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Abstract

In this white paper we mathematically formulate a discretized version of the index-tracking problem with
sparsity constraints. Such problems have become increasingly important with the rapid rise of index funds
and smart beta strategies. Such investing typically requires a risk model to replicate an index with potentially
thousands of securities, however, the actual trades may be subject to sparcity, liquidity or lot size constraints.
The resulting optimization problem is in the form of a quadratic unconstrained binary optimization (QUBO)
problem. One of the target uses for near-term quantum computers—both quantum annealers, and circuit-
model quantum computers running the Quantum Approximate Optimization Algorithm—is as heuristic
solvers of QUBO problems. By creating a QUBO formulation of the index-tracking problem, we have shown
how to formulate the problem in a way that can in principle be run on near-term quantum computers.
We verified the correctness of the QUBO problem formulation by solving several problem instances in IBM
CPLEX, both using a canonical formulation and using the QUBO formulation. We also characterize the
time CPLEX takes to find an (absolute, not approximate) optimal solution for a variety of instances, which
provides an upper bound for the time needed for a classical solver to solve these instances.

Keywords: Portfolio optimization, Sparse index tracking, QUBO, Quantum annealing, CPLEX

1. Introduction

Index tracking and smart beta, which typically involves replicating a dynamic or non-market capitaliza-
tion weighted index, are a significant part of the equity index market and are rapidly growing in the fixed
income and commodity spaces. When an index has relatively few, highly liquid securities it is possible to
just purchase all the index securities in the appropriate proportion. However, and this is particularly true
in fixed income, if the index has many securities (such as thousands), most of which do not trade on a given
day, and may only be tradable in round lots, and/or do not trade on an electronic exchange, it is necessary
to do some optimization. This is usually done with a risk model, often assumed to be a linear model, to
minimize the expected volatility of the portfolio relative to its index. Unfortunately, adding sparsity and
round lot constraints can make the optimization computationally difficult.

Index tracking, an important operational research problem in quantitative finance, consists of reproducing
the performance of a market index by investing in a subset of the assets within the index. The index tracking
problem can arise frequently for fund managers, who follow a strict set of constraints to guarantee a minimum
level of return. Often, following these constraints entails matching the performance of a large financial index,
without incurring significant transaction costs from activities such as portfolio rebalancing. We emphasize
the relevance of fund management in modern finance, noting that in 1998, over 100 billion U.S. dollars were
invested in passive funds in the U.S. alone (Sorenson et al., 1998), and that by 2015, this number climbed
to over two trillion U.S. dollars.

Two main approaches to index tracking are physical replication and synthetic replication. Physical
replication, which is much more common (see for example Naumenko and Chystiakova (2015); Amenc et al.
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(2012)), involves investing directly in assets contained in the index. Synthetic replication uses derivative
contracts, such as options, futures, and swaps, to track the index. In physical replication, full replication of
the index—composing the portfolio of all assets in the index—maximizes tracking accuracy in a frictionless
market since the tracking portfolio and the index will have the same normalized shape (Strub and Baumann,
2018). However, full replication is suboptimal in a market with frictions, e.g. due to transaction costs involved
in rebalancing the tracking portfolio (Connor and Leland, 1995; Strub and Baumann, 2018). Moreover, full
replication is often not feasible due to liquidity constraints or the size of the index’s asset universe. Thus,
a cardinality or sparsity constraint is often enforced when formulating an index tracking problem (Ruiz-
Torrubiano and Suárez, 2009; Beasley et al., 2003).

From a mathematical perspective, there are modeling choices to make when formulating and solving
index tracking problems. A common choice is to phrase the problem variationally, where the optimal asset
allocation or portfolio construction is the minimum of some objective function subject to constraints, such as
a cardinality constraint as suggested above. We note that additions like cardinality constraints can introduce
combinatorial complexity into the problem; minimizing tracking error subject to cardinality constraints was
shown to be NP-hard by Coleman et al. (2006). Thus, even within the realm of variational formulations, there
are many ways to ultimately formulate and solve an index tracking optimization problem, and computational
tractability and efficiency plays a significant role in model design and selection.

Recent developments in quantum computing hardware has led to a renewed interest in the capabilities
of these machines for potentially solving certain optimization problems faster than is possible with any
classical computer. Each of the quantum computing prototypes that have been built so far can be broadly
classified as being either a universal circuit-model quantum computer, or a quantum annealer. Quantum
annealers offer a restricted form of quantum computation—they are special-purpose optimization machines—
whereas circuit-model quantum computers can run quantum algorithms that extend beyond optimization.
At the present time however, the devices with the most number of physical quantum bits, or qubits, are
the quantum annealers, with an order of magnitude more qubits than the largest circuit-model quantum
computer. Quantum annealers are based on the principle of adiabatic quantum computation, and are
typically designed to try find the ground state of a given Ising optimization problem. A class of optimization
problems called quadratic unconstrained binary optimization (QUBO) problems belong to the class of NP-
hard problems, and are easily transformed into the Ising Hamiltonian form, and hence are also amenable
to solution on quantum annealers. More generally, any optimization problem that can be cast as a QUBO
problem is in principle solvable on a quantum annealer.

