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This supplement provides supporting derivations and details of the experimental methods. In Sec. I, we derive
the implemented Hamiltonian and present a simple toy model for the protection of spin coherence. In Sec. II, we
elaborate on the experimental sequences and calibrations of atom-cavity coupling and atom number. In Sec. III, we
elaborate on the data analysis and modeling.

I. THEORETICAL BACKGROUND

A. Derivation of Tunable Heisenberg Hamiltonian

A theoretical derivation of the cavity-mediated Heisenberg Hamiltonian has been presented in Ref. [1], building on
our implementation and analysis for the special case of the XY model in Ref. [2]. Here, we review and expand upon
the derivation of the effective spin model

HXXZ = Jxy(Θ)
(
F2
x + F2

y

)
+ Jz(Θ)F2

z , (S1)

where F is the weighted collective spin defined in the main text. We focus on the relationship of the couplings Jxy,z

to experimental parameters.
The spin-spin interactions arise from a Faraday interaction between the atoms and the cavity field

HI = Ω
(
a†+a+ − a†−a−

)
F · ẑc, (S2)

where a± represent a pair of circularly polarized cavity modes with respect to the cavity axis ẑc, and Ω is the average
vector ac Stark shift per intracavity photon. Only the spin projection along the cavity axis ẑc interacts with the light
field. For a cavity driven with linearly polarized light at frequency ωd, detuned by δ = ωd−ω0 from cavity resonance,
we can expand the atom-cavity interaction Hamiltonian to first order in fluctuations of the vertically polarized cavity
mode v to obtain:

HI ≈
Ω√

(κ/2)2 + δ2

(
εe−iδtv† + h.c.

) [
Fz cos Θ +

1

2

(
F+e

iωzt + F−e−iωzt
)

sin Θ

]
, (S3)

where ε parameterizes the drive strength. Provided the occupation of the v mode remains small, we can adiabatically
eliminate it from the dynamics to arrive at an effective Hamiltonian for the spins:

Heff = Ω2n

[
FzFz ξ(δ) cos2 Θ +

1

4
F+F− ξ(δ−) sin2 Θ +

1

4
F−F+ ξ(δ+) sin2 Θ

]
(S4)

where n = |ε|2/[δ2 + (κ/2)2] is the average intracavity photon number, δ± = δ ∓ ωZ are the detunings from Raman
resonances at δ = ±ωZ , and ξ(δ) = δ/[δ2 + (κ/2)2].

The effective Hamiltonian Heff in Eq. S4 is related to HXXZ by

Heff = HXXZ +
1

4
Ω2n

∑
i

c2i f
z
i [ξ(δ−))− ξ(δ+)] (S5)

where the second term is negligible for large F and vanishes in the limit of large detuning δ± � ωZ . For arbitrary
detuning, Eq. S4 shows that the couplings Jxy,z take the form

Jxy = nΩ2Ax,y(Θ, δ) (S6a)

Jz = nΩ2Az(Θ, δ). (S6b)

Here, the dependence on tuning angle Θ and detuning δ is captured by the functions

Az(Θ, δ) = ξ(δ) cos2 Θ, (S7a)

Axy(Θ, δ) =
sin2 Θ

4
[ξ(δ−) + ξ(δ+)] . (S7b)
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FIG. S1: Dependence of interactions on detuning for (κ, ωZ) = 2π× (0.2, 2.1) MHz. (a) The functions Axy(Θ = π/3, δ) (green)
and Az(Θ = π/3, δ) (blue) are plotted here at fixed Θ to show that all four relative signs of XY and Ising couplings are
accessible. (b) We zoom in on the functions Axy(Θ = π/2, δ) (green) and Az(Θ = 0, δ) (blue), which determine the strengths
of XY and Ising couplings, at larger detuning. In the large detuning limit, Az(0, δ)/Axy(π/2, δ) = 2. Our drive field (purple)
is typically placed around δ/2π ∼ 5 MHz, where this ratio is 1.6.

