Snell Tomography Using Quantum Annealing (SEP Report 172, Pages 377 - 396)

Rahul Sarkar ${ }^{1}$ Stewart A. Levin ${ }^{2}$

${ }^{1}$ Institute for Computational and Mathematical Engineering (ICME)
Stanford University
${ }^{2}$ Department of Geophysics
Stanford University
SEP Spring Meeting, May 2018

Agenda

Quantum Computing

Snell Tomography Experiment

Algorithms and Results

Conclusions

Quantum Computing - Next Bleeding Edge

Problems that are out of reach of conventional computing technology.

Hard problems:

- Large combinatoric optimization problems
- Quantum chemistry \& material design
- Quantum cryptography
- Financial services
- Quantum machine learning

Veni Vidi Vici

- We had an opportunity to run on a quantum computer.
- We came up with a novel combinatoric tomographic challenge.
- We ran on a D-Wave 2000Q quantum annealer.

D-WAVE 2000Q Quantum Annealer

- Specialized quantum device
- Finds global minimum for a class of non-convex functions

Adiabatic quantum computing: If you change slowly the initial Hamiltonian to the

www.dwavesys.com/quantum-computing final Hamiltonian, the system will remain in its lowest energy state.

Quadratic Unconstrained Binary Optimization (QUBO)

A quantum annealer (as of today) is best suited to solve the following optimization problem :

Model QUBO Problem

$$
\begin{array}{ll}
\operatorname{minimize} & x^{\top} Q x \\
\text { subject to } & x \in\{0,1\}^{n} \\
& A x \leq b \\
& x^{\top} S x=d
\end{array}
$$

1D Earth Model

- Horizontal layers of unknown thicknesses but known material properties
- The receivers are placed on the top of the layers
- There is one source at the bottom of the layers
- We measure both travel time and offset for every source-receiver pair

The Simplest Possible Case

1 Ray, 2 Materials

- Sand $-3.0 \mathrm{~km} / \mathrm{s}$
- Shale - $2.5 \mathrm{~km} / \mathrm{s}$
- Experiment vertical ray
- Source-receiver distance $=4.5 \mathrm{~km}$
- Source-receiver traveltime $=1.7 \mathrm{~s}$

Many answers; One sand-shale ratio (1:2)

Question: Can we determine the fraction of each material in the macrolayer between the source and receivers?

S
Fig: Experiment Geometry

Parameterization

Horizontal constant thickness layers: We will assume that we have a finite number N of horizontal sublayers with same thickness δ. So total thickness is $N \delta$.

Finite material set: There are only a finite number of materials M, with fixed known velocities given by v_{1}, \ldots, v_{M}.

Finite number of rays: We have a finite number of rays with corresponding travel time measurements are given by T_{1}, \ldots, T_{K}, and the offsets are given by L_{1}, \ldots, L_{K}.

Introduce Binary Variables

Introduce binary variables :

$$
x_{i j}= \begin{cases}1 & \text { if sublayer } i \text { is material } j \\ 0 & \text { otherwise }\end{cases}
$$

for all $i=1, \ldots, N$ and $j=1, \ldots, M$.

Introduce constraints :
To ensure that each sublayer gets assigned to one and only one material we will additionally need the family of constraints

$$
\sum_{j=1}^{M} x_{i j}=1, \text { for all } i=1, \ldots, N
$$

Setup Objective Function

Least Squares Objective Function for $k^{\text {th }}$ Ray

$$
J_{k}=\frac{1}{v_{\max }^{2}}\left(L_{k}-\sum_{i=1}^{N} \sum_{j=1}^{M} \alpha_{k j} x_{i j}\right)^{2}+\left(T_{k}-\sum_{i=1}^{N} \sum_{j=1}^{M} \beta_{k j} x_{i j}\right)^{2}
$$

Assuming that the $k^{t h}$ ray has ray-parameter p_{k}, we have defined:

- $\alpha_{k j}$: Horizontal distance traveled by $k^{t h}$ ray with ray-parameter p_{k} in a layer with velocity v_{j}.
- $\beta_{k j}$: Time spent by $k^{\text {th }}$ ray with ray-parameter p_{k} in a layer with velocity v_{j}.