This work presents a QUBO formulation of a single-period index-tracking problem. We begin by first
formulating a constrained optimization problem for index tracking, and introduce discretization into it. Then
through a sequence of mathematical transformations, the problem is transformed into QUBO form which can
then be solved using a quantum annealer. In fact, two different QUBO formulations are presented, each of
which encodes the problem using different number of variables, the first based on a unary encoding scheme,
and the second based on a binary encoding scheme for the problem. The proposed QUBO formulations are
tested for correctness using CPLEX. The dataset that we use for the study is a snapshot of all assets and
their relative makeup of the Barclay’s US High Yield 2% Index of US High Yield Bonds.

2. Related Work

Significant research has been conducted on index tracking. In rigorously defining the index tracking
problem, a number of metrics for tracking error which index tracking seeks to minimize, have been proposed in
the literature. As stated by Ruiz-Torrubiano and Suárez (2009), tracking error is commonly defined in terms
of the correlation between an index’s returns and that of the tracking portfolio, or in terms of the variance of
the difference of the returns of the index and the returns of the tracking portfolio (Markowitz, 1989; Buckley
and Korn, 1998; Shapcott, 1992; Roll, 1992). It has been noted that errors based on the variance of the
difference in returns fail to penalize tracking portfolio return profiles that are constant offsets of index return
profiles (Beasley et al., 2003; Ruiz-Torrubiano and Suárez, 2009); however, this situation is not encountered
in practice, and variance formulations remain popular definitions of tracking error. Alternatively, it has been
proposed to use the mean squared difference in the returns as the tracking error metric (Ruiz-Torrubiano
and Suárez, 2009; Beasley et al., 2003; Lobo et al., 2007), which avoids the constant-offset edge case. One
can also use absolute deviations of the returns of the tracking portfolio and index in defining tracking error
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(Clarke et al., 1994; Wang et al., 2012; Rudolf et al., 1999), an approach that has the advantage of being
linearizable. We employ a variance based definition of tracking error in this work.

A number of works have also considered constrained versions of the index tracking problem, which
more realistically emulate the challenge faced by a passive fund manager in replicating an index. Jansen and
Van Dijk (2002), and Coleman et al. (2006) both enforce a limited number of assets in their tracking portfolio.
They minimize a weighted combination of the continuous tracking error and the discrete number of assets
in the tracking portfolio, with the latter being approximated continuously. Another common constraint
requires that the total value of the tracking portfolio plus any transaction costs does not exceed the total
capital available to construct the portfolio (Strub and Baumann, 2018; Guastaroba and Speranza, 2012). In
Wang et al. (2012), a conditional value at risk constraint is introduced in order to limit the downside risk
of the tracking portfolio. For additional surveys of the index tracking literature, the reader is referred to
Beasley et al. (2003), Canakgoz and Beasley (2009), and Karlow (2012).

Given the focus of the present work, we also remark upon the literature pertaining to binary optimization,
especially QUBO problems. Such problems often arise in the context of combinatorial search problems,
including NP-complete and NP-hard problems. Binary optimization problems have been studied and applied
across an array of different fields; an early example is Hammer and Shlifer (1971), which describes applying
them to the problem of selecting locations for service stations. Financial applications of binary optimization
date back to around 1970 with works like Laughhunn (1970). We note that constrained binary optimization
problems can often be reformulated as unconstrained problems (Hansen, 1979), and thus both constrained
and unconstrained binary optimization problems may often be treated similarly.

A number of exact and approximate solution methods for QUBO problems have been developed. Lucas
(2014) described Ising formulations of all of Karp’s 21 NP-complete problems (Karp, 1972), which are equiv-
alent to QUBO problems as remarked earlier. Indeed, the exact solution of QUBO problems is known to be
NP-hard in general (Pardalos and Jha, 1992). Thus, exact solvers, commonly based on branch-and-bound
techniques, are practically limited to solving problems for up to a few hundred variables (Kochenberger et al.,
2014). Promising developments continue to be made with exact solvers, both in the research community
as well as in the commercial sphere, where solvers like CPLEX have been developed that are successful on
moderately-sized QUBO problems (Billionnet and Elloumi, 2007). In contrast to exact methods, heuristic
and metaheuristic approaches greatly increase the size of the problem that can be solved, such as set parti-
tioning problems with 15, 000 variables (Lewis et al., 2008) and set packing problems with 2, 000 variables
(Alidaee et al., 2008), though obviously with the price of inexact solutions. Of particular note is the sim-
ulated annealing heuristic for QUBO problems, studied by Katayama and Narihisa (2001). For a detailed
survey on the QUBO problem, including various solution techniques and applications, the reader is referred
to Kochenberger et al. (2014).