They are plotted for Θ = π/3 in Fig. S1a, illustrating that all four relative signs (++), (−−), (+−), (−+) of the
Ising and XY couplings are achievable by adjusting the drive detuning. The couplings at large detuning δ � κ, ωZ
compared to the cavity linewidth κ and Zeeman splitting ωZ are plotted in Fig. S1b. In this regime, Eq. S5 simplifies
to

Heff =
nΩ2

δ

[
cos2 ΘF2

z +
1

2
sin2 Θ

(
F2
x + F2

y

)]
, (S8)

and Jz(0)/Jxy(π/2) = 2. For the drive detunings δ ≈ 2π × 5 MHz used for the measurements in Fig. 2c of the main
text, we expect a ratio of 1.6, consistent with the displayed fits.

B. Model for Dephasing

Here we present an estimate of the critical interaction strength for protecting spin coherence in a simplified system.
We consider a collection of atoms in which the only source of inhomogeneity is a field along ẑ that takes on values
+hz ẑ and −hz ẑ in two different regions of the cloud. We assume that the collective spin vectors S1 and S2 in these
two regions are both initially polarized along x̂ and analyze their response to the inhomogeneous field. The total
Hamiltonian is

HXXZ/~ +Hinh/~ = Jxy(Θ)
[
F 2
x + F 2

y

]
+ Jz(Θ)F 2

z +
∑
i

hi,zSi,z, (S9)

where F =
∑
i Si is the equally weighted sum of the two collective spin vectors. Fz commutes with the Hamiltonian

and is thus conserved. The system is also invariant under exchange of the two spins followed by a 180 degree rotation
about x̂. Due to this symmetry, we can describe the whole system with the three components (Sx, Sy, Sz) of a single
collective spin. Ignoring quantum fluctuations, the other spin has components (Sx,−Sy,−Sz) and the total spin is
F = (2Sx, 0, 0).

The dynamics of the spin S are constrained by two more conserved quantities: the length of each collective spin
and the total energy of the system. The equation for each collective spin, S2 = S2

x + S2
y + S2

z = const, maps out the
surface of a Bloch sphere. The total energy is given by the Hamilitonian, which using the classical expression for the
total spin reduces to 4Jxy(Θ)S2

x + 2hzSz = E.
We plot projections of constant energy contours on the surface of the Bloch sphere in the equatorial plane in

Fig. S2. These contours are qualitatively different for values of Jxy above and below the critical point in this model,
Jxyc = 2hz/S. When SJxy < 2hz, the contours encircle the north pole of the Bloch sphere, permitting dephasing.
For larger values of Jxy(Θ), the contours break into two disjoint cycles and the two collective spins remain localized,
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FIG. S2: Toy model for critical interaction strength. Contours of constant energy are sketched on the Bloch sphere as
viewed from the north pole, for spins initially aligned with x̂. The critical interaction strength (thick green curve) is labeled.
Above this critical strength, the phase evolution of a single spin (S1 or S2) along a constant-energy contour remains between
φ± = ±π/4, bounding the angle between spins S1 and S2 to be at most φ+ − φ− = π/2.

.

bounding the phase accumulation between them. This approach agrees with the scaling of the estimate based on the
energy gap.

II. EXPERIMENTAL METHODS

A. Preparation and Detection

The atoms are cooled and trapped in a magneto-optical trap in the center of the cavity, and then loaded into the
trapping lattice after an optical molasses cooling stage. In lieu of optical pumping, atoms not in |f = 1,mf = −1〉
are removed by adiabatically sweeping mf = 0, 1 atoms into the f = 2 manifold, then pushing them out of the
trap with resonant light on the

∣∣5S1/2, f = 2
〉
→
∣∣5P3/2, f

′ = 3
〉

transition. We thus obtain a spin-polarized state in
|f = 1,mf = −1〉, which forms the starting point for preparing any desired spin texture using the focused scanning
Raman beam (Fig. S3). After state preparation, the magnetic field is tuned to the angle Θ, and the drive laser is then
switched on to generate interactions. Throughout the interaction time, the trap depth is h× 5 MHz corresponding to
a transverse trap frequency of 1.5 kHz.

