
Transverse-Field Ising Dynamics in a Rydberg-Dressed Atomic Gas:
Supplemental Material

In this supplement, we provide additional details of the experimental methods and the theoretical models with which
we compare the data in the main text. In Sec. I, we elaborate on the experimental apparatus, sequence, and data
analysis. We additionally present supporting measurements of Rydberg-dressed interactions and their dependence
on laser parameters, discussing effects of dissipation and future prospects for maximizing the coherence of Rydberg
dressing. Section II provides supporting theoretical background, including calculations of interaction potentials and
a derivation of the mean-field model.

I. EXPERIMENTAL DETAILS

A. Atomic state preparation

The experimental sequence begins with two-stage cooling of cesium atoms, consisting of a 2D magneto-optical trap
(MOT) and a 3D MOT, over a period of 1.5 s. After a bright optical molasses stage, the atoms are loaded into a
1064 nm optical dipole trap with a 50 µm waist and a trap depth h×3(1) MHz. The atoms are then transported over
a distance of 37 cm, by shifting the focus of the dipole trap using an electrically tunable lens [1], to a science chamber
where our experiments are performed. There are 8 stainless steel electrodes inside the science chamber, all of which
were grounded for the measurements in this paper. By applying calibration fields in three orthogonal directions and
measuring the resulting Stark shift, we estimate the residual electric field to be around 60 mV/cm.

After transport, the atoms are optically pumped in a ∼ 5 G magnetic field along the dipole trap direction into the
state

∣∣6S1/2, F = 4,mF = 4
〉
. The magnetic field is subsequently reduced to 1 G and atoms are transferred to the

state
∣∣6S1/2, F = 3,mF = 0

〉
by an adiabatic sweep of a microwave field. We then apply a resonant light pulse on the∣∣6S1/2, F = 4

〉
−→
∣∣6P3/2, F

′ = 5
〉

transition to remove all residual F = 4 atoms.

B. Rydberg dressing and microwave parameters

To generate the 319 nm Rydberg dressing light, we start from a diode laser at 1276 nm that is used to seed a Raman
fiber amplifier. Light from the amplifier is resonantly doubled in two stages (LEOS Solutions), each consisting of a
nonlinear crystal in a bow-tie optical cavity. The frequency of the 319 nm light is stabilized by locking the seed laser
to a stable reference cavity. The focused dressing laser beam has a waist of 80 µm and, due to its incidence angle of
30 degrees with respect to the optical dipole trap axis, effectively addresses a 160 µm region of the atom cloud. For
a power of ∼ 320 mW, we measure a Rabi frequency Ω = 2π × 2.8 MHz.

We always apply the Rydberg light in a spin echo sequence consisting of two pulses separated by approximately
30 µs. This is enough time for a π pulse with our typical microwave Rabi frequencies of ΩMW = 2π × 25 kHz for
Fig. 2 in the main text and ΩMW = 2π × 18 kHz for Figs. 3 and 4 in the main text.

C. Detection and analysis

To perform state-sensitive fluorescence imaging, we first use light tuned to the |F = 4〉 −→ |F ′ = 5〉 transition to
image only the |F = 4〉 atoms. After this, we reapply the same pulse to resonantly expel any remaining |F = 4〉
atoms. We then reapply the resonant light and add light tuned to the |F = 3〉 −→ |F ′ = 4〉 transition to repump
and image the atoms that were initially in |F = 3〉. During imaging, we observe that approximately 7% of |F = 4〉
atoms also appear in the |F = 3〉 image due to a combination of off-resonant depumping during the first two pulses
and imperfect expulsion. Additionally we find 5% of all atoms in |F = 3,mF 6= 0〉 states due to imperfect optical
pumping; these atoms do not contribute to the experiment, as they are not affected by microwave pulses or Rydberg
dressing light. We account for both of the above effects in our calibration of the population difference 2Sz between
states |↑〉 = |F = 4,mF = 0〉 and |↓〉 = |F = 3,mF = 0〉.

