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Abstract
Objective. Motor neuroscience and brain–machine interface (BMI) design is based on examining
how the brain controls voluntary movement, typically by recording neural activity and behavior
from animal models. Recording technologies used with these animal models have traditionally
limited the range of behaviors that can be studied, and thus the generality of science and
engineering research. We aim to design a freely-moving animal model using neural and
behavioral recording technologies that do not constrain movement. Approach. We have
established a freely-moving rhesus monkey model employing technology that transmits neural
activity from an intracortical array using a head-mounted device and records behavior through
computer vision using markerless motion capture. We demonstrate the flexibility and utility of
this new monkey model, including the first recordings from motor cortex while rhesus monkeys
walk quadrupedally on a treadmill. Main results. Using this monkey model, we show that multi-
unit threshold-crossing neural activity encodes the phase of walking and that the average firing
rate of the threshold crossings covaries with the speed of individual steps. On a population level,
we find that neural state-space trajectories of walking at different speeds have similar rotational
dynamics in some dimensions that evolve at the step rate of walking, yet robustly separate by
speed in other state-space dimensions. Significance. Freely-moving animal models may allow
neuroscientists to examine a wider range of behaviors and can provide a flexible experimental
paradigm for examining the neural mechanisms that underlie movement generation across
behaviors and environments. For BMIs, freely-moving animal models have the potential to aid
prosthetic design by examining how neural encoding changes with posture, environment and
other real-world context changes. Understanding this new realm of behavior in more naturalistic
settings is essential for overall progress of basic motor neuroscience and for the successful
translation of BMIs to people with paralysis.

S Online supplementary data available from stacks.iop.org/jne/11/046020/mmedia
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1. Introduction

Animal models are central to investigating how the brain
senses the ever-changing world and responds with a large

repertoire of possible behaviors. Animal models that focus on
naturally occurring sensations and behavior are increasingly
desirable, as the limitations of studying only simplified sen-
sory-motor functions and their neural underpinnings is
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increasingly recognized as stifling progress. For example, in
sensory neuroscience, cats watching movies which capture
natural scene statistics expanded our knowledge of how the
visual system processes naturalistic images and time series
[1]. In systems neuroscience, rhesus monkeys are often cho-
sen as the model species because of their ability to perform a
wide variety of sensory, cognitive and motor tasks including,
for example, dexterous arm movements [2]. However, despite
the rhesus monkeyʼs capacity for a large repertoire of natur-
alistic behaviors (e.g., spontaneous, non-instructed peeling
and eating of a banana while swinging in a hammock), most
motor studies have historically focused on a relatively small
number of instructed arm movements.

Motor studies of this sort have focused on so few
behaviors because of the technologies needed for performing
the necessary measurements. Monkey models for motor
neuroscience require two simultaneous measurements, neural
and behavioral. Traditional experimental frameworks record
neural activity through tethered (wired) connections (e.g.,
[3, 4]) requiring a reduced range of motion, such as a fixed
head posture and restricted arm movements, to protect both
the monkey and the sensitive recording electronics, as illu-
strated in figure 1(a). We refer to these traditional monkey
models as ‘head-fixed models’ because the head is often
braced in place to prevent the monkey from pulling on the
tethered connection or vibrating the head or chair which could
introduce micro-phonic electrical noise into the neural
recordings. Methods for gathering behavioral measurements
can also be cumbersome for less restricted or completely free
movement. A highly productive head-fixed model, and
therefore posture-fixed model as well, is the reaching monkey
model where monkeys perform 2D or 3D arm movements and
reaching behavior is captured by tracking the endpoint of the
arm by target location (e.g., [5]), with a manipulandum (e.g.,
[6]), or with an infra-red camera tracking system (e.g., [7, 8]),
by tracking markers on the whole arm [9], or by direct
measurement of the arm position while the arm is in a two

degree-of-freedom exoskeleton using joint-angle encoders
[10, 11]. These methods limit movements to the region of
space where the arm can move but without changing posture
and to the ranges of the behavioral sensors. These methods
are sufficient for studying 2D and 3D movements such as
point-to-point reaching within the aforementioned restricted
workspace.