We perform state detection by measuring the three spin components (〈fx〉, 〈fy〉, 〈fz〉) in three separate runs of the
experiment. In order to measure the magnetization 〈fz〉 ≡ ρ1−ρ−1, where ρk is the local atomic density in the mf = k
Zeeman level, we perform state-sensitive imaging in each of the three Zeeman levels mf = ±1, 0. Sequentially, we
transfer each mf population into f = 2 with an adiabatic microwave sweep and perform fluorescence imaging on the∣∣5S1/2, f = 2

〉
→
∣∣5P3/2, f

′ = 3
〉

transition, simultaneously lowering the trap so the imaged atoms are kicked out of
the trap by the imaging light. In order to measure the transverse spin components 〈fx〉 or 〈fy〉, we image after an
additional global Raman π/2 pulse with phase 0 or π/2, respectively, to rotate the transverse spin component into
the z-basis.

We calibrate our imaging pulses by measuring Rabi oscillations induced by a global Raman beam. The distribution
of atoms in the three mf levels during these oscillations reveals systematic errors including atom loss on each imaging
pulse and imperfect removal of previously imaged states, as well as residual atoms initially in mf 6= −1. To characterize
these errors, we optimize a 3× 3 matrix M to minimize

∑
t(Mρmeas(t)− ρtheory(t))2. Here, ρ is a vector specifying

the populations in the three Zeeman states and ρtheory describes Rabi oscillations of full contrast, as justified by the
measured Rabi coherence time. Assuming that the imperfections in imaging and state preparation are constant for a
given data run, we then apply M on all measured data to accurately determine the magnetization.
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B. Atom-Cavity Coupling

Here we derive the dimensionless weights c(ζ) parameterizing the spatial dependence of the Faraday coupling of
atoms to the cavity mode. These weights depend both on the position ζ = zc/zR at which the atoms are pinned by
the 1560 lattice and on the temperature, which determines the radial and axial distributions of atoms within each
lattice site.

As a function of distance from cavity center zc and radial distance r from the optical axis, the intensity profiles
(neglecting wavefront curvature) for the two modes are given by

I/Imax = (w0/w)2e−2r2/w2

cos2(kzc − ψ), (S10)

where ψ(ζ) = tan−1(ζ) is the Gouy phase shift and w(ζ) = w0

√
1 + ζ2 is the waist. The Rayleigh range zR = 1.4 mm

is determined by the cavity geometry and is the same for both lattices. The wavenumbers and waists for the two
lattices are related by k780 = 2k1560 and w780(ζ) = w1560(ζ)/

√
2.

Atoms imaged at position ζ are trapped around the nearest antinode of the 1560 nm lattice, zpeak = (nπ +
ψ(ζ))/k1560. Approximating the trap potential as harmonic near the antinode, the thermal distribution of atoms is

P (∆z, r) ∝ e−(k1560∆z)2/τe−2(r/w1560)2/τ , (S11)

where ∆z ≡ zc−zpeak and τ is the temperature normalized to trap depth at a given position ζ. For the same trapping
site at position ζ, the intensity of the 780 nm drive mode is

I780(∆z, r) =
Imax

1 + ζ2
e−2r2/w2

780 cos2(k780∆z + ψ(ζ)). (S12)

We compute the couplings c(ζ), normalized to the coupling cmax of an atom at cavity center (zc = r = 0), by averaging
the intensity of the light field over the distribution of atoms,

c(ζ)

cmax
=

∫
I780(∆z, r)P (∆z, r)d3r∫

ImaxP (∆z, r)d3r
=

1

1 + 2τ

[
e−4τ

(1 + ζ2)
2 +

1

2

1− e−4τ

1 + ζ2

]
. (S13)

The factor 1/(1+2τ) comes from comparing the radial distribution to the waist of the drive mode while e−4τ compares
the width of the axial distribution to the lattice spacing. When atoms are warm, they experience an averaged probe
coupling that decays as w−2. When the atoms are cold, coupling to the drive mode at cavity center is higher, but the
offset between the maxima of the trapping lattice and the maxima of the drive mode (due to the Gouy phase shift)
causes coupling to decay more quickly as w−4.

The functional form of the couplings in Eq. S13 is corroborated by spectroscopic measurements of the vector light
shift, similar to the measurement described in Ref. [2]. Fitting the spatial dependence of the vector light shift yields
a temperature parameter τ = 0.3(1). When the couplings are normalized such that their average value is 1, the
maximum coupling becomes cmax = Ω0/Ω. We compute Ω0 from g as in the main text. For a maximally coupled
atom at cavity center, g2 = 6ΓωFSR/(πk

2
780w

2
0) where Γ = 2π × 6.07 MHz is the linewidth of the transition and

ωFSR = 2π × 3.0 GHz is the free spectral range of the cavity [3]. The waist of the 780 nm mode is w0 = 18.6 µm,
calculated from the measured transverse mode spacing. These values yield 2g = 2π × 2.5 MHz corresponding to
Ω0 = 2π × 23 Hz. We then determine Ω using Eq. S13 with our measured value for τ .

