
Pipelined Consensus for Global State Estimation in
Multi-Agent Systems

Paper 19

ABSTRACT
This paper presents pipelined consensus, a practical, robust consen-
sus algorithm for multi-agent systems using mesh networks. Dur-
ing each round, each agent starts a new consensus. Each agent
maintains the intermediate results for the previous k consensus in
a pipeline message. After k rounds, the results of the first consen-
sus are ready. The pipeline keeps each consensus independent, so
any errors only persist for k rounds. This makes pipelined consen-
sus robust to many real-world problems that other algorithms can-
not handle, including message loss, changes in network topology,
sensor variance, and changes in agent population. The algorithm
is fully distributed and self-stabilizing, and uses a communication
message of fixed size. We demonstrate the efficiency of pipelined
consensus in two scenarios: computing mean sensor values in a
distributed sensor network, and computing a centroid estimate in a
multi-robot system. We provide extensive simulation results, and
real-world experiments with up to 24 agents. The algorithm pro-
duces accurate results, and it handles all of the disturbances men-
tioned above.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Algorithms, Design, Experimentation

Keywords
Linear Average Consensus, Pipelined Consensus, Communication
Error, Convergence Time, Centroid Estimation

1. INTRODUCTION
Constructing local estimates of global state is a critical utility in

multi-agent systems. For example, in an environment monitoring
scenario where a group of mobile agents are deployed to collec-
tively cover a large interested area [15], we may be curious about
the mean measurement value gathered across all the agents to de-
cide if something unusual or dangerous is happening. In a social
network of human agents [6], we are interested in how global ideas
and opinions form, spread, and cluster. Knowing the global state
information can help agents coordinate more efficiently. Flocks of

Appears in: Proceedings of the 14th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2015), Bor-
dini, Elkind, Weiss, Yolum (eds.), May, 4–8, 2015, Istanbul, Turkey.
Copyright © 2015, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

xu0

xv0

xu1

xv1

xuk-1

xvk-1

xuk

xvk

u

v

a

b

Figure 1: A network of agents performing pipelined consensus, an
extension to pair-wise gossip-based consensus. Each node stores k
values in their pipeline, which is a queue containing multiple con-
current consensuses. In this example, agents u and v are in the
middle of gossiping. At the beginning of a gossip, a new value
is inserted into the pipeline, and older values are shifted along the
pipeline. The two agents then perform consensus on each cell of
their pipelines. The oldest value in the pipeline is taken as the cur-
rent estimate of the global value. Pipelined consensus is a robust
practical solution to global state estimation problems in multi-agent
systems.

birds, schools of fish, and crowds of people measure the motion of
the nearby neighbors in order to achieve large group-level forma-
tions [19]. In a network of mobile agents, sharing local measure-
ment probability information can be used to produce a more infor-
mative configuration of the positions of the nodes [8]. In the work
on cooperative transportation by a group of robotic agents [20], in-
ferring the forces from other agents let each individual agent know
how to align its own force with others’ to achieve efficient cooper-
ation.

These examples all require global state estimates in distributed
multi-agent systems. The simple approach of broadcasting the lo-
cal state of each agent will eventually use all available communi-
cation bandwidth as population increases. Consensus algorithms
can compute global estimates using fixed-size messages, but with
few exceptions [16], are not robust to real-world errors, such net-
work topology changes and communication errors, except where
specially designed.

In this paper, we present the pipelined consensus algorithm. It
can continuously track a changing global mean while being robust
to disturbances such as initial conditions, topology changes, sen-
sor errors, and communication failures. The core idea behind our

algorithm is that the agents start a new consensus each round; ini-
tializing them with new measurements of local state. Older con-
sensus estimations are stored in a pipeline queue in order. Con-
sensus estimations corresponding to similar start times will evolve
together in every communication round, largely independent of es-
timations belonging to different start times, as shown in Figure 1.
A pipeline size, k, must be chosen such that the estimation will ap-
proach the true average before the pipeline runs out of space. This
is the fundamental trade-off of our approach: the pipeline size, k,
must be larger than the natural convergence time of consensus in
the network, τ . Larger values for k allow us to handle larger, more
complex networks, but use more communication bandwidth.