However, fixed posture 2D and 3D arm movements are a
limited subset of all natural behaviors, and it is unclear how
well scientific and BMI results from limited workspace
experiments generalize to broader, more naturalistic behaviors
in unconstrained workspaces. For example, though fairly high
levels of BMI cursor control and prosthetic arm control is
now possible (e.g., [12–15]), it is unclear how well these
results based on head and shoulder immobilized rhesus
monkey models and initial clinical trials in people with
paralysis (tetraplegia) will generalize to cases where more
movement remains intact (e.g., single-arm amputation, so
other arm and legs can still move) and thus much larger
workspaces are relevant and potential interaction among
postural, movement, cognitive, and environmental context
signals are possible. Moreover, recent studies demonstrate
that the relationship between neural activity and movement is
complex [16, 17]. Thus, when motor neuroscience experi-
ments focus on a small number of reaches, they may limit our
ability to decipher this complexity in neural responses.

One potential solution is to develop additional head-fixed
monkey models that examine other behaviors, such as the
bipedal walking model [18]. However, examining more
behaviors in isolation might not untangle the complexity of
responses without knowing how neural ensembles respond
across behaviors. To examine how neural ensembles in the
motor cortex relate to a wide variety of voluntary movement,
we propose that a more flexible monkey model is needed. We
refer to these flexible models as ‘freely-moving monkey
models’.

Figure 1. Illustration of monkey models. (a) Traditional tethered monkey models record neural activity from a direct, wired connection to the
implant. The monkeyʼs posture and gaze are often fixed. (b) Freely moving monkey models transmit neural activity wirelessly enabling a
larger range of naturals behaviors to be studied, such as interacting with tools in different postures (left) and coordinating movements of the
entire body (right).
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Compared to head-fixed monkey models, freely-moving
monkey models are more difficult to design and make
operational, but they may well involve less animal training.
These monkey models require recording neural activity and
behavior using technologies that do not encumber move-
ments, as illustrated in figure 1(b). Therefore, traditional
neural recording systems with a tethered connection must be
replaced with head-mounted recording systems [19]. A
number of systems have been designed for such telemetered
neural recordings (i.e., wireless transmission of neural data
from the electrodes/head to a nearby receiver in the room) as
interest in gathering these types of measurements has
increased [20–31]. Behavior must also be recorded in a larger
environment than in traditional head-fixed models, for
example in a home cage (in-cage model) or in the wild (in-
the-wild model). One possibility for gathering behavioral
measurements is by using computer vision techniques (e.g.,
[32, 33]). Though the technological requirements for freely-
moving monkey models are more complex than for head-
fixed monkey models, studying natural behavior may require
less training time than reaching monkey models in which
months can be spent teaching monkeys to learn tasks. A
comparison of the technologies used between different
monkey models is presented in table 1.

In this report, we present a novel freely-moving monkey
model, termed the treadmill model. The treadmill monkey
model uses the two key freely-moving monkey model tech-
nologies, wireless neural recordings and computer vision
based behavioral measurements, to study the neural correlates
of a monkey walking quadrupedally on a treadmill. This
experimental framework is important in its own right poten-
tially as a useful animal model for gait neurorehabilitation
(e.g. [34]), as well as an important step towards designing
even more complex in-cage and in-the-wild monkey models,
which require even more complex and robust neural recording
and behavioral tracking systems (see Discussion). We have
previously reported, preliminarily, that neural activity
encodes walking and reaching [35, 36]. Here, we substantially
extend these previous preliminary reports by demonstrating
results in two rhesus monkeys (which is critical for knowing
if the scientific results generalize across monkeys), analyze
how neural activity covaries with changes in walking speeds,
and analyze population level activity so as to report the first
comprehensive study of the treadmill monkey model and
associated scientific results. The kinematics of quadrupedal
walking have been characterized in monkeys (e.g. [37]), and
the neural correlates of quadrupedal walking have been stu-
died in cat animal models [38–40], but, to our knowledge, this
is the first time that the neural correlates of quadrupedal
walking has been studied in monkeys.