We integrate the atomic signal over the transverse direction of the elongated atomic cloud. This averages atomic
sub-ensembles experiencing slightly different intensities of dressing light as the 319 nm laser beam is not perpendicular
to the atomic cloud. We bin the longitudinal direction of the cloud in 20 µm regions, a size comparable to the ∼ 10 µm
scale of thermal motion during imaging. In addition to this thermal motion, we observe center-of-mass motion on the
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scale of 60 µm/ms due to residual momentum from transport in the dipole trap and additional momentum imparted
by the optical pumping light. To limit the effects of motion on our experiments, we restrict the total duration of the
Ramsey and Floquet sequences to at most 325 µs. This leads to about 20 µm of motion during the longest Floquet
sequence, which is comparable to our binning size and does not noticeably affect the measured mean-field dynamics.

D. Choice of dressing parameters

FIG. S1. Optimizing Rydberg dressing parameters. (a) Calculation of C6 coefficients for
∣∣nP3/2, mJ = 3/2

〉
states, with

a 90 degree angle between the quantization axis and the interatomic axis [2]. The peak at n = 42 is due to a minimum in the
Förster defect between the

∣∣nP3/2;nP3/2

〉
and

∣∣nS1/2; (n+ 1)S1/2

〉
pair states. (b) Measured mean-field interaction strength χ

vs. detuning ∆ for
∣∣nP3/2

〉
states with n = 42, 43, and 44. The dressing light was applied for a total of τR = 20 µs. The black

dashed line shows the detuning chosen for the measurement of Ising interactions in Fig. 2 of the main text. The dot-dashed
lines show ∆F /2, where ∆F = -10, 42, and 85 MHz are the zero-field Förster defects for n = 42, 43, and 44, respectively. (c)
Measured contrast (blue circles) and normalized atom number (yellow squares) for n = 43 after the application of dressing
light for τR = 20 µs. (d) Measured total ac Stark shift measured for initial state |θ〉 = |π/2〉 (orange diamonds), compared
with interaction shift for initial state |θ〉 = |3π/4〉 (green triangles), after 20 µs of Rydberg dressing at ∆ = 2π × 19.5 MHz.
The green and orange lines are Gaussian fits to the data, which are used to extrapolate the total ac Stark shift in the limit of
a dilute system (blue line).

To identify optimal parameters for Rydberg dressing, we take measurements with three different Rydberg states,
all with Förster resonance-enhanced interactions. Figure S1(a) shows the theoretical enhancement of C6 coefficients
for

∣∣nP3/2

〉
states around n = 42, where there is a near-resonance between the energies of the

∣∣nP3/2;nP3/2

〉
and∣∣nS1/2; (n+ 1)S1/2

〉
pair states. We experimentally compare the interactions for states with n = 42, 43, and 44 by

measuring the mean-field interaction shift as a function of detuning ∆ from the
∣∣nP3/2,mJ = 3/2

〉
state [Fig. S1(b)].

To do so, we initialize the atoms in one of two spin-polarized states |θ±〉 = |π/2± π/4〉 tilted either above or below
the equator of the Bloch sphere. After applying the dressing light for a total time τR = 20 µs in the Ramsey sequence
with spin echo, we measure the difference in phase shift φ± − φ0 between the Rydberg-dressed region and a reference
region of the cloud that is unaffected by the dressing light. We thus obtain the mean-field interaction strength

χ = φ+−φ−√
2τR

. We find that the measured interaction strengths for n = 42, 43, and 44 only minimally differ. For all of

the measurements in the main text, we induce interactions by dressing with the
∣∣43P3/2

〉
state.

While for small detunings |∆| the measurements are dominated by loss, at larger detunings we observe a strong
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interaction-induced phase shift while the atom number and interference contrast remain high, as shown in Fig. S1(c)
for n = 43. On the red-detuned side of the Rydberg state resonance, we observe slightly smaller interaction strength
but higher atom loss extending to larger detunings due to resonant coupling to the doubly-excited

∣∣43P3/2; 43P3/2

〉
state. For the Ising interaction data in the main text, we chose to work at a detuning ∆ = 2π × 21.0(3) MHz, which
empirically produces large interactions while retaining high contrast and normalized atom number.

To assess whether we are working in a perturbative dressing regime, we compare the interaction phase shift to
the total light shift, as shown in Fig. S1(d). We measure the total light shift for the state |θ = π/2〉 by Ramsey
spectroscopy without spin echo (orange diamonds). Based on our measurement of the interaction shift under the
same parameters with initial state |θ = 3π/4〉 (green triangles), we can extrapolate the total light shift in the limit
of a dilute system (blue curve). Comparing the blue and orange curves shows a 30% suppression of the light shift for
the state |θ = π/2〉. This is a small enough fraction for a perturbative analysis of the dressing to be approximately
valid.