In this paper, we study the convergence time τ for a large set
of mesh networks, and demonstrate that pipelined consensus is a
feasible solution for the vast majority of them. We then present
two examples and many experiments to demonstrate the robustness
properties of the algorithm : computing the global mean of a quan-
tity in a distributed sensor network, and estimating the centroid of
a group of robots.

In multi-agent manipulation tasks, mobile agents require knowl-
edge of the geometry of the object they are transporting in order
to properly manipulate the object. The centroid is a value of the
object that is estimatable by agents using only their own positions.
If the agents surround the object, the centroid of the object can be
approximated by the average of the positions of all agents. Sim-
ulations and hardware experiments are performed in this paper to
show that the centroid can be found even without a global reference
frame.

There is a large literature regarding consensus in multi-agent
systems. The original fundamental work, [7, 11] showed that all
agents in a group could agree on a common value only by com-
municating their neighbors in the network. Our work uses this ba-
sic approach, but runs multiple consensus in parallel. Many appli-
cations of consensus use a value that could be constantly chang-
ing, such as an environmental sensor or other controlled signals.
To handle this, the concept of dynamic consensus was introduced
in [17, 18] and convergence was proved. More generally, [3, 21]
used a proportional-integral filter on the typical consensus algo-
rithm to achieve robust average tracking of time-varying inputs re-
gardless of the initial states. In both dynamic and robust consen-
sus, the input signals to the nodes must be known, whereas our
pipelined consensus algorithm does not have this requirement. One
important aspect of tracking a changing consensus is the rate of
convergence. [1,4,12,13] derived upper bound on the convergence
time under different assumptions and from different prospective.
We apply our pipelined consensus algorithm to estimate the chang-
ing centroid of an object as the robots move. Similar work on the
stationary centroid estimation using only local reference frames can
be found in [2, 5]. Handling communications errors is difficult for
most consensus algorithms. The work in [16], injects a portion of
the input signal into the state estimate of each robot during each
round. This lets the estimated global mean on each agent be robust
to communication errors, but at the cost of a large variance across
individual estimates. Our approach produces qualitatively similar
results, but without the additional variance causes by re-injecting
the sensor value into the local estimate.

The rest of the paper is organized as follows. We describe our
model and assumptions in Section 2. The pipelined consensus is
formally proposed in Section 3. Extensive simulation and exper-
iment results are provided in Section 4, where we use pipelined
consensus to track a changing average and perform centroid esti-
mation. Convergence time and tracking error subject to different
disturbances are also analyzed. We discuss and conclude our work

Algorithm 1 Pipelined Consensus

1: Pi← NULL . Initialize all pipeline cells with null values
2: Repeat forever on each robot u
3: Randomly choose a neighbor v ∈N (u) to gossip
4: if |Pu|= k then . |Pu| is the number of non-null cells
5: REMOVE(Pu) . Remove the oldest value
6: end if
7: INSERT(Pu, xu0) . Insert new input value
8: for t = 0 : MIN(|Pu|, |Pv|) do . Perform consensus on pipeline
9: xut = CONSENSUS(xut , xvt)

10: end for

in Section 5 and 6.

2. MODEL AND ASSUMPTIONS
We assume that our agents are in an environment too large for

centralized communication. A communication network is built by
the agents using inter-agent communications between nearby agents
within a fixed distance d, where d is much smaller than the size of
the environment. Each agent constitutes a vertex u ∈ V , where V
is the set of all agents and E is the set of all agent-to-agent com-
munication links. n is |V |, the total number of agents in the net-
work. We model the agent’s communications network, G = (V,E),
as an undirected unit disk graph. We assume that G is connected.
The neighbors of each vertex u are the set of agents within line-of-
sight communication range d of agent u, denoted N (u) = {v ∈V |
{u,v} ∈ E}.

We model algorithm execution as proceeding in a series of dis-
crete rounds. While actual operation in many practical systems
is asynchronous, implementing a synchronizer simplifies analysis
greatly and is easy to implement [9]. In this paper, we focus on
the convergence time of consensus τ measured by the number of
rounds of computation required to achieve some ε-bound on error.

