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Electromagnetically Induced Transparency in an Ideal Plasma
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A process analogous to electromagnetically induced transparency in atoms is described for an ideal
plasma. Two electromagnetic fields whose frequency difference is near, but not equal, to the plasma
frequency will drive a longitudinal plasma oscillation whose contribution to the current density opposes
the current density produced by either field, if alone. This creates a passband at frequencies which
would otherwise be below cutoff. [S0031-9007(96)02013-3]

PACS numbers: 42.50.Gy, 32.80.—t, 52.25.Rv, 52.35.Mw

About six years ago, Bolleet al. demonstrated a tech- referred to as the Stokes frequency. The frequencies of
nique for making an optically opaque transition trans-the strong driving laser and of the longitudinal plasma
parent to laser radiation [1]. This is done by applyingoscillation arew, andw,; = (0w, — w;), respectively.
two lasers whose frequencies differ by a nonallowed tran- We first note the assumptions of this work: We will
sition of an atom or molecule. The lasers are appliedassume that one of the two laser beams is sufficiently
in a manner which causes the atom to evolve smoothlyeak that the time-varying component of the charge
from its ground state to an antiphased superposition statdensity p is small as compared to the static component
often termed as a population trapped or dark state [2]z., and that the other beam propagates as if alone in the
When in this state, the dipole moment at one field, anglasma. In the first portion of what follows the intensity
sometimes at both fields, is very small, and the atonof the Stokes wave is taken to be small; in the second
and the field (or fields) are nearly decoupled. The efportion, the intensity of the wave with frequeney, is
fect may also be used to produce transparency in thtaken as small. We also assume that the pondermotive
continuum [3], to control the real part of the refrac- energy of the strong field is small as comparediio’
tive index, and, at least when near resonance, to elimiand do the calculation nonrelativistically. Thermal motion
nate optical self-focusing [4]. This technigue, where oneand collisions are neglected, thereby assuming that the
electromagnetic field controls the (complex) refractive in-unperturbed plasma frequency is independenﬁ and
dex of another, is now called electromagnetically inducechas a zero linewidth. Both laser beams are taken as
transparency (EIT). There is literature on this subject, botlplane waves of infinite extent in the transverse direction.
in its own right [5], and on its relation to lasers without in- This assumption is important in that it allows the neglect
version [6] and to nonlinear optics [7]. of both relativistic self-focusing [8] and the resonant

In this Letter we explore the question of whether apondermotive self-focusing mechanism of Joshal. [9].
collective excitation of a medium, rather than an internalThe competition of many other plasma nonlinearities and
excitation of an atom or molecule, can be used to contrainstabilities are also neglected [10].
the refractive index and to establish transparency. In We take the applied fields at, and w, to be plane
particular, we examine the propagation of a laser beanyaves with theirE fields and velocities polarized in the
in a plasma where the plasma frequency is higher thaR girection, and with theirB fields polarized in they

that of the laser frequency and where, therefore, withoWirection. The plasma oscillation and its associafed
a second laser beam present, the propagation constant Is

imaginary.
We find that in the plasma, the role of the nonallowed
transition of the single atom is replaced by a (collective)
longitudinal plasma oscillation. The oscillation is driven --]-- —

Wg

T bwg - S
by theV X B force at the difference of the applied laser R S a)

frequencies. By allowing for a small two-photon detuning

from the plasma frequency, we find that the phase of op 0
the plasma oscillation is such that its contribution to

the induced current density opposes the primary currrent

density, and that the presence of both lasers creates a S

passband in the otherwise opaque plasma.