In a QUBO problem, the objective function is a quadratic, with each variable being either 0 or 1. In
contrast, in a Ising Hamiltonian problem, each variable is either 1 or −1. Consequently, the transformation
of a QUBO problem to a Ising Hamiltonian problem is easily achieved with a simple variable transformation
x 7→ 2x− 1. Thus an efficient algorithm to find the minimum energy state of the Ising Hamiltonian, which
is also called the Ising problem, would imply an efficient solution to the QUBO problem. The idea that
NP-complete satisfiability problems could be solved by minimizing Ising Hamiltonians, using the principle of
adiabatic quantum computation or quantum annealing (Kadowaki and Nishimori, 1998; Santoro et al., 2002;
Johnson et al., 2011), was first introduced by Farhi et al. (2000), and later analyzed and developed further
in Farhi et al. (2001), and Childs et al. (2001). Collectively, these papers constitute much of the foundation
of today, for the widely held belief that certain instances of QUBO problems could be solved much faster
using quantum annealing than any other classical algorithm running on a classical computer.

Since its introduction, a lot of effort has gone into finding practical applications of quantum annealing.
The literature is too vast to present a complete survey here, and we mention only a few of the notable
works. Early applications of adiabatic quantum computation include finding cliques in graphs (Childs et al.,
2000), optimization on regular graphs (Farhi et al., 2012), and clustering (Kurihara et al., 2009). In the
field of machine learning, some interesting applications have been found very recently such as sampling from
restricted Boltzmann machines (Adachi and Henderson, 2015; Biamonte et al., 2017), reinforcement learning
for finite episodic games (Neukart et al., 2018), free energy based reinforcement learning (Levit et al., 2017),
and Dirichlet process mixture models (Sato et al., 2013). Applications of quantum annealing have also been
found for traffic flow optimization (Neukart et al., 2017), and most notably in the field of finance for solving
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the optimal trading trajectory problem (Rosenberg et al., 2016). All these applications can be grouped into
two categories—either solving the problem of finding the minimum energy state of an Ising Hamiltonian, or
sampling a distribution using a quantum annealer. The work that we present in this paper falls in the first
category.

It should be noted that it was proved by Aharonov et al. (2008) that quantum annealing is equivalent
to universal quantum computing in the circuit model for noise free systems; but this is not true in any
realistic quantum system with noise. While efficient error correction mechanisms exist for the circuit model
of quantum computation (Shor, 1996; Preskill, 1998; Gottesman, 1998), the same is not known to be true in
general for quantum annealing, and this is a subject of active research (Jordan et al., 2006; Pudenz et al.,
2014, 2015). Because of the equivalence result however, it is possible to implement quantum annealing in
the circuit model of quantum computation, which means in particular that one can solve the Ising problem
also using a universal quantum computer. In fact, such an algorithm already exists, called the quantum
approximate optimization algorithm (QAOA) (Farhi et al., 2014), which allows the mapping of the Ising
problem to one that is solvable on a circuit model quantum computer.

3. Problem Formulation and Discretization

In this section we introduce the mathematical formulation of the single period index tracking problem
that we study in this paper. The term single-period means that we only wish to track the index at a fixed
instant of time, as opposed to multi-period index tracking that attempts to track the index over multiple
periods of time. This is typically called a risk model and in most cases a linear risk model like the one we
present is sufficient. These simplifications allow us to obtain a simplified problem that captures the overall
essence of the index tracking problem, while at the same time avoids the complications of the most general
case, and is motivated by the main goal of this white paper which is to study the numerical performance
of CPLEX while solving instances of the problem. The choice of simplicity is also motivated a great deal
by the constraint of problem size that we can solve presently, in terms of the number of variables, and in a
reasonable amount of time.