An Optimization Problem With a Lot of Binary Variables

Leads to a non-convex "mixed integer program" :
Sum of Squares Optimization Problem

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{k=1}^{K} J_{k} \\
\text { subject to } & x_{i j} \in\{0,1\}, \forall i \in\{1, \ldots, N\}, \forall j \in\{1, \ldots, M\}, \\
& \sum_{j=1}^{M} x_{i j}=1, \forall i \in\{1, \ldots, N\} .
\end{array}
$$

- Continuous variables: The ray-parameters p_{1}, \ldots, p_{K}
- Binary variables: Layer assignments $x_{11}, \ldots, x_{N M}$
- These are typically hard problems

Alternating Minimization

Continuous Optimization Problem:

- Hold $x_{i j}$'s fixed, and minimize over p_{k} 's
- Trivial ray tracing

Discrete Optimization Problem:

- Hold p_{k} 's fixed, and minimize over $x_{i j}$'s
- Combinatorial challenge

Classical Computer Trials

- Take total vertical thickness of 1 km .
- Number of materials $M=3$.
- Materials:
- Sandstone $-3.0 \mathrm{~km} / \mathrm{s}$
- Shale $-2.5 \mathrm{~km} / \mathrm{s}$
- Salt - $4.6 \mathrm{~km} / \mathrm{s}$
- Number of sublayers was varied from $N=2, \ldots, 32$.
- Number of rays was varied from $K=2,4,8$.
- For each combination of N and $K, 50$ independent problem instances were created. For each instance, uniformly spaced p_{k} 's were used to generate the "true" data.
- Each instance was solved 50 times and statistics were gathered.

Classical Results: Reduction In Objective Function

Pretty good reduction in objective function.

Classical Results: Number of Iterations to Converge

The alternating algorithm converges quite fast in a small number of iterations.

Classical Results: Wall Clock Time to Convergence

Time to convergence increases with number of layers.

Classical Results: Mean Layer Assignment Error

With the right scaling, errors are constant over number of layers.

Classical Results: Mean Ray-Parameter Error

With the right scaling, errors are constant over number of layers.

Preliminary Quantum Solve Trials

- Same experimental setup as in the classical case.
- We varied $N=2, \ldots, 16$, and $K=2,4,8$.
- For each combination of N and $K, 10$ independent problem instances were created. For each instance, uniformly spaced p_{k} 's were used to generate the "true" data.
- We solved each instance of the QUBO problem on the D-WAVE 2000Q quantum annealer 1000 times and gathered statistics on the total time to solution.

Quantum Annealing Results: Time to Solution

The average time per anneal cycle is about same as the time taken to solve the optimization problem on a classical computer.

Quantum Annealing Results: Stochasticitv of Annealing

The quantum annealing process has inbuilt stochasticity. Solutions are recovered close to the lowest energy "ground state" of the objective function or Hamiltonian.

Conclusions

- Solution times were comparable between laptop runs and annealing runs for the small problems.
- For number of binary variables beyond 100 , solving the problem through enumeration is nearly impossible for a classical computer.
- This method can also be useful for a kind of "uncertainty quantification", as you can potentially generate an ensemble of solutions that satisfy a given error tolerance.

Future Work

- Sometime after the quantum runs shown in this talk, we obtained a full QUBO formulation. Details in report.
- More accurate benchmarking of the annealing metrics on D-Wave 2000Q.
- Analyze how annealing affects the performance of the alternating optimization algorithm.

Acknowledgments

- We thank Peter L. McMahon for many discussions on quantum computing.
- We thank QC Ware, Corp and D-Wave Systems Inc for giving us permissions to publish the preliminary quantum computing results.

Q \& A

Thank You

Questions?

Complexity Diagram

$B Q P=$ Bounded-error quantum polynomial time

Problem Structure

- The continuous problem is separable over each ray! So each J_{k} can be minimized independently.

$$
\begin{aligned}
& J_{k}=\frac{1}{v_{\max }^{2}}\left(L_{k}-\sum_{i=1}^{N} \sum_{j=1}^{M} \alpha_{k j} x_{i j}\right)^{2}+\left(T_{k}-\sum_{i=1}^{N} \sum_{j=1}^{M} \beta_{k j} x_{i j}\right)^{2} \\
& \text { Objective Function: } \quad \sum_{k=1}^{K} J_{k}
\end{aligned}
$$

- The discrete problem is a Quadratic Binary Optimization Problem. Number of binary variables is NM.

Question: Can we reduce the number of binary variables ?

Towards a Better Combinatorial Optimization Problem: Symmetry of Composition

Symmetry of Composition:

Given an assignment of layers, the objective function is unchanged under arbitrary permutation of layers (this holds because of the horizontal layer assumption). This is a key observation.

Key idea: Just count number of times a material repeats. Let y_{j} denote number of times material j occurs.

- Bound constraint: $0 \leq y_{j} \leq N$, for all $j=1, \ldots, M$.
- Sum constraint: $\sum_{j=1}^{M} y_{j}=N$.

Good but not enough! Only M integer variables, but each variable can take $N+1$ integer values.

Towards a Better Combinatorial Optimization Problem: Binary Encoding

 Trick
Binary Encoding Trick:

Since y_{j} 's are positive uniformly spaces integers, work with the binary representation of each variable.

$$
y_{j}=\sum_{l=1}^{r} b_{j l} 2^{l-1}, \forall j=1, \ldots, M
$$

where $r=\left\lfloor\log _{2} N\right\rfloor+1$, and $b_{j l} \in\{0,1\}$.
So now we have $M r \approx M \log _{2} N$ binary variables. This is a $\log \mathbf{N}$ compression.