C. Cavity Shift and Atom Number

We calibrate the atom number by measuring the dispersive shift of the cavity resonance frequency, which is pro-
portional to the total weighted atom number N . In particular, in addition to the Faraday interaction that generates
birefringence proportional to Fz, the Hamiltonian includes a term

Hs = 4ΩN
(
a†+a+ + a†−a−

)
. (S14)

This term describes a common-mode shift of the σ+ and σ− cavity resonances that depends on the number of coupled
atoms

∆ω ≡ ω0(N)− ω0(0) = −4ΩN. (S15)
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In the main text, we let ω0 ≡ ω0(N) represent the atom-shifted cavity resonance frequency for total weighted atom
number N . For the measurements in the main text, we typically measure ∆ω ≈ −2π×2.5 MHz. In combination with
our determination of the average single-photon vector light shift Ω (Sec. II B), we use ∆ω to calibrate the total atom
number, and to calibrate the number of counts per atom obtained in images of the magnetization.

D. Experimental Sequences

In this section, we give further details describing the experimental sequences used throughout the main text. In
particular, we give numerical values for relevant experimental parameters and provide qualitative illustrations of the
pulse sequences and time-changing parameters for conceptual clarity.

Hamiltonian tomography. The sequences used for Hamiltonian tomography as shown in Fig. 2 of the main text
are illustrated in Fig. S3. These measurements were performed in a 3 G field. To measure the Ising coupling or XY
couplings, the state |ψz〉 or |ψy〉 is prepared via both local and global Raman rotations. The weighted probe spins in
regions B and C point in opposite directions and are equal in length to within 5% of the total weighted spin vector.
After preparation of the target initial state, the drive laser is then switched on for tint to generate interactions. A
final global π/2 pulse with phase ϕ = 0 (π/2) then rotates the desired quadrature x (y) into the population basis,
whence it is measured with the detection sequence described in Sec. II A. Alternatively, 〈fz〉 can be measured directly
without the extra π/2 rotation.

For measurements of the Ising coupling, an optional spin echo may be performed by adding a global π pulse halfway
through the interaction time (Fig. S3a). The spin echo ensures that the measured spin precession is solely due to
interactions, and would cancel the effect of any circular polarization of the intracavity light that is independent of the
atomic magnetization. In the main text, all measurements of Jxy,z(Θ) in Fig. 2(c) were performed with spin echo,
and are consistent with the measurement in Fig. 2(a) that is performed without spin echo.

The location of the atom cloud shifted between measurements of the XY and Ising couplings, resulting in slightly
different optimal choices for the regions A,B,C.
Magnetic susceptibility. The sequence for measuring susceptibility as in Fig. 3 of the main text is illustrated in

Fig. S4a. We prepare the ground state of an effective field H0 = hxFx + hzFz. The interactions are then ramped on,
thus preparing a low-energy state of Htot = HXXZ + H0 (but not the quantum ground state). Finally, the effective
field and interactions are simultaneously quenched off and 〈fz〉 is measured immediately. These measurements were
performed in magnetic fields ranging between 1 and 3 G.

Dephasing and gap protection. The sequence for measuring dephasing as in Fig. 4 of the main text is
illustrated in Fig. S4b. We prepare the ground state of H0 = hxFx +

∑
i hi,zfi,z, where hi,z varies linearly across the

cloud as hz(ζ) = µζ. The interactions are then ramped on, and the spins evolve under HXXZ +
∑
i hi,zfi,z for a time

0 ≤ twait ≤ 1 ms before the measurement of 〈fx〉, 〈fy〉, 〈fz〉. These measurements were performed in a 1 G field.
Experimental timescales. In each of the measurement sequences described above, the choice of overall timescale

for the experiment is governed by technical considerations. The timescale for the experiments in Fig. 2 is lower-
bounded by our timing resolution and the cavity lifetime, i.e. we cannot resolve time steps smaller than a few
microseconds. The experiment length is upper-bounded by several factors, including inhomogeneous broadening due
to a residual external magnetic field gradient and transverse atomic motion. We chose the timescale for the data in
Fig. 2 to lie between these two limits. In Figs. 3 and 4, the timescale is somewhat longer and lower-bounded by the
Rabi frequency of the Raman coupling and the magnetic field gradient.