Figure 1 is an energy schematic for this work. TheF!G: 1. Energy schematic for EIT in an ideal plasma. The
electromagnetic fields have angular frequencigs and w;.

q“"?‘”“tY @p 'S the plasma frequency. The frequency-rhe longitudinal plasma oscillation is driven at the frequency
which is initially below cutoff and around which a 4, = », — w, (not shown). The difference between the

passband is to be created is denotedchyand will be  plasma frequencw, andw; is §(w, — @;) = (Sw, — Sw,).
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field and velocity arez polarized. Each of the field Stokes field assumption), we obtain
quantities and velocities is written as a product of a

N 2 E
slowly varying envelope and a propagation factor and pt=- w“Z ne(’ky + wy — wE)E—S. (5)
are hereafter taken as scalar quantities. For example, the @s@p a
StokesE field and the charge density are We will require the quantities
2 2 2
_ ES . f — q |Ea| . f — q |EY
E (t) = Eexp[](wst — ksz)] + c.c., a anz ; s —4mw§’
(1) w2n20 1
p(r) = %exp{j(a},t — kiz)] + c.c. ko = C—za = ;(wﬁ ~ ), (6)
With the envelopes of the velocities at,, w,, andw, 2 = w2n’ _ i(wz — w?)
denoted by, V,, andV,, the equations for the velocities 0 2 2 s p’>

of a single particle, in a fixed frame, are wherew? = n.q*/eom. E, andZ, are the pondermotive
Ve | . gEq

9BsVi (oscillatory) energies of an electron in the presense of
Y Va=—" "+ — 5 k ViVi, (28)  gither field if alone;k2, and k% are the square of the
propagation constants of either of the beams, again, if
S 4wV, = _qEs qE; Vi Ll ! k V.Vi, (2b) alone; andn,y and ny, are the corresponding refractive
at t m m

indices.
oV E We will first give the dispersion relation for monochro-
a—tl + jo,V; = L Zi(Ban + V,B;). (2c) matic fields and then return to a discussion of the condi-
m m

tions which are necessary to approximately establish this
The derivatives of the envelopes ¥ and V; are taken  solution with time-varying fields. The dispersion relation
to vary slowly as compared @, andw, and are imme-  for a weak Stokes beam is obtained by setting the deriva-
diately dropped. Because the Stokes field is very smalkjve in Eq. (3) to zero and setting the steady-state value of
we haveB, = k,E,/w, andV, = jqE,/w,m. This,in  , equal top from Eq. (5). With the definitions of Eq. (6)
turn, causes the last two terms on the right-hand sidge obtain [10]

(RHS) of Eqg. (2b) to cancel so that, = +jqE;/wsm. Ky — k)2 E

Equation (2c) is then combined with the divergence equa- a0 3 ( “2>wp + (k2 — K)bw, =0. (7)

tion and the equation of continuity, together witf, to 2 mc ‘ ‘

yield the equation of motion for the plasma oscillation The solution of Eq. (7) may be expressed in terms of
characteristic frequencies,,. andwi:

ap qne(ka — k;) * "
E ~ J20wp = 2mw,, (VaBS * BaVS) ky(5wg) _ _wpolekao i(aks()[aws(aw; - wcrit)]l/z ’
2 — 2 Ws = Wpole
— e SR e ) i (82)
m2w,w; wp
. . Wwhere
This oscillation is driven by the directed V X B 1/ E,
force at a frequency ofuf, — w,) and differs from Wpole = —< > w,,
the natural plasma oscillation frequenay, by dw, = 2 8b
w, — (w, — wy). Inderiving Eq. (3), we have assumed (w2~ w?) (8b)
that the envelope of the charge densityaries [Eq.(1)] @erit = (w2 2)‘“?016-

slowly as compared to the plasma frequency.
The current densities which drive the fieldsaf and
w; are

The quantity wpee is in effect the “Stark” shift of
the unperturbed plasma frequency. The critical fre-
quency, wei, IS that frequency where the refractive in-

] = —anV. — qpVs 4 dex(ng; = cky/w,) changes from imaginary to real. The
a qMeVa ) (4a) plus and minus sign in Eq. (8a) apply féw, below and
. above the critical frequency, respectively.
Jy = —qn,V, — M_ (4b) Figure 2(a) shows the imaginary part of the refractive
2 index as a function of the detuningw, of the Stokes