The metric that we use to evaluate how well the tracking portfolio replicates the index, at some instant
of time, is the tracking error variance v. If rI is the return of the index and rP is the return of the tracking
portfolio, then the tracking error variance is defined as

v = var(rI − rP ). (1)

In our problem formulation, we will assume a linear factor model that decomposes the return of each asset
in the index into a linear combination of the underlying market factor returns. Let us assume that we have
an index with n assets, and we have a l-degree factor model for it, meaning that there are l factors. Let
w ∈ Rn be a vector with wi corresponding to the fractional weight of asset i within the index, p ∈ Rn be
a vector with pi representing the fractional weight of asset i in the tracking portfolio, f ∈ Rl be a vector
with fj corresponding to the return of factor j, and L ∈ Rn×l be a matrix such that Lij represents the
coefficient of the return of factor j in the linear decomposition of the return of asset i. Then the factor
model representations of the returns of the index and the tracking portfolio are given as

rI = wTLf, rP = pTLf. (2)

It should also be noted that the fractional weights of the assets in the index and the tracking portfolio satisfy∑n
i=1 wi =

∑n
i=1 pi = 1. The tracking error variance can then be expressed as

v = var
(
(w − p)TLf

)
= (w − p)T cov(Lf)(w − p) = (w − p)TLΣLT (w − p), (3)

where Σ ∈ Rn×n is the covariance matrix of the factors defined as Σij = E[(fi − E(fi))(fj − E(fj))]. As
covariance matrices are symmetric positive definite, it follows that LΣLT is also symmetric and positive
definite. A typical goal of index tracking is to choose p such that v is minimized, given all the other
quantities appearing in (3), which is the case when no other constraints are present. This problem can be
solved efficiently in polynomial time using different classical algorithms, for example interior point methods,
and is not of interest to us. A slightly more interesting case happens when we consider a version of the

4



problem with added constraints which we now state. The first constraint we consider imposes a restriction
on the number of different assets that the tracking portfolio can hold, which is called a sparsity constraint.
Specifically we impose that the number of assets in the portfolio cannot exceed an integer d ∈ N, 1 ≤ d ≤ n.
In applications d is much smaller compared to n, that is d << n, and the sparsity constraint alone makes
the resulting problem NP-complete. The second constraint, that we impose for the purposes of keeping the
problem simple, ensures that the portfolio has no short selling of assets, that is pi ≥ 0 for all 1 ≤ i ≤ n. Our
goals so far can then be expressed in the form of an optimization problem as follows:

minimize
p

(w − p)TLΣLT (w − p)

subject to

n∑
i=1

pi = 1

n∑
i=1

1{pi > 0} ≤ d.

(4)

3.1. Discretization of the weights of the assets in the tracking portfolio

The optimization problem in (4) is not a suitable candidate for quantum annealing, as the portfolio
weights span the continuous range [0, 1]. To obtain a meaningful problem that can be solved using adiabatic
quantum computation, we introduce a third constraint into the problem, namely that each pi can only take
values in a finite set instead of [0, 1]. In fact in many applications in finance, such a scenario actually comes
up when one can only buy and sell assets in integral multiples of a fixed lot size for each asset. In this paper,
we will assume for simplicity that the lot sizes are the same for the different assets in terms of dollar value,
and thus each pi takes values over the same finite set, which we take to be uniformly spaced over the interval
[0, 1]. Specifically for a positive integer m′, we first let m = 2m

′
, and then choose m uniformly spaced points

in the interval [0, 1] such that the kth point denoted as zk is given by zk = k
m−1 , for all 0 ≤ k ≤ m− 1. We

next introduce nm binary decision variables p̂ik, defined as

p̂ik =

{
1 if pi = zk

0 if pi 6= zk,
(5)

for all 1 ≤ i ≤ n, 0 ≤ k ≤ m − 1, and impose that
∑m−1
k=0 p̂ik = 1 for each i, which ensures that the

portfolio weights corresponding to each of the assets take one and only one value from the discrete set. For
convenience we will stack the discrete set of weights zk into a vector z ∈ Rm, ordered by the index k, and
the binary variables p̂ik into a vector p̂ ∈ {0, 1}nm, ordered by the indices i followed by k. Substituting the
relations (5) in the objective function of (4), dropping constant terms, and aggregating all the constraints in
one place allows us to write the resulting optimization problem that we want to solve in this paper as follows

minimize
p̂

p̂TQ1p̂

subject to 1TA1p̂ = 1

m−1∑
k=0

p̂ik = 1, ∀ 1 ≤ i ≤ n

n∑
i=1

p̂i0 ≥ n− d,

(6)

where A1 = In ⊗ zT with In denoting the n × n identity matrix, 1 ∈ Rn is a vector of all ones, and
Q1 = AT1 LΣLTA1 − 2 diag(AT1 LΣLTw). The optimization problem in (6) uses m binary variables for each
asset, for a total of nm variables, in order to be able to represent m discrete uniformly sampled values in
the interval [0, 1] for the asset’s portfolio weight, and hence it will also be referred to as the unary encoding
problem.