We assume our agents are homogeneous and are modeled as a
disk. Each agent is situated at the origin of its own local coordi-
nate frame with the x̂-axis aligned with its current heading. Agents
can measure the relative pose of its neighbors. The relative pose
between two agents u and v is given by three measurements, bear-
ing Buv, orientation Ouv, and range Ruv. Bearing is the angle from
agent u’s heading to agent v’s relative position. Orientation is the
angle of agent v’s heading from Buv. Range is the distance between
agent u and v.

3. PIPELINED CONSENSUS ALGORITHM

3.1 The Algorithm
Pipelined consensus is based upon linear average consensus, where

in which agents continuously update their value to the average of
their estimates. In pipelined consensus, each agent stores k values
instead of only one value (See Figure 1). Pipelined consensus is
described in Algorithm 1. At first, every agent’s pipeline, Pi, is ini-
tialized with null values(Line1). Pipeline values are updated each
round of successful pair-wise gossip with a neighbor. During a gos-
sip, each agent first checks the size of non-null cells in the pipeline,
|Pi|. If the pipeline is filled with values, the oldest value is removed
from the tail of the pipeline(Lines 4-7). This keeps the size of the
pipeline constant at k, as values are always inserted. The current
input value, xi0, is inserted to the head of the pipeline. Next, con-
sensus is performed on each respective cell in the pipelines.

Note in Line 8 of Algorithm 1, we take the minimum of the size
of the two pipelines. Consensus is only performed on values that

(a)

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20

22

NetworksAveragesDegree

N
et

w
or

ks
D

ia
m

et
er

Pipelined

GlobalsMessage

(b)

Figure 2: (a) Viability of algorithms under networks of different degrees and diameters. 300 networks were sampled for 20 trials each. The
red dots show a region where a global message is preferred, while the black dots show where pipelined consensus is preferred. Algorithm
preference was determined by message size. If the pipeline’s size k was greater or equal to n, the size of the network, a global message
was preferred. Otherwise, pipelined consensus was preferred because it needs the smaller message size. The majority of results showed
that pipelined consensus was preferred. (b) Plot of convergence time for 10% error as a variable of diameter and degree of a network.
Convergence time τ is in number of rounds. The same networks as in (a) were used, 20 trials each. The time of convergence is strongly
related to the connectivity of the network. Networks with a large average degree have a smaller τ even in the network with high dimension.
However, the diameter in the network with the lower degree affects on the time of convergence, such that the network with low degree and
high dimension have the larger τ .

can be paired between the two pipelines, bounded by the minimum
size of the pipelines.This is done because equal pipeline sizes are
not guaranteed. A feature of pair-wise gossip algorithms is that for
each round, every agent may or may not preform a consensus. As
values are only inserted upon successful pairings and consensuses,
the pipeline sizes are not always equal. This is done to be more ef-
ficient with our sampling and message size. Inserting a new value
every round where consensus may not occur would dramatically
increase the size of k. By accepting different sizes of pipelines, our
message size stays reasonable. Disadvantageous network configu-
rations and poor random choices can lead an agent to not perform
consensus for a long time. However, for applications that sample
values and errors from time independent distributions, the effects
of this desynchronization are irrelevant.

3.2 Convergence Time
Selecting an appropriate pipeline size k is key in piplelined con-

sensus. If k is not large enough, the final estimate from the pipeline
for any round will not have sufficiently converged. This gives a
larger error and variance in the estimate. Based on the convergence
time of the network τ , we select a pipeline size k to to reach a de-
sired amount of convergence. However, large values of k have a
large message size which is a limiting factor on real communica-
tion systems with limited bandwidth. In order to find a balance
between τ and k, we analyze the convergence time of different net-
works to understand τ and k more thoroughly. Figure 2(a) shows
the time of convergence for the same sample of networks used in
Figure 2. This result illustrates the relation between the degree and
diameter of the network to the convergence time of the network.

