
Snell Tomography for Net-To-Gross Estimation
Using Quantum Annealing

Rahul Sarkar1 Stewart A. Levin2

1Institute for Computational and Mathematical Engineering (ICME)
Stanford University

2Department of Geophysics
Stanford University

SEG 2018 Annual Meeting, Anaheim



Ray Tomography

Tomography ≈ localizing subsurface properties

A.Curtis (2004)
Zhang et al. (2012)
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Ray Tomography

Tomography ≈ localizing subsurface properties

But not always...
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Total Ambiguity
1 Ray, 2 Materials
I Sand – 3.0 km/s
I Shale – 2.5 km/s
I Experiment vertical ray

I Source-receiver distance = 4.5 km
I Source-receiver traveltime = 1.7 s
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Many answers
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No Ambiguity
1 Ray, 2 Materials
I Sand – 3.0 km/s
I Shale – 2.5 km/s
I Experiment vertical ray

I Source-receiver distance = 4.5 km
I Source-receiver traveltime = 1.7 s
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Exactly one sand-shale ratio (1:2)!
Rahul Sarkar Snell Tomography SEG 2018 Annual Meeting, Anaheim 5 / 24



Challenge: Can we determine the fraction of each material in the macrolayer between
the source and receivers?
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Experimental Geometry
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1D Earth Model

I Horizontal layers of unknown thicknesses but known material properties

I The receivers are placed on the top of the layers

I There is one source at the bottom of the layers

I We measure both travel time and offset for every source-receiver pair
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OMG!
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0 = 4γ2(γ2 − 1)2T 2v2
1 (Z2 + L2) s6

−4γ(γ2 − 1)2Tv1L[(γ2 + 1)(L2 + Z2) + T 2v2
1 ] s5

+(γ2 − 1)2[(γ2 − 1)2Z4 + 2(γ4 + 1)L2Z2 + (γ2 + 1)2L4

+2(γ2 + 1)T 2v2
1 (L2 − Z2) + T 4v4

1 ] s4

+4γ(γ2 − 1)2Tv1L(L2 + 2Z2) s3

−2(γ2 − 1)2L2[(γ2 + 1)(L2 + Z2) + T 2v2
1 ] s2

+(γ2 − 1)2L4
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Potential of Quantum Computing
Some problems that are hard to solve using today’s classical computers, have the
potential to be efficiently solvable using a quantum computer.

Some possible use cases of quantum computing:
I Large combinatoric optimization problems
I Quantum chemistry & material design
I Quantum cryptography
I Quantum machine learning

Kandala et al., Nature 549 (2017)
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Quo Vadis Quantum Computing?

Commercial general purpose quantum computers are 5-10 years out.
I Today: < 100 quantum bits
I Near term: ∼ 1000 quantum bits (NISQ-era)
I Commercial: ∼ 1 million quantum bits

Specialized devices called quantum annealers exist today.
I Today: 2000 quantum bits
I Near Term: ∼ 5000–10000 quantum bits
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What Are Quantum Annealers?

I Specialized quantum devices
I Finds the minimum energy eigenstate for Ising Hamiltonians

Ht = (1− t
T )Hi + t

T Hf

Adiabatic quantum computing: If you
change slowly the initial Hamiltonian to the
final Hamiltonian, the system will remain in
its lowest energy state.

www.dwavesys.com/quantum-computing

Rahul Sarkar Snell Tomography SEG 2018 Annual Meeting, Anaheim 11 / 24



Quadratic Unconstrained Binary Optimization (QUBO)

One possible use of quantum annealers, is to solve QUBO problems!

Model QUBO Problem
minimize xT Q x
subject to x ∈ {0, 1}n

I Many other problems can be reduced to the QUBO form, for example problems
with linear equality and inequality constraints.

I In our problem x assigns materials to layers to match traveltimes and offsets.
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Problem Formulation
Horizontal constant thickness layers : We will assume that we have a finite number N

of horizontal sublayers with same thickness δ. So total thickness is Nδ.

Finite material set : There are only a finite number of materials M, with fixed known
velocities given by v1, . . . , vM .

Finite number of rays : We have a finite number of rays with corresponding travel time
measurements are given by T1, . . . ,TK , and the offsets are given by L1, . . . , LK .
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Layer Assignment

Introduce binary variables :

xij =
{

1 if sublayer i is material j
0 otherwise,

for all i = 1, . . . ,N and j = 1, . . . ,M.