It is possible to come up with an exactly equivalent problem as (6) that reduces the number of variables
involved in the optimization problem, that we discuss next. Let us introduce nm′ binary decision variables
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b̂il ∈ {0, 1}, for all 1 ≤ i ≤ n, 0 ≤ l ≤ m′ − 1, with the idea behind these variables being that for each
asset i, if for some k we have p̂ik = 1, then k admits a unique m′-bit binary (base 2) representation given by

(b̂i(m′−1) . . . b̂i0)2. The resulting relationships between the decision variables p̂ik and b̂il, for all 1 ≤ i ≤ n,
can then be easily expressed as

b̂i0 =

(
m−1∑
k=0

k1{p̂ik = 1}

)
(mod 2),

b̂il =

(
2−l

m−1∑
k=0

k1{p̂ik = 1} −
l−1∑
l′=0

b̂il′2
l′−l

)
(mod 2), ∀ 1 ≤ l ≤ m′ − 1,

p̂ik =

{
1, if k =

∑m′−1
l=0 b̂il2

l

0, if k 6=
∑m′−1
l=0 b̂il2

l
, ∀ 0 ≤ k ≤ m− 1.

(7)

We will stack the variables b̂il into a vector b̂ ∈ {0, 1}nm′
, ordered by the indices i followed by l, and also

introduce another vector û ∈ {0, 1}n defined as ûi = 1{pi > 0}, which will serve as indicator variables for
the portfolio weights of the corresponding assets being non-zero. The optimization problem (6) is then easily
shown to be equivalent to the following problem

minimize
b̂,û

b̂TQ2b̂

subject to 1TA2b̂ = 1
n∑
i=1

ûi ≤ d

m′−1∑
l=0

b̂il ≤ m′ûi, ∀ 1 ≤ i ≤ n

ûi ≤
m′−1∑
l=0

b̂il, ∀ 1 ≤ i ≤ n,

(8)

where A2 = In ⊗ [20 . . . 2m
′−1]/(2m

′ − 1), and Q2 = AT2 LΣLTA2 − 2 diag(AT2 LΣLTw), with all other
quantities defined as before. It is clear that if we consider the number of binary variables, then (8) improves
on (6) by using only a total of n(m′ + 1) variables, as compared to nm variables in the unary encoding
case. As m = 2m

′
, this means that we obtain an exponential saving in the number of variables with respect

to m in the problem formulation (8), which we will refer to as the binary encoding problem. However on
the down side, we end up having 2n + 1 inequality constraints in order to be able to implement the third
constraint in (6), which is needed for the sparsity of the portfolio, but as we show in the next section, this
does not significantly increase the final variable count when the inequality constraints are changed to equality
constraints with the introduction of slack variables.

4. Transforming the discrete optimization problems to QUBO form

Our next goal is to transform the binary optimization problems in (6) and (8) to QUBO form that can
then be solved using a quantum annealer. The final optimization problems thus obtained are unconstrained
optimization problems. The critical aspect of such a transformation is that the set of global minimum
of the original problem should remain unchanged after the transformation, i.e. any feasible solution that
was a global minimum of the original problem should still remain a global minimum of the transformed
problem, and any other solution, either feasible or infeasible, should not become a global minimum of the
new problem. We achieve this by first introducing slack variables to convert the inequality constraints to
equality constraints following Nocedal and Wright (2006), and then by adding the equality constraints to
the objective function as squared penalties, as outlined in Hansen (1979). We briefly describe these steps
for the unary and binary problems next.
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4.1. Transformation of the unary encoding problem

We first notice that the quantities appearing on the left and right hand sides of the inequality constraint
of the discrete optimization problem in (6) are integers, and so we can introduce binary slack variables to
account for the difference between the left and right hand sides of this constraint. It should be noted that
here again we have a choice of either choosing an unary versus a binary encoding scheme to account for the
slack. To be consistent, we will follow a unary encoding strategy for the optimization problem in (6), while
in the next section a binary encoding strategy will be adopted for performing similar transformations for the
optimization problem in (8).

Let us introduce a vector µ̂ ∈ {0, 1}d, and so we have 0 ≤
∑d
i=1 µ̂i ≤ d, which implies that n − d ≤

n − d +
∑d
i=1 µ̂i ≤ n. Thus if we set

∑n
i=1 p̂i0 = n − d +

∑d
i=1 µ̂i, then this automatically implies that

n−d ≤
∑n
i=1 p̂i0 ≤ n, which in turn implies the inequality constraint in (6). Thus the optimization problem

minimize
p̂,µ̂

p̂TQ1p̂

subject to 1TA1p̂ = 1

m−1∑
k=0

p̂ik = 1, ∀ 1 ≤ i ≤ n

n∑
i=1

p̂i0 = n− d+

d∑
i=1

µ̂i,

(9)

is exactly equivalent to (6). Transformation to QUBO form is subsequently achieved by adding all the
equality constraints in (9) as squared penalties to the objective function with a sufficiently large penalty
parameter α1 (Hansen, 1979), leading to the following equivalent unconstrained binary optimization problem,
that will also be referred to as the unary encoding QUBO problem,

minimize
p̂,µ̂

p̂TQ1p̂ + α1

(1TA1p̂− 1
)2

+

n∑
i=1

(
m−1∑
k=0

p̂ik − 1

)2

+

(
n∑
i=1

p̂i0 − n+ d−
d∑
i=1

µ̂i

)2
 . (10)