In pipelined consensus, each agent shares the contents of its
pipeline with its neighbors, which is a message of size k, the pipeline
size. If k is equal to or greater than n, the number of agents in the
network, then there is no advantage in using the pipelined consen-
sus algorithm. In cases such as this, agents could use a Global
Message to share its estimate with other agents. This message
would consist of the value from each agent network, from which
the global value could be obtained. We tested the pipelined con-
sensus algorithm on a large sample of networks of varying degree
and diameter to show the viability of the algorithm as a solution
to global state estimation. As Figure 2(b) shows, pipelined con-
sensus is more practical than a global message in the majority of
cases. However, the global message is more useful in networks
with low degree and high diameter. This is because consensus per-
forms poorly on networks with weak connectivity and a large path
between two agents.

4. EXPERIMENTS
We tested pipelined consensus on both simulated and physical

platforms. For our physical experiments, we used the r-one robot
as our platform. These robots use an infra-red communication sys-
tem to communicate with their neighbors in synchronous rounds of
1500 milliseconds. The communication system also measures the
relative pose to each neighboring robot (see Section 2). We tested
pipelined consensus in two applications: Linear Average Consen-
sus and Centroid Estimation. Pipelined consensus is also highly
robust to change in values, sensor errors, population changes, and
communication failures. All of these are a feature of real appli-

(b)

Figure 3: (a) Pipeline consensus for a network with 24 agents, with an average degree of 5 and diameter of 5. The average error of their
estimate is 2.07%. Agents only give their estimate after the pipeline has been fully filled, which gives the leading edges of their input values
at the start of the experiment. (b) The result of pipelined consensus for 6 trials of the same experiment in (a). We take the average of each
robot’s estimate in each trial. The solid red line shows the average of the average errors over 6 trials. The standard deviation of the average
error is shown by the shaded red area. This result shows that the error decreases to 2% with pipelined consensus with small variance.

cations and can be handled by our algorithm. We show how our
algorithm reacts to these effects in both simulations and physical
experiments.

We tested pipelined consensus on both simulated and physical
platforms. For our physical experiments, we used the r-one robot
as our platform. These robots use an infra-red communication sys-
tem to communicate with their neighbors in synchronous rounds of
1500 milliseconds. The communication system also measures the
relative pose to each neighboring robot (see Section 2). We tested
pipelined consensus in two applications: Linear Average Consen-
sus and Centroid Estimation. Pipelined consensus is also highly
robust to change in values, sensor errors, population changes, and
communication failures. All of these are a feature of real appli-
cations and can be handled by our algorithm. We show how our
algorithm reacts to these effects in both simulations and physical
experiments.

4.1 Pipelined Linear Average Consensus

4.1.1 Physical Experiment, Ideal Conditions
We validated the pipelined consensus algorithm on real robotic

agents. We distributed 24 agents on the floor in a grid shape of 4
by 6, which creates a network with the average degree of 5 and a
diameter of 5. We used a basic linear average consensus for the
gossip protocol in the pipeline. Each agent starts estimation from
some constant random initial value. This experiment was carried
out under the most ideal conditions possible on the physical plat-
form. However, sensor errors and communication failures inherent
to physical systems still occurred. Figure 3(a) shows the estimation
progress in each agent in an example experiment. The pipeline size
k for this experiment is 20. The result shows how pipelined con-
sensus produces estimates on all robots that have a mean error of
approximately zero, but with some variance.

We ran 6 trials of this experiment. Figure 3(b) summarizes the
result in tracing the mean of the error estimate with deviations over
these trials.

4.1.2 Simulated Experiment, Communication Error
In a basic consensus, a single measurement is taken and used

by the agents to come to agreement. This means that any com-
munication errors that occur can lead to a large divergences in the
estimated value. Pipelined consensus solves this problem by con-
stantly inputting and pushing values out of the pipeline, so that val-
ues that contain error are flushed out after a maximum k rounds.
Figure 4(a) shows how communication errors effect both pipelined
consensus and basic consensus. Here it is shown that basic con-
sensus converges to a value with very small variance but with an
offset from the actual global mean. On the other hand, pipelined
consensus continually estimates values with some variance around
the global mean with an average error of approximately zero. The
variance demonstrated by pipelined consensus can be decreased by
increasing the size of k. Pipelined consensus can tolerate commu-
nication errors, but an increase in communication errors requires
a larger time to converge to an adequate value. Pipeline size in-
creases as communication error increases. Figure 4(b) shows the
effects of increasing communication error to the size of a pipeline
for different percentage error requirements.