E. Effects of Dissipation

We observe dissipative effects in the measurement of Ising interactions presented in Fig. 2 of the main text, which
result in a mean-field interaction strength that is 3.5 times higher than predicted based on the calculated dressed
potentials and our atomic density. We attribute this primarily to incoherent excitation to the Rydberg state due to
the finite laser linewidth γL ≈ 2π × 40 kHz. This interpretation is supported by measurements in which we apply
the dressing light for the same total duration but divided into multiple short pulses with spin echo. In the limit
where each individual pulse is short compared with the Rydberg state lifetime, any atom incoherently excited to the
Rydberg state acts as a static field whose effect is removed by spin echo. Correspondingly, in sequences of short
pulses we observe an interaction-induced phase shift closer to the prediction for coherent Rydberg dressing. The
main text presents such measurements in the context of the Floquet sequence in Fig. 3(c). In Fig. S2, we present a
direct comparison between long dressing pulses and short pulses with multiple spin echos, under otherwise identical
conditions.
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FIG. S2. Comparison of long and short Rydberg dressing pulses. Measured twisting strength Q as a function of
dressing time for two experimental protocols, both with Ω ≈ 2π × 1.2 MHz and ∆ = 2π × 22 MHz. Long pulses (blue circles)
are implemented in a single spin-echo sequence with a Rydberg pulse time T = τR/2 for each half of the spin echo, corresponding
exactly to the sequence shown in Fig. 2(a) of the main text with a total dressing time τR. Alternatively, we implement up to
k = 4 spin echo sequences to achieve a total dressing time kτR with τR = 10 µs (red squares). The blue and red lines are obtained
by fitting the data to a model with the dissipative part described by Eq. S4, yielding (χcoh, γL) = 2π × (4.5(5), 100(20)) kHz.
The gray dashed line shows the contribution from coherent Rydberg dressing according to the fit value of χcoh.

The dependence of the measured mean-field shift on the number and duration of dressing pulses is well described
by a simple model that accounts for incoherent excitation to the Rydberg state. For a Lorentzian laser of linewidth
γL, the incoherent excitation rate is

γexc ≈
(

Ω

2∆

)2

γL ≡ ε2γL. (S1)
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Here, we have assumed that the laser linewidth is small compared to the detuning but large compared with the Rydberg
state linewidth, ∆� γL � Γ, and defined the dressing fraction ε2 = (Ω/2∆)2. As a function of dressing time t, the
incoherently-excited Rydberg state population NR initially increases as NR/N↑ = γexct, where N↑ is the population in
state |↑〉. A population NR/N↑ = ε2 suffices to suppress the average ac Stark shift induced by the dressing light by an
amount equal to the coherent Rydberg dressing effect. Correspondingly, the dissipative contribution to the twisting
strength that we measure in Ramsey spectroscopy becomes comparable to the coherent contribution for pulses of
length T & 1/γL. More precisely, the pulse length sets the maximum dissipative contribution to the mean-field shift,
arising in the worst-case scenario where an atom is excited to the Rydberg state at the beginning of the pulse and
decays at the end of the pulse, rather than surviving so long that its effect is cancelled by spin echo.

To model the effects of incoherent excitation, we consider a spin-echo sequence comprising two dressing pulses of
length T = τR/2 separated by a time tgap, during which we apply a π pulse to the ground states. At a time ti
measured from the beginning of the ith dressing pulse (where i = 1 or 2), the population in the Rydberg state due to
incoherent excitation at rate γexc is given by

NR,i(ti) = NR,i(0)e−Γti +
γexc

Γ
(S + Sz,i)

(
1− e−Γti

)
. (S2)

Here Sz,i denotes the value of Sz during the ith pulse, with Sz,2 = −Sz,1, where we assume that we remain in a weak-
excitation limit where Sz is to lowest order unchanged except by the spin-echo π pulse. The Rydberg state population
at the start of the second dressing pulse is related to that at the end of the first by NR,2(0) = NR,1(T )e−Γtgap , and
we assume NR,1(0) = 0.