Introduce constraints :

To ensure that each sublayer gets assigned to one and only one material we will
additionally need the family of constraints

M∑
j=1

xij = 1 , for all i = 1, . . . ,N.
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Setup Objective Function

Least Squares Objective Function for k th Ray

Jk = 1
v2

max

Lk −
N∑

i=1

M∑
j=1

αkjxij

2

+

Tk −
N∑

i=1

M∑
j=1

βkjxij

2

Assuming that the kth ray has ray-parameter pk , we have defined:
I αkj : Horizontal distance traveled by kth ray with ray-parameter pk in a layer with

velocity vj .
I βkj : Time spent by kth ray with ray-parameter pk in a layer with velocity vj .
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Alternating Minimization

Continuous Optimization Problem:

I Hold xij ’s fixed, and minimize over pk ’s

I Trivial ray tracing

Discrete Optimization Problem:

I Hold pk ’s fixed, and minimize over xij ’s

I Combinatorial challenge
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Classical Computer Trials

I Take total vertical thickness of 1 km.
I Number of materials M = 3.
I Materials :

I Sandstone — 3.0 km / s, Shale — 2.5 km / s, Salt — 4.6 km / s
I Number of sublayers was varied from N = 2, . . . , 32.
I Number of rays was varied from K = 2, 4, 8.
I For each combination of N and K , 50 independent problem instances were

created. For each instance, uniformly spaced pk ’s were used to generate the
“true” data.

I Each instance was solved 50 times and statistics were gathered.
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Performance of the Algorithm
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Pretty good reduction in objective
function.

5 10 15 20 25 30
Number of layers

2

3

4

5

6

N
um

be
r o

f i
te

ra
tio

ns

Number of iterations
Nrays = 2
Nrays = 4
Nrays = 8

The alternating algorithm converges quite
fast in a small number of iterations.
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Impact of Number of Rays on Sand-Shale Ratio
I 2 materials, 6 layers
I Different sand-shale ratios
I Vary number of rays: K = 1, 2, 3, 4, 5

True Sand Shale Observed Sand Shale Ratio
Ratio K = 1 K = 2 K = 3 K = 4 K = 5
5.0 5.0 5.0 5.0 5.0 5.0
2.0 2.0 2.0 2.0 2.0 2.0
1.0 1.0 1.0 1.0 1.0 1.0
0.5 0.5 0.5 0.5 0.5 0.5
0.2 0.2 0.2 0.2 0.2 0.2

With just 2 materials, we were able to recover the true sand-shale ratios exactly on
average. With more materials, increasing the number of rays helps, but our

computational experiments suggest that the effect is not monotonic.
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How Big Today?
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Comparison of logical variables vs qubits
Qubits : Nrays = 2
Qubits : Nrays = 4
Qubits : Nrays = 8
Logical Variables

Due to lack of full connectivity of the D-Wave annealer, mapping the problem to the
hardware leads to an increase in the number of effective qubits.
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Stochasticity of Annealing
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The quantum annealing process has inbuilt stochasticity. Solutions are recovered close
to the lowest energy “ground state” of the objective function or Hamiltonian.
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Our Thoughts

I Quantum annealer did provide good solutions.

I For number of binary variables beyond 100, solving the problem through
enumeration is nearly impossible for a classical computer.

I This method can also be useful for a kind of “uncertainty quantification”, as you
can potentially generate an ensemble of solutions that satisfy a given error
tolerance.
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Q & A

Thank You

Questions?
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What Problems Can Quantum Computers Solve Efficiently?
BQP = Bounded-error quantum polynomial time
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QUBO to Ising

Model QUBO Problem
minimize xT Q x
subject to x ∈ {0, 1}n

Conversion to Ising Hamiltonian
Change of variables: si = 2xi − 1

minimize
∑
i>j

Jijsi sj +
∑

i
hi si

subject to s ∈ {−1, 1}n
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An Optimization Problem With a Lot of Binary Variables
Leads to a non-convex “mixed integer program” :

Sum of Squares Optimization Problem

minimize
K∑

k=1
Jk

subject to xij ∈ {0, 1} , ∀ i ∈ {1, . . . ,N}, ∀ j ∈ {1, . . . ,M},
M∑

j=1
xij = 1 , ∀ i ∈ {1, . . . ,N}.

I Continuous variables : The ray-parameters p1, . . . , pK
I Binary variables : Layer assignments x11, . . . , xNM
I These are typically hard problems
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Problem Structure

I The continuous problem is separable over each ray! So each Jk can be minimized
independently.

Jk = 1
v2

max

Lk −
N∑

i=1

M∑
j=1

αkjxij

2

+

Tk −
N∑

i=1

M∑
j=1

βkjxij

2

Objective Function :
K∑

k=1
Jk

I The discrete problem is a Quadratic Binary Optimization Problem. Number of
binary variables is NM.