4.2. Transformation of the binary encoding problem

The transformation of the binary encoding problem (8) to QUBO form follows an exactly analogous
strategy. We introduce slack variables to account for the slack in the inequality constraints of (8), but
this time we follow a binary encoding strategy which prevents the introduction of an excessively large
number of slack variables into the problem. We first define two positive integers m1 = dlog2(1 + d)e, and

m2 = dlog2(m′)e. Then introducing the vectors ν̂ ∈ {0, 1}m1 , η̂ ∈ {0, 1}m2 , and ζ̂ ∈ {0, 1}m2 , and following
a process exactly similar to the unary case, we obtain an optimization problem equivalent to (8) as follows

minimize
b̂,û,ν̂,η̂,ζ̂

b̂TQ2b̂

subject to 1TA2b̂ = 1

n∑
i=1

ûi +

m1−1∑
i=0

2iν̂i = d

m′−1∑
l=0

b̂il +

m2−1∑
l=0

2lη̂il = m′ûi, ∀ 1 ≤ i ≤ n

ûi +

m2−1∑
l=0

2lζ̂il =

m′−1∑
l=0

b̂il, ∀ 1 ≤ i ≤ n.

(11)
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Transformation to QUBO form then follows by choosing a parameter α2 sufficiently large, and squaring and
adding the equality constraints as penalties, leading to the following equivalent problem

minimize
b̂,û,ν̂,η̂,ζ̂

b̂TQ2b̂ + α2

(1TA2b̂− 1
)2

+

(
n∑
i=1

ûi +

m1−1∑
i=0

2iν̂i − d

)2

+

n∑
i=1

m′−1∑
l=0

b̂il +

m2−1∑
l=0

2lη̂il −m′ûi

2

+

n∑
i=1

ûi +

m2−1∑
l=0

2lζ̂il −
m′−1∑
l=0

b̂il

2
 ,

(12)

which we will also refer to as the binary encoding QUBO problem.
In summary, we have reformulated the unary encoding and binary encoding problems in (6) and (8)

as QUBO problems in (10) and (12) respectively. Moreover as we have previously shown, (6) and (8) are
equivalent to one another, and thus the QUBO problems (10) and (12) are also equivalent. However if we
just count the number of the binary variables involved in each QUBO problem, we find that the binary
encoding QUBO only uses n(log2m + 1) + dlog2(1 + d)e + 2dlog2 log2me binary variables as compared to
the unary encoding QUBO which uses nm+ d binary variables, and thus (12) achieves exponential savings
in the number of variables used as a function of m, as compared to (10).

5. Numerical Experiments

In this section we perform some numerical experiments to study the relative hardness of the QUBO
problems (10) and (12), that we formulated in the last section. We study how the time to solution scales
for the unary and binary encoding QUBO problems when we vary different parameters such as the number
of assets in the portfolio n, the parameter m′ that controls the level of discretization of the interval [0, 1],
and the sparsity parameter d. All the results presented in this section were performed using the CPLEX
optimization library.

5.1. Generating the data set for the numerical study

The data set that we use for our numerical study is a real data set that was provided by the Western
Asset Management Company, that comprises of a snapshot of the relative makeup of the Barclay’s US High
Yield 2 % index of US High Yield Bonds. The entire data set comprises of 2086 assets, while the factor
model representation contains a total of 57 factors. Both the covariance matrix for the factors Σ, as well as
the matrix of factor weights L were available for this data set.

The first step in the data set generation process for our experiments involves choosing subsets of the
provided data set. For each value of the number of assets n that shows up in any of our numerical experiments,
we created a set of 10 different data sets each containing n assets, each of which was created by randomly
sampling from the original data set with 2086 assets. Each such random sampling process entails choosing n
assets randomly out of 2086, which then completely determines the corresponding factor model L for those
selected assets. We form the matrix LΣLT for each such selection which is then stored. For each n, the 10
created data sets were used in all subsequent experiments, without any change.