2. Methods

Walking behavior was recorded by eight video cameras while
neural activity was telemetered from chronically implanted
electrode arrays. The recording environment consisted of a
commercially-available exercise treadmill surrounded on four

sides by transparent plastic walls held together in a custom-
build extruded aluminum enclosure. The back wall was
removed when the monkey was walking into the treadmill
environment and clipped back in place during the experi-
ments. The front wall had a hole to supply water and treats to
the monkey. The side walls and front wall were flush against
the treadmill and there was space in the back of the envir-
onment for the animal to step off the treadmill. The top of the
environment was open. A diagram of the recording environ-
ment is shown in figure 2(a), pictures of the environment are
shown in supplementary figure 1 (available from stacks.iop.
org/jne/11/046020/mmedia), and the recordings are described
in detail below.

2.1. Behavioral task

All protocols were approved by the Stanford University
Institutional Animal Care and Use Committee. Two rhesus
macaques (monkeys I and N) were trained, over a period of
several weeks, to walk naturally and quadrupedally on a
treadmill moving at various normal walking speeds. After
initial training sessions in which each animal was introduced
to the treadmill environment, we began recording sessions in
which the animal walked while video and neural data were
captured. Each recording session (one per day per monkey)
lasted about 1 min. A session began by bringing a monkey to
the treadmill environment using a pole attached to the collar,
a standard technique for safely assisting monkeys while
moving in a laboratory setting. For precautionary safety rea-
sons, the pole remained loosely attached during walking
without disturbing behavior as no force was applied. Each
session was divided into 6 to 10 walking epochs in which the
treadmill moved at a fixed speed, and the fixed speeds were
repeated and interleaved. During an epoch, the monkey
walked unencumbered on the treadmill and was free to exit
off the rear end of the treadmill if desired. To encourage
continuous walking, the animal was rewarded continuously
with water or fruit at the front of the treadmill. Times within
an epoch in which the animal exited the treadmill were not
analyzed. Between each walking epoch, the animal reached
from the stationary treadmill to food rewards at the front of
the treadmill. We do not believe, and we had no observations
suggesting otherwise, that the water and food rewards had a
significant effect on walking behavior. A total of 40 (46)
recording sessions were captured from monkey I (N) over the
course of 12.5 (8.5) months. During these sessions, the
behavior of the monkeys was carefully monitored to ensure
animal safety, and there were no adverse events. These
recording sessions constitute a large dataset, on par with data
sets collected from monkeys with chronically-implanted
arrays performing reaching tasks in ‘rig’.

For analysis, walking behavior was divided into indivi-
dual steps. Each step began and ended when the right arm
(contralateral to implant) returned to the treadmill after
swinging forward through the air. To increase the consistency
of behavior in analyses and to ensure a high count of steps for
individual speeds, we focused on a range of walking speeds in
which the animals took infrequent breaks. This range of
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Table 1. Comparison of different electrophysiological monkey models.

Behavioral Neural
Recordings Recordings

Model
Marker-
based

Direct
measurement

Computer
vision

Training
complexitya

Measurement
complexitya Tethered Telemetry

Multiple
receivers

Measurement
complexitya References

Head-fixed
Reaching X X — — X — [5–11]
Bipedal walking X ↓ — X — [18]
Freely-moving
Treadmill X ↓ ↑ X ↑ This work
In-cage X ↓↓ ↑↑ X X ↑↑ [19]
In-the-wild X ↓↓ ↑↑ X X ↑↑

a
Dashes represent similar complexity to the baseline of traditional monkey models. A down arrow represents lower complexity than the baseline. Double down arrows represent

still lower complexity. Up arrows represent an increase in complexity from baseline.
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walking speeds was divided into three speeds categorized as
slow, medium, and fast walking corresponding to 2.0, 3.0,
and 4.0 kph for monkey I (2.0, 2.5, and 3.0 kph for monkey
N). Monkey I is larger than monkey N, so it is natural for
them to have a different set of comfortable walking speeds,
and the key point in this investigation is to have a slow,
medium, and fast speed for each monkey. These speeds need
not be the same across monkeys as we are not making
statements about neural correlates of absolute speed.