To lowest order, the effect of an atom in the Rydberg state is to “turn off” the ac Stark shift from the dressing light
for the Nc neighboring atoms within the interaction range rc, where the Rydberg-Rydberg interaction significantly
increases the detuning. In the limit where the excitation fraction remains small, with NR/N < 1/Nc, the probability
of having a Rydberg atom within the critical radius rc of a given ground state atom is NR,i(t) ×Nc/N , where N is
the total number of atoms. The resulting contribution to the phase shift acquired in the spin-echo Ramsey sequence
is approximately

Φγ ≈
Ω2

4∆

Nc
N

[∫ T

0

dtNR,1(t)−
∫ T

0

dtNR,2(t)

]
. (S3)

Evaluating the integrals in Eq. S3, we find the dissipative contribution to the twisting strength to be

Qγ = S
dΦγ
dSz

≈ χcoh

ε2
γexc

Γ2

[
ΓT −

(
1− e−ΓT

)
− 1

2
e−Γtgap

(
1− e−ΓT

)2]
, (S4)

where χcoh ≈ NcΩ4/(16∆3) is the mean-field shift due to coherent Rydberg dressing (see Sec. II B).
Equation S4 yields intuitive results in simple limiting cases. For example, for Γtgap � 1, where spin-echo cancellation

fails because the Rydberg atoms decay before the second pulse, we obtain the limiting behaviors

Qγ/Qcoh
ΓT�1−−−−→ γLT

4
, (S5a)

Qγ/Qcoh
ΓT�1−−−−→ γL

2Γ
, (S5b)

where Qcoh = χcohτR = 2χcohT is the coherent twisting strength. Equation S5a shows that coherent interactions
dominate for pulses shorter than the laser phase coherence time. Furthermore, for short pulses applied in the limit
Γtgap � 1, where any Rydberg excitations created in the first pulse survive until the second, the ratio Qγ/Qcoh of
dissipative to coherent contributions vanishes even to first order in ΓT due to the spin echo.

In Figure S2, we compare the model above with measurements of the twisting strength for long and short pulses (blue
and red curves, respectively). We leave the excitation rate γexc and coherent twisting strength χcoh as free parameters
constrained to be common to both curves. The model includes the

∣∣43P3/2

〉
state linewidth Γ = 2π × 2.3 kHz and

experimental parameters tgap = (77 − τR/2) µs for long pulses or tgap = 32 µs for short pulses. The excitation
rate γexc that yields the best fit to our data corresponds to Lorentzian laser linewidth γL = 2π × 100(20) kHz. For
comparison, we estimate the linewidth of the dressing light to be approximately γL ≈ 2π×40 kHz, based on a measured
∼ 2π× 10 kHz linewidth of the seed laser, but have not directly measured the phase noise at high frequencies. Thus,
while incoherent excitation qualitatively accounts for the observed disparity in interaction strength, a quantitative
comparison would require a more detailed analysis of laser phase noise.

In principle, the excitation rate γexc can also be increased by blackbody decay to other Rydberg states, as has
been observed in Refs. [3–6]. Any atoms that have decayed to S or D states can perturb the energy levels of nearby
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Rydberg P states, which may then be shifted onto resonance with the dressing light. We estimate the rate at which
blackbody decay results in these perturbing atoms. For short times γexct < 1, the Rydberg state population is given
by NR = γexcN↑t. In this limit the rate of creation of perturbing atoms is dNBB

dt = γBBNR for blackbody transition
rate γBB . Thus, the approximate timescale for the creation of the first perturbing atom is given by

tBB =

√
2

γexcγBBN↑
. (S6)

Using a total blackbody transition rate of γBB = 2π × 1.5 kHz [2] and an average atom number N↑ = 1500 in the
interacting region of the cloud, we retrieve tBB ≈ 17 µs. This time scale is comparable to the longest of our Rydberg
pulses, indicating that blackbody decay is not the dominant source of dissipation in our experiment, but may slightly
increase the excitation rate.