4.1.3 Physical Experiment, Changing Value
As pipelined consensus is robust to changing values, it can track

a changing input signal. This feature can be used to calculate the
average of a sensor value across a collection of nodes spread out in
an environment, such as temperature or light. We tested this fea-
ture by having our robots measure the ambient light over time. We
changed the intensity of the light by turning on and off the overhead
lights in the lab in 20 minute intervals. Figure 5 shows the result of
light signal tracking by 20 robots. This figure illustrates the ability
to successfully track a changing input signal with accuracy. It also
shows the algorithms tolerance to sensor errors. In this experiment,
one robot had a very large bias in the light sensor value. However,
the converging values still reached consensus over the network.

4.2 Pipelined Centroid Estimation
In tasks of multi-robot manipulation, knowledge of the geometry

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

NumberpofpRounds

E
st

im
a

te
PipelinedpLAC

LAC

PipelinedpAverage

ActualpAverage

(a) (b)

Figure 4: (a) Comparison of pipelined consensus and basic consensus in a network of 20 robots with 75% communication error. The size
of k in this experiment was 100. The communication errors cause the variance of the result from the pipelined consensus to increase, but
the estimated mean remains stable around the actual mean. Basic consensus converges to an erroneous value and remains. (b) The effect of
communication error in the range of 0% to 90% on the time of convergence with error in the consensus estimate less than 10% (blue solid
line) and less than 5% (red solid line). The network is of 72 agents. This result shows the average and standard deviation of the convergence
time over 12 trails.

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160

180

200

Time(number of rounds)

R
ob

ot
 V

al
ue

 E
st

im
at

e

Figure 5: Light tracking experiment by 20 robots. The read sensor
value was averaged together. The light began off for 20 minutes,
was then turned on for 20 minutes, and then back off for the final
20 minutes. Note the delay of a factor of k rounds in the read in-
put signal to the estimated value. The red dashed line shows the
average of light measurement on 20 robots. The black dashed line
shows the average of reported values from the consensus on robots.
Solid lines show each robot’s estimation. One robot had a large
bias in reading the light intensity. As a feature of consensus, this
value washed out after the consensus occurred.

of the object can be critical. The centroid is a computable value of
the object purely from robots’ positions along the object, and there-
fore a good fit for use of our algorithm. In this case, the centroid
can be approximated by taking the average of the positions of all
the robots. We assume that the robots are distributed around the
object in such a configuration that they approximate the shape of
the object.

The challenging part is that we assume there is no global refer-
ence frame, which means that the robots need to do the estimation
in different local reference frames. Therefore, the resulting consen-
sus values are all different for each robot, although they correspond
to a common point in the global frame. However, it is impossible
for the robots to actually know this in our distributed system. In
order to communicate values from one robot to another, a coordi-
nate transformation between different local reference frames must
be used. Consider a point x in the global reference frame. Its coor-
dinates in robot u’s and v’s local reference frame are denoted by ux
and vx respectively. The relationship between ux and vx is given by

ux =u
v Mvx, (1)

where

u
vM =

cos(θvu) −sin(θvu) dvu cos(Bvu)
sin(θvu) cos(θvu) dvu sin(Bvu)

0 0 1


is a coordinate transformation matrix, and

θvu = π−Ovu +Bvu.

In the equations above, Bvu and Ovu are the bearing angle and ori-
entation angle respectively and dvu is the distance between agent u
and v measured by agent u. All these angles and distance can be
measured locally by sensors. θvu is the relative heading of v from
u.