2.2. Video recordings

Walking behavior was recorded on video for offline analysis
from eight camera views. Point Grey Grasshopper (GRAS-
20S4M/C) cameras captured video at 24.7 frames per second
at a resolution of 1624 × 1224 pixels. Video acquisition and
export were performed using a 4DViews 2DX Multi-Camera
system. The 4DViews camera system ensured that images
were captured synchronously by all eight cameras via a
synchronization line. The synchronization line was also used
to synchronize the neural recordings with the video record-
ings as shown in black in figure 2(a) and described in the
following section. Additionally, the intrinsic and extrinsic
parameters of the cameras were computed using a custom
multi-camera calibration method.

Behavioral measurements were gathered from video
frames by using computer vision techniques and by hand-
tagging frames of interest. Computer vision techniques were
used to automatically find the 3D location of the right
shoulder, elbow, and wrist as the monkey walked. Unlike

many neuroscience studies where markers attached to or
painted on the animal aid joint tracking (e.g., [18] and [9]),
we did not include markers because they can distract the
animal. Instead, we developed a computer vision algorithm
that is based on statistical learning, epipolar geometry (the
geometry of two camera views [41]), anatomical constraints,
and temporal coherence. Specifically, we trained view-
dependent detectors of these arm joints in each of the (2D)
images (similar to how object detectors were trained in [42]).
Within each view, each arm joint (e.g., the elbow) was
associated with multiple such detectors–each corresponding
to the arm joint in a different 3D pose. The per-pixel detection
response for an arm joint was defined to be the strongest per-
pixel response among all the detectors associated with the arm
joint. The detection response for an arm joint for all pixels
defined a likelihood map for the 2D location of the arm joint
in a given camera view.

To estimate joint positions in a new unseen video
sequence, we began by computing the responses of the arm
joint detectors. Note that in a given video frame, an arm joint
may be occluded in one view. However, our use of several
cameras ensured it was always visible in at least some of the
views. Next, in order to suggest candidates for the 3D loca-
tions of the arm joints, we looked for 3D locations whose
projections onto the 2D images correspond to strong
responses of the 2D detectors across the different views.
Importantly, by using epipolar geometry, we were able to
reduce the search space: we started from the 2D candidates in
the image taken from the most informative camera (side-
view), and then, by restricting the search along epipolar lines

Figure 2. System overview of treadmill monkey model. (a) Unconstrained behavior of a monkey is recorded synchronously with video
cameras while broadband neural activity is recorded and transmitted wirelessly. A camera server manages the synchronization of eight
cameras (black connection) and stores images (blue connection). An FGPA parses the output of the Hermes (D or E) system, synchronizes
the neural data with the video images, and outputs patterns to LEDs to verify synchronization (green connection). Images of the HermesE (b)
transmitter and recording electronics, (c) receiving antenna, and (d) receiver and FPGA.
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(given calibrated cameras), we only needed to search along
1D lines in other views. This step results in a set of 3D
candidates (weighted by the responses of the detectors in all
views) for each one of the arm joints (shoulder, elbow, and
wrist). Finally, using temporal coherence, the structure of the
kinematic tree (e.g., the shoulder location restricts the possi-
ble locations of the elbow), and anatomical constraints
(obtained via biometric measurements of the animal), we
optimized, using dynamic programming, for the full trajectory
of the 3D locations of the arm joint across the entire video
sequence. Performing inference in a batch process (over the
full trajectory as opposed to frame by frame) enabled us to
reduce noise and to compensate for joint-detector errors.

In addition to automated behavioral tracking, a custom
MATLAB (Mathworks, Natick, MA) interface was written to
hand-tag frames of interest in the video. For example, we
labeled the frames that marked the transitions between
each step.