III. ANALYSIS AND MODELING

A. Mean-Field Simulations of Dynamics under HXXZ

To verify our understanding of the dynamics used for Hamiltonian tomography, we simulate the evolution under
HXXZ in a mean-field approximation. The mean-field dynamics are obtained by computing the Heisenberg equations
of motion dO/dt = i[H,O] and substituting O → 〈O〉, thus ignoring all higher-order correlations. Concretely, we
numerically simulate a system with β spatial modes along the cavity axis by solving 3β coupled differential equations
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FIG. S3: Sequences for measuring Ising and XY Couplings. (a) To measure the Ising coupling, |ψz〉 is prepared by scanning
a focused Raman beam of variable amplitude and phase (yellow) across the cloud. Locally, it performs a π/2 rotation with
the desired phase such that the spins point along x̂ (ϕ = 0) or −x̂ (ϕ = π) in regions B and C. To leave the atoms in region
A pointing down along −ẑ, the Raman amplitude is locally set to zero. The drive laser is then switched on for a time tint

(pink) to generate interactions. The optional spin echo consists of a π pulse applied with a global Raman beam (orange) in the
middle of tint. A final global π/2 pulse (orange) then rotates the desired quadrature x (y) into the population basis and the
mf = ±1, 0 populations are measured (black). (b) To measure the XY coupling, the state |ψy〉 is prepared by making |ψz〉 as
in (a). The −ẑ spins are then rotated by a global π/2 pulse about −x̂ (orange) to point along −ŷ. The drive laser is switched
on for time tint, after which the populations in mf = ±1, 0 are measured (black).

for (〈fx〉, 〈fy〉, 〈fz〉):

d〈fx(t, ζ)〉
dt

= −2c(ζ) [JzFz(t)〈fy(t, ζ)〉 − JxyFy(t)〈fz(t, ζ)〉] (S16a)

d〈fy(t, ζ)〉
dt

= 2c(ζ) [JzFz(t)〈fx(t, ζ)〉 − JxyFx(t)〈fz(t, ζ)〉] (S16b)

d〈fz(t, ζ)〉
dt

= −2Jxyc(ζ) [Fy(t)〈fx(t, ζ)〉 − Fx(t)〈fy(t, ζ)〉] (S16c)

After plugging in measured values for the relevant quantities Ω, c(ζ),∆ω, δ,Θ, we obtain the dynamics plotted in
Fig. S5. These simulated dynamics, with the intracavity photon number n as the only free parameter, are in good
agreement with the experimental data in Fig. 2 of the main text. Similar equations are used to generate the mean-field
model curves in Fig. 4d of the main text.

B. Model for Susceptibility

We compare the measured magnetic susceptibility in Fig. 3 of the main text with a mean-field model, in which
we approximate the collective spin vectors F and F by their expectation values. Since the system is initialized in a
spin-polarized state, the weighted and unweighted collective spins initially have the same orientation F ‖ F. Assuming
that this condition remains true throughout the susceptibility measurement, the XXZ Hamiltonian with additional
effective fields

Htot = JzeffF2
z + hxFx + hzFz (S17)

can be expressed in terms of the angle α ≡ arctan(Fz/Fx) of the Bloch vector from the x̂-axis as