In order to estimate the centroid, each robot maintains two pipelines,
one for x coordinate and another for y coordinate of the estimated
centroid. The initial input values for two pipelines are both zero,

−500 −450 −400 −350 −300 −250 −200 −150
0

50

100

150

200

250

300

350

400

450

1
2

3

4

5

6
7

8

9

10

(a)

−10 0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

Centroidc EstimatecRelativecError(9)

F
re

qu
en

cy
co

fcO
cc

ur
re

nc
e(

R
ou

nd
s)

Robot1

Robot2

Robot3

Robot4

Robot5

Robot6

Robot7

Robot8

Robot9

Robot10

MeancofcError

9.28

(b)

Figure 6: (a) Centroid estimation by 10 robots in a concave shape. The robots positions are designated by the solid circles numerically
labeled. Three of robot’s estimate over time is shown by the solid lines of similar color emanating from the circle. Each robots average
estimate is shown by the colored diamonds. The true centroid is shown by the black circle. The average error is 9.28% for this experiment.
(b) We fit Kernel density model to the distribution of centroid estimation error for each robot in the experiment illustrated in (a). The colors
match with ones in the illustration(a). The mean error is 9.28% and is shown by dashed black line.

which represents the robot’s position in its own reference frame.
The relative poses of the neighbors are measured in every round.
Robots use Algorithm 1 to do a pipelined consensus update each
round. The robots transform each estimate in their neighbor’s pipeline
by using the aforementioned coordinate transformation. The values
in the last cells of the x and y pipelines is considered the current es-
timation for the centroid.

4.2.1 Physical Experiment, Ideal Conditions
We tested pipelined centroid estimation on real agents. We used

the r-one robot as our robotic agents. 10 robots were used in a con-
figuration illustrated in Figure 6(a). This figure shows the robot’s
estimation of the centroid over time. In this experiment, the aver-
age error of the estimate to actual was 9%. The distribution of error
for the centroid estimate is approximated by the kernel density es-
timation in Figure 6(b). In this experiment we used the AprilTag
system [14]to measure distance between robots, eliminating error
resulting from poor distance measurements on the robots. How-
ever, the error resulting from poor angular pose estimation using
the infrared sensors still influenced the result. The resolution of the
bearing and orientation is limited to 22.5◦ slices [10]. This result
shows that the centroid is accurately estimated by pipelined con-
sensus in the presence of sensor error.

4.2.2 Simulated Experiment, Sensor Error
In centroid estimation, sensor error is introduced by using the

coordinate transformation. The angular and distance measurements
sampled by the agent could be very noisy. In a normal linear aver-
age consensus, the estimate value evolves based upon a single sen-
sor measurement or value taken at the beginning. This value has
some unknown error from the sensor measurement that is never
removed from the estimate. Our pipelined consensus algorithm
continually re-samples the state of the network and sensors, and
thus reduces error in estimation. In Figure 7, we demonstrate how

the variance of the centroid estimation is related to the variance of
the sensor measurements in a randomly generated unit disc graph.
The distance and angle measurements are modeled by zero-mean
Gaussian model. As we can see in the figure, the variance of the
centroid estimation is almost linear to the variance of the sensor,
and the angle measurement has a larger impact on the accuracy of
the estimation. This is due to the coordinate transform, as angu-
lar errors will result in points moving a much greater distance from
their actual positions than errors in the distance. Figure 8 provides a
comparison between centroid estimation using linear average con-
sensus and pipelined consensus. Linear average consensus has a
larger estimation error, despite being much smoother than the val-
ues from pipelined consensus. Our pipelined consensus approach
gives a much lower mean of relative error, but also has greater vari-
ance than the linear average consensus. Note that the linear average
consensus does not reach a common value in this case because the
sensor reading θvu 6=−θuv, dvu 6= duv due to noise. This results in
the inconsistency when robots exchange their estimations using co-
ordinate transformation, which causes the estimations of different
robots to diverge.

4.2.3 Physical Experiment, Population Changes
Another feature of pipelined consensus is that it is self-stabilizing

in regards to changing population and topology. We examined the
effect of population changes on a network of robots performing
centroid estimation. We began the test with 5 robots, and added
and subtracted robots from the population in different areas of the
network over time. Figure 9 shows the error in the estimate over
time with changes in population. We add and remove robots only
after the estimate has stabilized to a sufficient degree. The error
in the estimation remains around 9% for all population sizes and
changes.