5.2. Verifying the correctness of the QUBO formulations

The correctness of the QUBO problems (10) and (12) were verified by solving these problems using
CPLEX, and then comparing the obtained solutions against their constrained counterparts (6) and (8),
which were also solved using CPLEX. It should be noted that in all these experiments using CPLEX, we
solve for the absolute global minimum of the objective function. In fact, since all these four problems are
equivalent, it means that we should expect to get the same global minimum for identical choices of parameters
for the problems in terms of n, m′, and d.

To this extent, we performed this test for different levels of coarseness of discretization by varying
the parameter m′ = 1, 2, 3, different number of assets n = 1, . . . , 10, and different cardinality values
d = 1, . . . , bn/2c. Moreover, for each triplet of parameters (n,m′, d), we performed this test for each of
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the 10 data sets that we created for that value of n. We got identical results on all these cases tested for
all the four optimization problems. These tests provide a numerical proof of verification that the QUBO
formulations of the unary and binary encoding problems are correct. While these numerical tests were not
strictly necessary to prove their correctness, which in fact follows simply by mathematical reasoning as has
been done in the previous sections, the numerical tests were done to rule out any programming errors.
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Figure 1: Variation of the time to solution (TTS) with respect to the number of assets n in the portfolio, for the unary encoding
QUBO problem (10), where we have plotted the average TTS along with their standard deviation for each value of d and n.
Each of the curves represent the situation for a fixed value of the sparsity parameter d, which varies from d = 1, . . . , 10. The
discretization parameter is set to m′ = 3 for all the cases displayed in this figure.

5.3. Time to solution – dependence on the number of assets

In the first experiment, we study the dependence of the time to solution (TTS) as we vary the number of
assets in the portfolio, for both the unary and binary encoding QUBO problems. First for a fixed value of the
sparsity parameter d, we vary the number of assets from n = d, . . . , 10, and then repeat this for each value
of d = 1, . . . , 10. The discretization parameter is set to m′ = 3 for all these experiments. The experiment
is repeated for all the 10 data sets for each value of n, and the mean and standard deviations of the TTS
are calculated. The results for the unary case are plotted in Figure 1, while the results for the binary case
are plotted in Figure 2. In these figures, for each value of n and d, we have plotted the mean TTS with the
error bars representing the standard deviations of the TTS in each case.

The results obtained are what is expected. It is clearly seen that for a fixed value of d, the TTS increases
as we increase the total number of assets in the portfolio n, in fact the increase happens faster than at a
linear rate for both the unary and binary problems, with the effect being much more pronounced for the
unary case. The effect of increasing the sparsity parameter d seems to have a general effect of increasing the
TTS, for a fixed value of n, but this increase does not seem to be monotonic. In fact for the binary case,
d = 3, . . . , 10 produces almost identical curves as seen from Figure 2. These effects are intuitively explained
by the fact that the TTS should strongly depend on the number of variables involved in the optimization
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problem, and it is the parameter n that has the most impact on the count of the total number of variables
involved in the optimization problem.
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Figure 2: Variation of the time to solution (TTS) with respect to the number of assets n in the portfolio, for the binary encoding
QUBO problem (12), where we have plotted the average TTS along with their standard deviation for each value of d and n.
Each of the curves represent the situation for a fixed value of the sparsity parameter d, which varies from d = 1, . . . , 10. The
discretization parameter is set to m′ = 3 for all the cases displayed in this figure.

Another interesting aspect to note from these figures is the effect that the parameters n and d have on
the standard deviation of TTS. Clearly the standard deviation shows an increasing trend as we solve larger
problem sizes both in terms of n and d, and the effect is evident for both the unary and binary encoding
cases, although it is significantly more pronounced for the unary encoding case. At the moment, we can only
offer a speculative explanation of why this should be the case – the branch and bound algorithms employed
by CPLEX in searching for the global minimum will perform very differently on different instances of an
optimization problem, for the same problem size determined by n, m′ and d, as the problem sizes get larger
and larger. For some instances the branch and bound algorithm finds the answer easily, while for other
instances it may not find it easily, with the variance increasing due to the increase in problem size. Lastly,
we should also notice from these results that solving the binary encoding QUBO takes much less time as
compared to the unary encoding QUBO, as the number of variables involved in the binary case is much
lesser as compared to the unary case, as was already alluded to in previous sections. These numerical results
provide quantitative evidence of the theoretical claims.