Htot = JzeffF2 sin2 α+ hxF cosα+ hzF sinα. (S18)
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the angle α = arctan(hz/hx) of the collective spin vector on the Bloch sphere, measured from the x̂-axis, is thus determined.
The interactions (yellow) are then ramped on over a time tramp = 5 ms to a final value J , after which the effective field and
interactions are simultaneously quenched off and the magnetization is measured immediately. (b) To measure the dephasing
in a magnetic field gradient, the average Raman detuning (purple) is swept during tsweep = 5 ms from far off-resonance to
zero, such that the collective spin vector points on average along x̂. Interactions are then ramped on to a final value J during
tramp = 5 ms. The spins evolve under HXXZ +Hinh for a time 0 ≤ twait ≤ 1 ms before the measurement is performed.
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FIG. S5: Mean-field simulations corresponding to Fig. 2 of the main text for (a) Ising and (b) XY couplings. With Θ ≈ 53◦,
we plot (a) phase φ, with opacity indicating transverse spin length, or (b) magnetization 〈fz〉. We compare both signs of drive
detuning δ to check the agreement for antiferromagnetic (AFM) [(a) δ = 2π × 7.5 MHz, (b) 2π × 5.5 MHz] and ferromagnetic
(FM) [(a) δ = −2π × 5.5 MHz (b) −2π × 5.5 MHz] couplings. The intracavity photon number varies from n ≈ 5000 in (b) to
n ≈ 15000 in (a) AFM and 20000 in (a) FM, which agrees within uncertainty with the measured intracavity photon number
for these data.

To find the minimum energy configuration for the angle α as a function of the parameters hx, hz, we solve

∂Htot

∂α
= 2JzeffF2 sinα cosα− hxF sinα+ hzF cosα = 0. (S19)

Taking the derivative of Eq. S19 with respect to hz, we solve for the susceptibility, with α(hz = 0) = 0:

χ ≡ ∂ sinα

∂(hz/hx)

∣∣∣∣
hz=0

=
cos2 α

2JzeffF2(2 cos2 α− 1)/hxF + cosα
=

1

2JzeffF2/hxF + 1
(S20)

=
1

2Λzeff/hx + 1
, (S21)

Note that in the main text we equivalently define the susceptibility in terms of the polar angle θ = π/2− α.
Equation S21 shows that the susceptibility diverges at a critical value Λzeff = −hx/2 of the collective interaction

parameter. The physical meaning of the diverging susceptibility at the critical point can be understood by examining
the energy landscape (Eq. S19) above and below the critical interaction strength, as sketched in Fig. S6. For no
interactions, the minimum energy shifts smoothly as a function of hz, but at the critical point the parabolic landscape
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becomes a tilted double well potential, whose minimum jumps between two separate wells as hz is tuned through
zero.

We use the model in Eq. S21 to fit the susceptibility measurements in Fig. 3(c) of the main text. There, the
susceptibility χ is determined from measurements of the magnetization 〈fz〉 as a function of hz/hx. Specifically, we
fit the magnetization data using the the model in Eq. S19 for the angle α as a function of Jzeff , hx, hz, which can in
general be solved numerically to yield curves of the form shown in Fig. S6(c). We calibrate hx using a fit to the
magnetization of the non-interacting system, where α = arctan(hz/hx) [Fig. 3(b.i) of main text]. We then fit Eq. S19
numerically to the data with interactions, such as those shown in Fig. 3(b.ii-iii) of the main text, and determine the
magnetic susceptibility χ from the slope of each fitted curve at hz = 0. The results are plotted in Figs. 3c and 3d of
the main text, showing χ as a function of Λxy,z and of Θ.

C. Dephasing Analysis

In addition to the measurements at Θ = π/2 shown in Fig. 4(a-b) of the main text, we also measure dephasing at
Θ = 0 with and without Ising interactions, as plotted in Fig. S7. We use the data with no interactions to calibrate
the gradient across a region of length L = 1 mm by performing a linear fit to the phase φL(t). In Fig. 4c of the main
text, we plot this fit line together with the phase φL(t) extracted from the data with Ising interactions.

[1] G. Bentsen, I.-D. Potirniche, V. B. Bulchandani, T. Scaffidi, X. Cao, X.-L. Qi, M. Schleier-Smith, and E. Altman, Phys.
Rev. X 9, 041011 (2019), URL https://link.aps.org/doi/10.1103/PhysRevX.9.041011.

[2] E. J. Davis, G. Bentsen, L. Homeier, T. Li, and M. H. Schleier-Smith, Phys. Rev. Lett. 122, 010405 (2019), also see
Supplemental Material., URL https://link.aps.org/doi/10.1103/PhysRevLett.122.010405.



9

[3] H. Tanji-Suzuki, I. D. Leroux, M. H. Schleier-Smith, M. Cetina, A. T. Grier, J. Simon, and V. Vuletić, in
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