The first term on the RHS of these equations, if alonefrequency from two-photon resonance. The parameters
yields the normal dielectric constant of a plasma. Theor Fig. 2(a) are E,/mc* = 0.02, w, = 1, w, = 0.75,
essence of the transparency effect is to capsdo andw, = 1.75. This yields wpoe = 0.01, and wei =

be phased such that the nonlinear term in the currer.057. With Z, = 0, the Stokes frequency is below
density equations opposes the linear term. From Eq. (4bgutoff and has a propagation constant-00.88;. The
Maxwell's equations, and’, and V, (retaining the small presence of the driving laser creates a passband with
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FIG. 2. Refractive index of the Stokes beam vs the
detuning from two-photon resonan@w,. (a) —Im(n,), (b)
Re(n,). The parameters are, = 1, w, = 0.75, w, = 1.75,
and wp,. = 0.01. A passband is created between =
0.057 and the origin.

The quantity wy,. is the detuning ofw, such that the
beam propagates as if in vacuum.

In Fig. 3 we take both fields to be above the plasma fre-
quency, with parameterB, /mc? = 0.02, w, =1, v, =
1.25, and w, = 2.25. This yields wy,e = —0.01,
werir = —0.0086, andwy,. = —0.0225. Here [Fig. 3(a)]

a stop band appears betweeg,;; and the origin. For
detunings less tha#@..;; the group velocity is positive and
increasing. Noting Eqg. (9b), we see thatdf and w,

are chosen to be nearly equal, then backward propagation
may greatly increase the strength of the interaction and
the magnitude ofv,..

We turn next to the requirements on the power and en-
ergy of the laser pulses which are necessary to approxi-
mately establish the solutions of Egs. (7), (9a), and (9b).
Using Eqg. (5), Eq. (3) may be rewritten as

%i)_/; - j(éwS - wpole)P = jr(t)» 10
1/2
r(r) = (f";i[(kao — kD) — (k2 — K2)1(LELED).

p

First, the power/area of the strong field must be suffi-
cient that| w01 | substantially exceeds the linewidth of the

a width proportional to its power density, in this case,
5.7% of the plasma frequency. Figure 2(b) shows the
real part of the refractive index. As described below,
the negative group velocity and steep slopenpfvs w;
imposes an energy requirement on the driving laser pulse.
One may also note that, even without the inclusion of
damping, for forward propagating waves, the response
at wpore is not infinite. As the pole is approaced, the
numerator of Eq. (8a) approaches zero a@ntpole) =
(koo + ki0)/2kq0-

We next examine the case where the electromagnetic
field at E; is strong, and that ak, is weak. Proceeding
as previously, we obtain the dispersion relation

(k;k() + ka)2 IS

2 mc?
The minus sign in Eq. (9a) applies when both waves
propagate in the same direction; the plus sign applies
when the waves are oppositely directed. Here,
2

>w,, — (k2y — K2)éw, = 0. (9a)
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FIG. 3. Refractive index of the laser beam vs the detuning
from two-photon resonancéw,. (a) —Im(n,), (b) Ren,).

The parameters arew, =1, w, =125, w, =225, and
wpole = —0.01. For a detuningpw, = = —0.0225, the

beam propagates as if in vacuum.
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plasma resonance. This linewidth may be caused by cokffect in a plasma is also a first example of EIT based
lisions, plasma inhomogeneities, and, perhaps, other instan a collective, rather than single particle, excitation of a
bilities. For the steady-state solution to evolve smoothlymedium.
from the zero-field solution, the pulse must vary slowly The author greatfully acknowledges helpful discussions
as compared to the detuning 8fv; from the pole. Be- with Simon Hooker, Gordon Kino, Scott Sharpe, and
cause the magnitude of the pole varies linearly with theAlexei Sokolov. This work was supported by the U.S. Air
power density, for a smooth pulse, this leads to an enForce Office of Scientific Research, the U.S. Office of
ergy invariant Naval Research, and the U.S. Army Research Office.
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