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Quality of centroid estimation with respect to sensor noise

Variance of distance measurement (m)

Variance of angle measurement (rad)

V
ar

ia
nc

e
of

 c
en

tr
oi

d
es

tim
at

io
n

(m
)

0.02

0.04

0.06

0.08

0.1

0.12

Figure 7: Simulation of centroid estimation with 20 robots. The
graph is a randomly generated unit disc graph. The average degree
is 7 while the network diameter is 3. We model the noisy sensor
using zero-mean Gaussian model. The 3D plot here demonstrates
the change of average variance of the centroid estimations of all
robots as we increase variance of angle and distance measurements
from 0 to 0.5.

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time(round)

R
el

at
iv

e
er

ro
r

LAC
Pipelined
LAC Avg.
Pipelined Avg.

Figure 8: Comparison of normal linear average consensus and
pipelined consensus over time on the same network as Figure 7.
The y-axis shows the relative error, defined as the distance between
the true and the estimated centroid, divided by the distance between
the robot and the true centroid. Relative errors of all the robots
using either pipelined or linear average consensus are plotted. The
variances of both the distance and angle sensor are set to 0.1.

+1 Agent
-1 Agent

+2 Agents
-2 Agents

Figure 9: Illustration of robustness of pipelined consensus to pop-
ulation changes during the centroid estimation. Robots were added
and removed over time after estimate stabilization. The robots re-
moved and added were in different physical areas of the network
each time. Each time a robot is added or removed from the net-
work, error increases as the actual centroid no longer matches the
estimated centroid. Over time, the estimate reconverges to the ac-
tual centroid within an error of 9% for all populations.

5. DISCUSSION AND LIMITATIONS
Our pipeline consensus algorithm achieves dynamic average track-

ing with high robustness to the initial condition, sensor errors, pop-
ulation changes, and communication failures. There are other algo-
rithms that do the similar job, like the PI consensus filter designed
in [3]. However, each agent must know the input signal for this
approach. This may not be true in all multi-agent systems as some
agents may not know the input signal for themselves or can only
know the input signals for their neighbors. For example, in the
centroid estimation task we described above, the only thing robots
know about themselves is their position in their reference frame,
which is always [0,0]. There is no knowledge about the input sig-
nal in this case, so the algorithm is not applicable.

Pipelined consensus is time-sensitive in nature. Data inserted
in the pipeline will only be produced from the pipeline after tau
rounds of successful consensus. However, the consensus operation
is not related to time. The shifting values in pipeline consensus
make it important to stay relatively synchronized. A poor config-
uration in the network or simple unluckiness may lead to an agent
taking significantly longer time to produce an updated result. This
can be seen in practice in Fig. 3. Some robots in the experiment
produced an estimate much later than others, taking more time to
achieve consensus τ times. This also can lead to stale data reen-
tering the system and affecting the final result. For a system with a
changing input signal, a robot who has not performed consensus for
a relatively long time may perform consensus with another, more
up-to-date robot. Performing consensus with the old data inserts
error into the system, as the result for the temporally offset input
values will be different.

The centroid estimation is sensitive to motion of the agents. This
is because geometric measurements used in consensus are sensi-
tive to the geometry of the network at the time the measurement
was taken. The consensus estimate will become offset by the an-
gular and translational motion. Since there is a lag of at least τ in
pipeline consensus for information update, the error between the

true centroid and the current estimation will grow the faster the
agents change position. Hopefully, this error can be reduced by
increasing the frequency of the communication.

6. CONCLUSION
We have demonstrated that Pipelined Consensus is a robust and

practical extension to consensus algorithms for multi-agent sys-
tems. In all of our experiments, the algorithms handled many differ-
ent types of errors well, quickly converging to accurate global esti-
mates. In the future, we plan to rigorously study how to more ac-
curately compute τ , which is related to features of the graph topol-
ogy such as number of nodes, average degree, diameter, closeness,
min-cut and so on. A mathematical characterization of τ will help
ensure the effectiveness and efficiency of the pipelined consensus
algorithm. Analysis of the variance introduced bu communications
errors can help understand the convergence rates in tough commu-
nications environments. As for the centroid estimation, we plan to
integrate it into a multi-robot manipulation task and test its perfor-
mance when the robots actually move with the object.

7. ACKNOWLEDGEMENTS
This work has been supported by the National Science Founda-

tion under CPS-1035716.

