. Let y_i denote number of times material i occurs.

- ▶ Bound constraint : $0 \le y_i \le N$, for all j = 1, ..., M.
- ▶ Sum constraint : $\sum_{i=1}^{M} y_i = N$.

Good but not enough! Only M integer variables, but each variable can take N+1integer values.

Towards a Better Combinatorial Optimization Problem: Binary Encoding Trick

Binary Encoding Trick:

Since y_j 's are positive uniformly spaces integers, work with the binary representation of each variable.

$$y_j = \sum_{l=1}^r b_{jl} 2^{l-1} , \ \forall \ j = 1, \dots, M ,$$

where $r = \lfloor \log_2 N \rfloor + 1$, and $b_{il} \in \{0, 1\}$.

So now we have $Mr \approx M \log_2 N$ binary variables. This is a log **N** compression.

Rahul Sarkar Sn

Equivalent Combinatorial Optimization Problem

Equivalent Optimization Problem

$$\begin{array}{ll} \text{minimize} & \sum\limits_{k=1}^K \left[\frac{1}{v_{\mathsf{max}}^2} \left(L_k - \sum\limits_{j=1}^M \sum\limits_{l=1}^r \alpha_{kj} b_{jl} 2^{l-1} \right)^2 \right] + \\ & \sum\limits_{k=1}^K \left[\left(T_k - \sum\limits_{j=1}^M \sum\limits_{l=1}^r \beta_{kj} b_{jl} 2^{l-1} \right)^2 \right] \\ \text{subject to} & b_{jl} \in \{0,1\} \ , \ \forall \ j \in \{1,\dots,M\} \ , \ \forall \ l \in \{1,\dots,r\} \ , \\ & \sum\limits_{j=1}^M \sum\limits_{l=1}^r b_{jl} 2^{l-1} = \textit{N}. \end{array}$$

Still a non-convex mixed integer optimization problem.

Alternating Minimization Algorithm

Algorithm 1 Alternating minimization algorithm

```
procedure Alternating QUBO
    // Random assignment
    x_{jj} \leftarrow 0, for all i = 1, \ldots, N and j = 1, \ldots, M
    for i = 1 to N do
        j \leftarrow \text{Randomly choose from the set } \{1, \dots, M\}
   Compute y_i = \sum_{i=1}^{N} x_{ij}, for all j = 1, ..., M
    Compute b_{il} as binary representation of y_i, for all j = 1, \ldots, M and l = 1, \ldots, r
    // Alternating minimization
    while Not converged do
        p_k \leftarrow \arg \min J_k, for all k = 1, \ldots, K, and with all b_{il} fixed.
        b_{il} \leftarrow solution of QUBO with all p_k fixed.
    Compute y_i = \sum_{l=1}^r b_{jl} 2^{l-1}, for all j = 1, \ldots, M
    return p_k, y_j for all k = 1, \ldots, K and j = 1, \ldots, M
```

33 / 36

Discrete Search Over Ray-Parameters

Algorithm 2 Global ray parameter search

- 1: **procedure** DISCRETIZED GLOBAL SEARCH (k, P)
- 2: $\Delta p \leftarrow \frac{1}{P v_{\text{max}}}$
- 3: $S \leftarrow \{ n \Delta p : n = 0, \dots, P-1 \}$

4:
$$p_k \leftarrow \underset{p \in S}{\operatorname{arg min}} \quad \frac{1}{v_{\max}^2} \left(L_k - \sum_{j=1}^M \frac{\delta p v_j y_j}{\sqrt{1 - p^2 v_j^2}} \right)^2 + \left(T_k - \sum_{j=1}^M \frac{\delta y_j}{v_j \sqrt{1 - p^2 v_j^2}} \right)^2$$
5: **return** p_k

P controls level of discretization.

This might seem scary, but is not precisely because ray-parameter search is independent over each ray.

Rahul Sarkar

Continuous Search Over Ray-Parameters

Algorithm 3 Newton ray parameter search

```
1: procedure CONTINUOUS LOCAL SEARCH (k, \gamma \in [0, 1])

2: p_{\min} \leftarrow L_k/(v_{\max}\sqrt{Z^2 + L_k^2}), p_{\max} \leftarrow 1/v_{\max}

3: p_k \leftarrow \frac{p_{\min} + p_{\max}}{2}

4: while Not converged do

5: p_k \leftarrow p_k - \frac{((1-\gamma)(T(p_k) - T_k)^2 + \gamma(L(p_k) - L_k)^2/v_{\max}^2)'}{((1-\gamma)(T(p_k) - T_k)^2 + \gamma(L(p_k) - L_k)^2/v_{\max}^2)''}

6: p_k \leftarrow \max(p_{\min}, \min(p_{\max}, p_k))

7: return p_k
```

 $\gamma \in [0,1]$ controls how travel time and offset terms are weighed in the search process.

35 / 36

Rahul Sarkar Snell Tomography

Quantum Annealing Results: Logical Variables vs Qubits

SEP Spring Meeting 2018