To estimate the effect of a single perturber atom, and to compare it with the coherent interactions in our system,
we consider the ranges of influence rn ≡ (Cn/∆)1/n of the dipole-dipole interactions (n = 3) associated with any
perturbing atoms and the van der Waals interaction (n = 6) responsible for the Rydberg-dressed potential. In our
experiment, the characteristic range r3 ≈ 4 µm of the dipole-dipole interactions is about twice the average interparticle
spacing, which allows only few neighboring atoms to be affected by a given perturber atom. What allows us to work
with a relatively large interparticle spacing is the choice of a Rydberg state where C6 is enhanced by the small Förster
defect [Fig. S1(a)], which results in an appreciable interaction strength at a characteristic range r6 ≈ r3. Thus, we
are able to achieve strong interactions without being dominated by avalanche effects. We do, however, see a higher
loss rate than the excitation rate from the fit in Fig. S2 would naively predict, which remains a subject for future
investigation.

F. Fundamental limits on coherence of interactions

Fundamental limits on the coherence of Rydberg-dressed interactions are set by the Rydberg state linewidth Γ rela-
tive to one of two characteristic energy scales: the Rydberg-Rydberg interaction VR(a) at a characteristic interatomic
spacing a, or the Rabi frequency Ω achievable for coupling to the Rydberg state. With currently available technology,
the limiting factor is the Rabi frequency, which sets the strength J0 = Ω4/

∣∣8∆3
∣∣ of the Rydberg-dressed interactions

for atoms within the critical radius rc. Comparing with the linewidth γ = (Ω/2∆)2Γ of the Rydberg-dressed state
yields an interaction-to-decay ratio J0/γ = Ω2/(2∆Γ). For our perturbative analysis of the dressing to be valid, we
have assumed that the dressing fraction ε2 = (Ω/2∆)2 satisfies ε2Nc < 1, where Nc represents the number of atoms
within the interaction range. We thus arrive at theoretical limits

J0

γ
<

1√
Nc

Ω

Γ
, (S7a)

χ

γ
<
√
Nc

Ω

2Γ
(S7b)

on the pairwise interaction strength J0 and the mean-field interaction strength χ. With our current parameters,
Ω/Γ ∼ 103, which could readily be increased to Ω/Γ ∼ 104 for 1D spin chains by focusing the dressing light to an
8 µm waist.

To compare our current experimental status with the prospects described above, it is helpful to consider the ratios
of the coherent interaction strength χcoh to three different dissipation rates: the laser linewidth γL, the incoherent
excitation rate γexc = ε2γL, and the intrinsic linewidth γ of the Rydberg-dressed state. In the main text, we operate
with a typical strength χcoh ≈ 2π × 5 kHz of the coherent mean-field interaction, compared with an effective laser
linewidth γL = 2π× 100 kHz obtained from the fits in Fig. S2, yielding χcoh/γL = 1/20. The small ratio χcoh/γL < 1
explains why the dressing light must be applied in multiple short pulses to reach a large coherent twisting strength
Qcoh > 1 without the dissipative contribution becoming dominant. Even so, at our typical dressing fraction ε2 ≈ 1/400,
the larger ratio χcoh/γexc = 20 explains why a coherent twisting strength Qcoh > 1 can be achieved before the bulk of
the atoms are excited to the Rydberg state and expelled from the trap. Finally, the ratio χcoh/Γ ≈ 900 comes close
to the bound derived in Eq. S7a. Obtaining the full benefit of this ratio requires reducing the laser linewidth below
the Rydberg state linewidth Γ.
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G. Rydberg interaction range

To estimate how much of the contrast decay that we observe in our experiment results from the finite interaction
range, we compare the data in Fig. 2(d) with a theoretical model of contrast decay as a function of twisting strength
Q(τR). We consider one spin interacting with Nc other spins with a pairwise interaction strength that is constant
within the interaction radius and zero everywhere else. This enables us to derive an analytic expression C = 〈Sx〉/S =
cos(Q/Nc)

Nc for the contrast [7], which we can use to find the best-fit Nc from the decaying contrast data. As shown
in Fig. 2(d), we fit Nc = 14. We interpret this as a lower bound on the number of atoms within the interaction
range, since a shorter-range interaction would result in faster contrast decay. For comparison, we estimate that the
actual number of atoms within the interaction range is Nc ∼ 30, based on the density, calculated dressed potentials,
and mean-field interaction strength measured in the Floquet sequences. Thus, the observed contrast decay is only
partially accounted for by the finite interaction range.