5.4. Time to solution – dependence on the sparsity parameter

In the next test we wish to study the dependence of TTS as we vary the sparsity parameter d of the
portfolio. As in the previous case, we will again fix the parameter controlling the discretization to m′ = 3.
Next we vary the number of assets n = 1, . . . , 10, and for each value of n we vary the sparsity parameter
d = 1, . . . , n, and compute the mean and standard deviations of TTS over the 10 data sets corresponding to
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each value of n. The results of this experiment are plotted in Figure 3 for the unary encoding QUBO, and
in Figure 4 for the binary encoding QUBO.
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Figure 3: Variation of the time to solution (TTS) with respect to the sparsity parameter d of the portfolio, for the unary
encoding QUBO problem (10), where we have plotted the average TTS along with their standard deviation for each value of d
and n. Each of the curves represent the situation for a fixed value of the number of assets in the portfolio n, which varies from
n = 1, . . . , 10. The discretization parameter is set to m′ = 3 for all the cases displayed in this figure.

The results obtained are somewhat expected from the previous experiment. Here again we clearly see
that increasing n completely shifts the variation of TTS with respect to d to a higher value, while for fixed
n, the TTS is relatively constant. In fact this conclusion is true for both the unary and binary encoding
cases. At the same time, the TTS for the binary encoding case is much lower as compared to the unary
encoding case. Again the impact of n on the standard deviation of TTS from these figures is quite noticeable,
consistent with the previous experiment.

5.5. Time to solution – dependence on the coarseness of discretization

In the final experiment, we study the dependence of TTS on the parameter m′ that controls the coarseness
of the discretization of the interval [0, 1]. The conclusions presented in this section are for the binary encoding
case, but we speculate that similar conclusions will be true even for the unary encoding case. In fact we
have numerically verified that the effects are similar for small values of m′ upto m′ = 5 for the unary case
on a limited number of runs. The main issue with the unary encoding case is that it uses significantly more
number of variables than the binary encoding case, and it leads to very large run times – for example for
n = 10, m′ = 4, and d = 3, the TTS is around 1 minute, while for n = 10, m′ = 5, and d = 3 the run time
exceeded 1 hour on a limited number of cases that we tried. As a consequence, getting good estimates for
average TTS turned out to be very time consuming for the unary encoding case, and hence we only present
the binary encoding case here.
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Figure 4: Variation of the time to solution (TTS) with respect to the sparsity parameter d of the portfolio, for the binary
encoding QUBO problem (12), where we have plotted the average TTS along with their standard deviation for each value of d
and n. Each of the curves represent the situation for a fixed value of the number of assets in the portfolio n, which varies from
n = 1, . . . , 10. The discretization parameter is set to m′ = 3 for all the cases displayed in this figure.

In this experiment we first fix the number of assets n, and then vary the parameter m′ = 1, . . . , 6. For
each n, the sparsity parameter is set to d = 3. Then as in the case of the previous experiments, we compute
the mean and standard deviations of the TTS for each value of n and m′, over the 10 data sets corresponding
to the value of n. Finally we repeat the experiment for different values of n = 3, . . . , 8. The results of the
experiment are plotted in Figure 5 as before with error bars representing the standard deviation in TTS. We
see clearly that for a fixed value of n, increasing m′ leads to a dramatic increase in mean TTS, the rate of
increase being clearly greater than any linear function. Increasing n also has a significant impact on TTS,
the increase being mostly monotonic for mean TTS, for a fixed value of m′.

6. Conclusion and Discussion

In this paper we have formulated two equivalent QUBO formulations for the single-period index tracking
problem with sparsity constraints—the first one based on a unary encoding strategy, and the second one based
on a binary encoding strategy. We performed several numerical experiements with both the formulations,
and have shown that the binary encoding QUBO outperforms the unary encoding QUBO in terms of solution
times for the same problem, and is thus inherently a better way to express the problem. However it should
be noted that these conclusions are true in exact arithmetic, that is assuming that CPLEX can exactly solve
the unary or binary encoding QUBOs. It is well known that the method of adding penalties to the objective
function to convert constrained optimization problems to unconstrained optimization problems is not robust,
especially for large problem sizes that either have a lot of constraints or are extremely ill-conditioned, an effect
that stems from finite precision computations. The binary encoding formulation is much more susceptible to
ill-conditioning than the unary case, and it is expected that for large problem sizes, finite precision solvers
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Figure 5: Variation of the time to solution (TTS) with respect to the discretization parameter m′, for the binary encoding
QUBO problem (12), where we have plotted the average TTS along with their standard deviation for each value of m′ and
n. Each of the curves represent the situation for a fixed value of the number of assets in the portfolio n, which varies from
n = 2, . . . , 6. The sparsity parameter is set to d = 3 in each case displayed in the figure.

like CPLEX will perform poorly in terms of being able to solve the problem precisely, that is fail at finding
the global minimum, much more than the unary case. Thus there is a trade-off between accuracy and time
taken to solve the optimization problems on a finite precision computer that becomes important for large
problem sizes.
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