Equivalent Combinatorial Optimization Problem

Equivalent Optimization Problem

$$
\begin{aligned}
\operatorname{minimize} \quad & \sum_{k=1}^{K}\left[\frac{1}{v_{\max }^{2}}\left(L_{k}-\sum_{j=1}^{M} \sum_{l=1}^{r} \alpha_{k j} b_{j l} 2^{I-1}\right)^{2}\right]+ \\
& \sum_{k=1}^{K}\left[\left(T_{k}-\sum_{j=1}^{M} \sum_{l=1}^{r} \beta_{k j} b_{j l} 2^{I-1}\right)^{2}\right] \\
\text { subject to } \quad & b_{j l} \in\{0,1\}, \forall j \in\{1, \ldots, M\}, \forall I \in\{1, \ldots, r\}, \\
& \sum_{j=1}^{M} \sum_{l=1}^{r} b_{j l} 2^{I-1}=N .
\end{aligned}
$$

Still a non-convex mixed integer optimization problem.

Alternating Minimization Algorithm

```
Algorithm 1 Alternating minimization algorithm
procedure Alternating QUBO
// Random assignment
\(x_{i j} \leftarrow 0\), for all \(i=1, \ldots, N\) and \(j=1, \ldots, M\)
for \(\mathrm{i}=1\) to N do
    \(j \leftarrow\) Randomly choose from the set \(\{1, \ldots, M\}\)
    \(x_{i j} \leftarrow 1\)
Compute \(y_{j}=\sum_{i=1}^{N} x_{i j}\), for all \(j=1, \ldots, M\)
Compute \(b_{j I}\) as binary representation of \(y_{j}\), for all \(j=1, \ldots, M\) and \(I=1, \ldots, r\)
// Alternating minimization
while Not converged do
    \(p_{k} \leftarrow \arg \min J_{k}\), for all \(k=1, \ldots, K\), and with all \(b_{j l}\) fixed.
            \(p_{k}\)
            \(b_{j l} \leftarrow\) solution of QUBO with all \(p_{k}\) fixed.
Compute \(y_{j}=\sum_{l=1}^{r} b_{j l} 2^{I-1}\), for all \(j=1, \ldots, M\)
return \(p_{k}, y_{j}\) for all \(k=1, \ldots, K\) and \(j=1, \ldots, M\)
```


Discrete Search Over Ray-Parameters

```
Algorithm 2 Global ray parameter search
    1: procedure Discretized global Search \((k, P)\)
2: \(\quad \Delta p \leftarrow \frac{1}{P v_{\text {max }}}\)
3: \(\quad S \leftarrow\{n \Delta p: n=0, \ldots, P-1\}\)
4: \(\quad p_{k} \leftarrow \underset{p \in S}{\arg \min } \frac{1}{v_{\text {max }}^{2}}\left(L_{k}-\sum_{j=1}^{M} \frac{\delta p v_{j} y_{j}}{\sqrt{1-p^{2} v_{j}^{2}}}\right)^{2}+\left(T_{k}-\sum_{j=1}^{M} \frac{\delta y_{j}}{v_{j} \sqrt{1-p^{2} v_{j}^{2}}}\right)^{2}\)
    5: return \(p_{k}\)
```

P controls level of discretization.
This might seem scary, but is not precisely because ray-parameter search is independent over each ray.

Continuous Search Over Ray-Parameters

```
Algorithm 3 Newton ray parameter search
    1: procedure Continuous local Search \((k, \gamma \in[0,1])\)
    2: \(\quad p_{\text {min }} \leftarrow L_{k} /\left(v_{\max } \sqrt{Z^{2}+L_{k}^{2}}\right), p_{\text {max }} \leftarrow 1 / v_{\text {max }}\)
3: \(\quad p_{k} \leftarrow \frac{p_{\text {min }}+p_{\text {max }}}{2}\)
4: while Not converged do
5: \(\quad p_{k} \leftarrow p_{k}-\frac{\left((1-\gamma)\left(T\left(p_{k}\right)-T_{k}\right)^{2}+\gamma\left(L\left(p_{k}\right)-L_{k}\right)^{2} / v_{\text {max }}^{2}\right)^{\prime}}{\left((1-\gamma)\left(T\left(p_{k}\right)-T_{k}\right)^{2}+\gamma\left(L\left(p_{k}\right)-L_{k}\right)^{2} / v_{\text {max }}^{2}\right)^{\prime \prime}}\)
6: \(\quad p_{k} \leftarrow \max \left(p_{\min }, \min \left(p_{\text {max }}, p_{k}\right)\right)\)
7: return \(p_{k}\)
```

$\gamma \in[0,1]$ controls how travel time and offset terms are weighed in the search process.

Quantum Annealing Results: Logical Variables vs Qubits

Comparison of logical variables vs qubits