The fact that the actual contrast is lower than predicted by the model of coherent Rydberg dressing is not surprising
in light of the significant dissipative contribution to the twisting strength that we observe in Fig. 2 (and describe in
greater detail in Sec. I E). The dissipative effect is spatially inhomogeneous as it depends on the locations of atoms
incoherently excited to the Rydberg P state as well as any products of blackbody decay, and thus can explain the
lower contrast that we observe.

H. Fitting the mean-field model to measured trajectories

To fit the values of Λ in the mean-field model to the transverse-field Ising dynamics data presented in the main text
[Fig. 3(a)], we extract the positions of the fixed points θfix where φ = 0. We fit a third order polynomial to the final
φ vs. initial θ for different numbers of Floquet cycles and regions of interest. We average θfix over different numbers
of Floquet cycles to arrive at our final fit value of Λ, using Eq. S19, for each region of interest.

II. THEORY

A. Interaction potentials

In order to calculate the dressed ground state interaction potentials, we first calculate the Rydberg pair state
potentials with the Alkali Rydberg Calculator (ARC) [2] and then use perturbation theory as in Ref. [8] to calculate
the dressed potentials.

We calculate the Rydberg pair potentials by exact diagonalization of the dipole-dipole interaction Hamiltonian for
Rydberg pair states |αα′〉 ≡ |n,L, J,mJ ;n′, L′, J ′,m′J〉. We include pair states with 41 ≤ n, n′ ≤ 45, 0 ≤ L,L′ ≤ 3,
and a maximum energy difference of 20 GHz between the pair state and

∣∣43P3/2,mJ = − 1
2 ; 43P3/2,mJ = 1

2

〉
. The

ranges were chosen to ensure convergence of the dressed potentials. A magnetic field of 1 G defining the quantization
axis is included in these calculations to match the experiment. Since the interaction potentials are anisotropic, we
show Rydberg pair potentials for ϕ = 0 and ϕ = π/2, where ϕ is the angle between the quantization axis and the
interatomic axis [Fig. S3(a)]. The coloring of the pair states is the two-photon Rabi frequency Ωψ(r) between |↑↑〉 and
the Rydberg pair eigenstate |ψ(r)〉:

Ωψ(r) =
∑
α,α′

〈ψ(r) |αα′〉 Ω↑αΩ↑α′

2

(
1

ωL + (E↑ − Eα)/~
+

1

ωL + (E↑ − Eα′)/~

)
. (S8)

In this equation, r is the distance between the two atoms, ωL is the frequency of the dressing laser, E↑ and Eα are
single-atom energies, and Ω↑α is the single-atom Rabi frequency between |↑〉 =

∣∣6S1/2, F = 4,mF = 0
〉

and |α〉.
The effect of the Rydberg interactions on the energy of a pair of ground-state atoms |↑↑〉 arises at fourth order

in perturbation theory. We can understand it as a reduction in the total ac-Stark shift when the Rydberg-Rydberg
interactions cause |ψ(r)〉 to be shifted out of resonance with the dressing light. The energy shift U of |↑↑〉 is

U(r) =
~
4

∑
ψ(r)

|Ωψ(r)|2

2ωL − Eψ(r)/~
, (S9)

where Eψ(r) are the energies of the Rydberg pair eigenstates. Since our ground state |↑〉 is a superpostion of two
states with different nuclear spin, we must account for both nuclear spin states. We write our ground state as
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FIG. S3. Interaction potentials. (a) Rydberg pair potentials calculated by exact diagonalization for ϕ = 0 and ϕ = π/2.
The coloring is the two-photon Rabi frequency between |↑↑〉 and the pair eigenstate. (b) Dressed potentials for our experimental
parameters at ϕ = 0 and ϕ = π/2. Potentials are calculated for (Ω,∆)/(2π) = (1.9, 21) MHz (light green), (2.8, 25.3) MHz
(medium green), and (2, 16) MHz (dark green). The parameters for the light and medium green curves match Fig. 2 and Fig. 3,
respectively, of the main paper. The dark green shows a representative shape of the potential in the absence of the resonances.
(c) Plot of dressing potential by distance r and angle ϕ for (Ω,∆)/(2π) = (2, 16) MHz.

|↑〉 = 1√
2

( ∣∣6S1/2,mJ = 1
2 ,mI = − 1

2

〉
+
∣∣6S1/2,mJ = − 1

2 ,mI = 1
2

〉 )
. The σ+ dressing laser couples this state to both∣∣43P3/2,mJ = 3/2,mI = −1/2

〉
and

∣∣43P3/2,mJ = 1/2,mI = 1/2
〉
. Our measured Rabi frequency has contributions

from both of these states, so we account for the state coefficients and the relative dipole matrix elements in our
calculations of the Rabi frequencies Ω↑α.