Question: Can we reduce the number of binary variables ?
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Towards a Better Combinatorial Optimization Problem: Symmetry of
Composition

Symmetry of Composition:

Given an assignment of layers, the objective function is unchanged under arbitrary
permutation of layers (this holds because of the horizontal layer assumption). This is a
key observation.

Key idea: Just count number of times a material repeats. Let yj denote number of
times material j occurs.
I Bound constraint : 0 ≤ yj ≤ N, for all j = 1, . . . ,M.
I Sum constraint :

∑M
j=1 yj = N.

Good but not enough! Only M integer variables, but each variable can take N + 1
integer values.
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Towards a Better Combinatorial Optimization Problem: Binary Encoding
Trick

Binary Encoding Trick:

Since yj ’s are positive uniformly spaces integers, work with the binary representation of
each variable.

yj =
r∑

l=1
bjl 2l−1 , ∀ j = 1, . . . ,M ,

where r = blog2 Nc+ 1, and bjl ∈ {0, 1}.

So now we have Mr ≈ M log2 N binary variables. This is a log N compression.
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Equivalent Combinatorial Optimization Problem
Equivalent Optimization Problem

minimize
K∑

k=1

 1
v2

max

Lk −
M∑

j=1

r∑
l=1

αkjbjl 2l−1

2
+

K∑
k=1


Tk −

M∑
j=1

r∑
l=1

βkjbjl 2l−1

2


subject to bjl ∈ {0, 1} , ∀ j ∈ {1, . . . ,M} , ∀ l ∈ {1, . . . , r} ,
M∑

j=1

r∑
l=1

bjl 2l−1 = N.

Still a non-convex mixed integer optimization problem.
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Alternating Minimization Algorithm

Algorithm 1 Alternating minimization algorithm
procedure Alternating QUBO

// Random assignment
xij ← 0 , for all i = 1, . . . ,N and j = 1, . . . ,M
for i = 1 to N do

j ← Randomly choose from the set {1, . . . ,M}
xij ← 1

Compute yj =
∑N

i=1
xij , for all j = 1, . . . ,M

Compute bjl as binary representation of yj , for all j = 1, . . . ,M and l = 1, . . . , r

// Alternating minimization
while Not converged do

pk ← arg min
pk

Jk , for all k = 1, . . . ,K , and with all bjl fixed.

bjl ← solution of QUBO with all pk fixed.
Compute yj =

∑r
l=1

bjl 2l−1, for all j = 1, . . . ,M

return pk , yj for all k = 1, . . . ,K and j = 1, . . . ,M
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Discrete Search Over Ray-Parameters

Algorithm 2 Global ray parameter search
1: procedure Discretized global search (k, P)
2: ∆p ← 1

P vmax
3: S ← {n∆p : n = 0, . . . ,P − 1}

4: pk ← arg min
p∈S

1
v2

max

(
Lk −

M∑
j=1

δpvj yj√
1−p2v2

j

)2

+
(

Tk −
M∑

j=1

δyj

vj
√

1−p2v2
j

)2

5: return pk

P controls level of discretization.

This might seem scary, but is not precisely because ray-parameter search is
independent over each ray.
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Continuous Search Over Ray-Parameters

Algorithm 3 Newton ray parameter search
1: procedure Continuous local search (k, γ ∈ [0, 1])
2: pmin ← Lk/(vmax

√
Z 2 + L2

k) , pmax ← 1/vmax
3: pk ← pmin+pmax

2
4: while Not converged do
5: pk ← pk − ((1−γ)(T (pk )−Tk )2+γ(L(pk )−Lk )2/v2

max)′
((1−γ)(T (pk )−Tk )2+γ(L(pk )−Lk )2/v2

max)′′

6: pk ← max(pmin,min(pmax, pk))
7: return pk

γ ∈ [0, 1] controls how travel time and offset terms are weighed in the search process.
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Classical Results: Wall Clock Time to Convergence
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Time to convergence increases with number of layers.
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Classical Results: Mean Layer Assignment Error
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With the right scaling, errors are constant over number of layers.
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Classical Results: Mean Ray-Parameter Error
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With the right scaling, errors are constant over number of layers.
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Preliminary Quantum Solve Trials

I Same experimental setup as in the classical case.

I We varied N = 2, . . . , 16, and K = 2, 4, 8.

I For each combination of N and K , 10 independent problem instances were
created. For each instance, uniformly spaced pk ’s were used to generate the
“true” data.

I We solved each instance of the QUBO problem on the D-WAVE 2000Q quantum
annealer 1000 times and gathered statistics on the total time to solution.
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Quantum Annealing Results: Time to Solution
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The average time per anneal cycle is about same as the time taken to solve the
optimization problem on a classical computer.
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