8. REFERENCES
[1] D. Angeli and P. Bliman. Convergence speed of distributed

consensus and topology of the associated information spread.
In Decision and Control, 2007 46th IEEE Conference on,
pages 300–305. IEEE, 2007.

[2] R. Aragues, L. Carlone, C. Sagues, and G. Calafiore.
Distributed centroid estimation from noisy relative
measurements. Systems & Control Letters, 61(7):773–779,
2012.

[3] H. Bai, R. A. Freeman, and K. M. Lynch. Robust dynamic
average consensus of time-varying inputs. In Decision and
Control (CDC), 2010 49th IEEE Conference on, pages
3104–3109. IEEE, 2010.

[4] M. Cao, A. S. Morse, and B. D. Anderson. Reaching a
consensus in a dynamically changing environment:
Convergence rates, measurement delays, and asynchronous
events. SIAM Journal on Control and Optimization,
47(2):601–623, 2008.

[5] M. Franceschelli and A. Gasparri. Gossip-based centroid and
common reference frame estimation in multiagent systems.
2014.

[6] J. Ghaderi and R. Srikant. Opinion dynamics in social
networks: A local interaction game with stubborn agents. In
American Control Conference (ACC), 2013, pages
1982–1987, June 2013.

[7] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of
groups of mobile autonomous agents using nearest neighbor
rules. Automatic Control, IEEE Transactions on,
48(6):988–1001, 2003.

[8] B. J. Julian, M. Angermann, M. Schwager, and D. Rus. A
scalable information theoretic approach to distributed robot
coordination. In Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on, pages 5187–5194.
IEEE, 2011.

[9] J. McLurkin. Analysis and Implementation of Distributed
Algorithms for Multi-Robot Systems. PhD thesis, MIT ,USA,
2008.

[10] J. McLurkin, A. McMullen, N. Robbins, A. Chou, W. Li,
M. John, C. Licato, N. Okeke, J. Rykowski, S. Kim,
G. Habibi, W. Xie, Y. Zhou, J. Shen, N. Chen, Q. Kaseman,
A. Becker, L. Langford, J. Hunt, A. Boone, and K. Koch. A
Robot System Design for Low-Cost Multi-Robot
Manipulation. Proceedings of the 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
2014.

[11] R. Olfati-Saber and R. M. Murray. Consensus problems in
networks of agents with switching topology and time-delays.
Automatic Control, IEEE Transactions on, 49(9):1520–1533,
2004.

[12] A. Olshevsky and J. N. Tsitsiklis. Convergence speed in
distributed consensus and averaging. SIAM Journal on
Control and Optimization, 48(1):33–55, 2009.

[13] A. Olshevsky and J. N. Tsitsiklis. Degree fluctuations and the
convergence time of consensus algorithms. Automatic
Control, IEEE Transactions on, 58(10):2626–2631, 2013.

[14] E. Olson. AprilTag: A robust and flexible visual fiducial
system. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages
3400–3407. IEEE, May 2011.

[15] M. Schwager, D. Rus, and J.-J. Slotine. Decentralized,
adaptive coverage control for networked robots. The
International Journal of Robotics Research, 28(3):357–375,
2009.

[16] F. Shaw, A. Chiu, and J. McLurkin. Agreement on stochastic
multi-robot systems with communication failures. In
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, pages 6095–6100, Oct 2010.

[17] D. P. Spanos, R. Olfati-Saber, and R. M. Murray. Distributed
sensor fusion using dynamic consensus. In IFAC World
Congress, 2005.

[18] D. P. Spanos, R. Olfati-Saber, and R. M. Murray. Dynamic
consensus on mobile networks. In IFAC world congress.
Prague Czech Republic, 2005.

[19] H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Flocking in
fixed and switching networks. Automatic Control, IEEE
Transactions on, 52(5):863–868, 2007.

[20] Z. Wang and M. Schwager. Multi-robot manipulation without
communication. In Proc. of the International Symposium on
Distributed Robotic Systems (DARS 14), November 2014.

[21] P. Yang, R. A. Freeman, and K. M. Lynch. Distributed
cooperative active sensing using consensus filters. In
Robotics and Automation, 2007 IEEE International
Conference on, pages 405–410. IEEE, 2007.