Figure S3(b) shows representative dressed potentials J(r) = [U(r) − U(∞)]/~ for ϕ = 0, π/2 and three pairs of
detunings and Rabi frequencies (Ω,∆)/(2π) = (1.9, 21) MHz, (2.8, 25.3) MHz, and (2, 16) MHz, which correspond
to the data in Fig. 2, the data in Fig. 3, and a reference calculation, respectively. The detunings used for the
measurements in the main text were greater than half the Förster defect ∆F . This means that for some distance r,
the laser is on two-photon resonance with the

∣∣43S1/2; 44S1/2

〉
pair state that is hybridized with the nearly Förster-

resonant P states. This causes sharp resonances in the calculated dressed potentials. We expect these resonances to
be averaged out by atomic motion, as illustrated schematically in Fig. 1(b) in the main text. The reference calculation
with ∆ = 2π × 16 MHz < ∆F /2 shows the shape of a similar dressed potential without resonances. Experimentally,
we do not see a noticeable difference in interaction strength with similar parameters at a nearby state of principal
quantum number n = 44 where ∆ < ∆F /2, as shown in Fig. S1(b). Thus, we infer that the resonances do not
appreciably affect the mean field felt by each atom.

In order to estimate the theoretical mean-field energy shift on an atom, we find an (Ω,∆) pair that gives the same J0

value as that from the measured Rabi frequency and detuning. This gives a reference potential that is similar in shape
to a smoothed version of the potential for our experimental values of Ω and ∆. We calculate these potentials for 100
different angles 0 ≤ ϕ ≤ π and integrate under these curves in three dimensions (accounting for the 2π symmetry in
the azimuthal angle). We thus obtain the theoretical prediction χth = −(ρ/2)

∫
J(r)d3r for the measured interaction

strength at density ρ, based on the relationship between χ and J derived in Sec. II B. We perform this calculation
with two separate reference potentials, one for the data in Fig. 2 and one for the data in Fig. 3.
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B. Derivation of mean-field model

To derive an effective Hamiltonian governing the spin dynamics in our experiment, we first consider N spins subject
to the Ising Hamiltonian

H =
1

2

∑
i,j 6=i

Jijs
z
i s
z
j , (S10)

where Jij = J(ri − rj) is the interaction strength between spins i and j and we set ~ = 1. This Hamiltonian governs
the dynamics of the spins in our experiment under the condition that we cancel out any terms linear in sz by using a
spin echo sequence. To understand the spin dynamics, it is sufficient to look at the time dynamics of the s± operators
because the Ising Hamiltonian conserves all sz.

We analyze the dynamics in the Heisenberg picture where the time dependence of the operator s±n for spin n is
given by

ṡ±n = i
[
H, s±n

]
(S11a)

=
i

2

∑
i,j 6=i

Jij(s
z
i [s

z
j , s
±
n ] + [szi , s

±
n ]szj ) (S11b)

= ±i
∑
i6=n

Jins
z
i s
±
n . (S11c)

Defining the total spin of N atoms in a designated region of the atomic cloud as S =
∑
n sn and summing the previous

equation, we obtain:

Ṡ± = ±i
∑
n

∑
i 6=n

Jins
z
i s
±
n . (S12)

In the limit where each spin interacts with many neighboring spins around it, a lowest-order approximation is to replace
szi with its mean value 〈szi 〉, ignoring quantum fluctuations and correlations. Note that this number of neighboring
spins is smaller than the total number of atoms N considered, due to the finite interaction range. Under the additional
assumption that all N spins in the region of interest are subject to the same environment (i.e., same average density

and polarization of the surrounding spins), we can write 〈szi 〉 =
∑
j〈s

z
j 〉

N = 〈Sz〉
N . In the limit of large total spin S we

can make a substitution 〈Sz〉 = Sz leading to:

Ṡ± ≈ ±
iSz
N

∑
n

∑
i 6=n

Jins
±
n . (S13)

Finally, we define χ in terms of the sum of the interaction strengths:

χ ≡ χn = −1

2

∑
i 6=n

Jin, (S14)

where we choose a sign convention such that χ is positive for the ferromagnetic interactions studied here. We thus
obtain the equation governing the mean-field dynamics of S±:

Ṡ± ≈ ∓
2iχ

N
SzS±. (S15)

The dynamics derived here are the same as those under the one-axis twisting Hamiltonian H = − χ
N S

2
z [9].

To relate χ to the measured twisting strength Q, we can derive the dynamics of the S± operators from Equation S15:

S±(t) = e∓
2iχ
N SztS±(0). (S16)

The phase φ = − 2χ
N Szt directly corresponds to the phase of the average Bloch vector evolving under the Ising

Hamiltonian in our experiment. Substituting N = 2S in this equation, we find φ = −χtSzS = −χt cos θ. More

generally, even if the interaction strength χ is time dependent, we obtain φ̇ = −χ(t) cos θ. Using the definition of Q

from the main text, where φ = −Q cos θ, we arrive at the relation χ = Q̇.



9

C. Fixed points of the transverse-field Ising model

To calculate the fixed points of the transverse-field Ising model in the mean-field limit, we consider the dynamics
of the Hamiltonian derived in the previous section with an added global transverse field:

H = − χ
N
S2
z − hSx. (S17)

From the Heisenberg equation of motion Ṡ = i[H,S], we determine the time evolution of each spin component:

Ṡx = −i χ
N

[S2
z , Sx] =

χ

N
(SzSy + SySz) (S18a)

Ṡy = −i χ
N

[S2
z , Sy]− ih[Sx, Sy] = − χ

N
(SzSx + SxSz) + hSz (S18b)

Ṡz = −ih[Sx, Sz] = −hSy. (S18c)

To find fixed points, we solve for Ṡ = 0. From Ṡz = 0, it follows that all fixed points have Sy = 0. From Ṡy = 0, we

have Sz = 0 or Sx = hN
2χ = hS

χ . For non-trivial fixed points at Sz 6= 0 to exist, the mean-field interaction strength

and the transverse field must satisfy h/χ ≤ 1, with the critical point at h = χ.
It is thus natural to define the parameter Λ = χ

h , which fully determines the dynamics of the normalized Bloch
vectors S/S, including the critical point at Λ = 1 and the positions of the fixed points. The coordinates of the fixed
points are then given by

S/S = (1/Λ, 0,±
√

1− 1/Λ2) (S19)

for |Λ| > 1. In addition, there is always a trivial fixed point at

S/S = (1, 0, 0), (S20)

which is stable below the critical point and unstable above it.
Note that the definition of Λ must be modified to apply to the Floquet sequence in the main text. Since both the

interaction and rotation per cycle are small, the effective Hamiltonian is equivalent to the static transverse field Ising
model considered here, except with Λ = χτR/(hτX). In this definition, τR and τX denote time for which we apply
Ising interactions and rotations, respectively.

D. Effects of finite contrast

In the experiment, we measure the mean spin components normalized according to the total number of atoms N
remaining at the end of the sequence: Sx/S, Sy/S and Sz/S, where N = 2S. We observe the mean normalized spin
length |〈S〉| /S = C to be less than 1 and dependent on the number of Floquet cycles. The reduction of mean spin length
affects the condition for the existence of the non-trivial fixed points, as any single normalized spin component cannot
be larger than C. From the prediction for the x-component of the fixed points |Sx/S| = 1/Λ, we arrive at a condition

|Λ| ≥ 1/C. The coordinates of the fixed points are then also modified as Sz =
√

(CS)2 − S2
x = CS

√
1− 1/(CΛ)2.

Therefore the coordinates of the non-trivial fixed points are:

S/(CS) = (1/Λeff, 0,±
√

1− 1/(Λeff)2), (S21)

where Λeff = CΛ. This definition of Λeff implies that the ratio of independently measured χ and h must be scaled by
the value of the reduced contrast C to compare the mean-field model to experimental data.
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