2.3. Neural recordings

In each monkey, a 96-channel multielectrode array (Blackrock
Microsystems, Salt Lake City, UT) was implanted in the dorsal
aspect of the premotor cortex (PMd) as determined by visual
anatomical landmarks. Neural signals were telemetered using
one of two recording platforms for each recording session: the
HermesD system or the HermesE system [22, 23]. HermesD,
used in 30 (40) recording sessions for monkey I (N), records 32
channels of broadband data at 12 bits per sample at 30 kSam-
ples per second, and HermesE, used in 10 (6) recording sessions
for monkey I (N), records 96 channels of broadband data at 10
bits per sample at 31.25 kSamples per second. As shown in
figure 2, the respective Hermes receiver demodulated the
transmitted neural data and output the result to a field pro-
grammable gate array (Spartan-3A FPGA; Xilinx, San Jose,
CA) located on a ZestET1 (Orange Tree Technologies Ltd,
Didcot, UK). The FPGA was programmed to check for wireless
transmission errors, to remove non-informative stuffing bits,
and to package the useful data onto a User Datagram Protocol
(UDP) Ethernet stream to be stored for offline analysis. The
FPGA also received the video camera synchronization line as
an input, included the image timing information in the output
UDP datastream, and output a specified pattern to synchroni-
zation LEDs that could be seen in multiple camera views. By
checking the patterns on the LEDs in multiple camera views,
we certified that the synchronization as measured by the hard-
ware matched the images saved by the video recordings.

Broadband neural data were then processed to identify
and extract action potential (spike) timing information for
analyses. Raw broadband waveforms are plotted for 100 ms
in figures 3(a)–(b) for two channels in monkey N recorded
with HermesD. LFP, not analyzed in this study, was filtered
out using a highpass filter with cutoff frequency of 250 Hz.
Spike times were designated anytime the filtered waveform
crossed a threshold of −4.0 times the RMS voltage value of
the channel, similar to prior BMI research in our group and
others (e.g., [43]). Filtered waveforms for 3.0 s are shown in
figures 3(c)–(d) for the same two channels with the threshold

for spikes marked in black. A raster plot of 10 s of walking is
plotted in figure 3(e).

2.4. Dataset selection

The environment used in the treadmill monkey model (i.e., a
part of a traditional rhesus monkey ‘housing room’ with many
other metal cages also in the room) contains more sources of
noise than the controlled rig environment of traditional
monkey models (e.g., RF, light, and acoustically shielded
rooms). In this treadmill environment, we contended with
artifacts in the neural data that arose from wireless trans-
mission errors, grounding issues, thermal sensitivities of the
receiver, and interfacing issues between the Hermes systems
and the neural implant. Many of these issues were mitigated
over the course of our year of recordings. We chose to focus
on the datasets with the fewest artifacts. Because of the time
consuming nature of hand-tagging video data, we selected a
limited number of representative datasets to analyze. For
monkey I, we focused on 9 walking epochs from a single day
(I20121024); 3 epochs were from each speed slow, medium,
and fast, and neural recordings were made using HermesE.
For monkey N, we focused on 6 walking epochs from two
consecutive days (N20120821 and N20120822); each day
had one slow, one medium, and one fast epoch, and neural
recordings were made using HermesD.

The results presented in this paper are taken from
representative datasets from both monkeys. While we focus
on a subset of the recordings for the practical reasons men-
tioned above, the results presented here are similar to
recording sessions from many days. In general, there is no
guarantee that threshold crossings across many days will be
stationary, and therefore we chose to analyze a single day for
monkey I and two consecutive days for monkey N. A full
analysis of the stability of waveforms is beyond the scope of
this paper and has been performed previously with the same
type of multi-electrode arrays [43].

3. Results

3.1. Behavioral tracking using markerless computer vision

Figure 4(a)–(c) plots the right shoulder, elbow, and wrist in
the vertical plane for 102 frames as monkey I walks at a slow,
medium, and fast pace. Because there was no ‘ground-truth’
measurement against which to compare to the computer
vision results, we compared the computer vision 3D positions
to hand-labeled 3D locations for 100 points. We found that
the average Euclidean distances between the computer vision
3D data points and the hand-labeled points were 26.1 mm,
20.6 mm, and 17.1 mm for the wrist, elbow, and shoulder,
respectively for monkey I. For reference, monkey Iʼs arm
(shoulder to wrist) is approximately 42 cm. Errors were ani-
sotropic in 3D coordinates. For each joint, the error in the
horizontal direction perpendicular to the direction of move-
ment was greater than the errors in the vertical direction and
in the walking direction. For instance, the root-mean-square
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error between the hand-labeled points and computer vision
points for the wrist were 9.6 mm in the direction of walking,
10.5 mm in the vertical direction, and 21.9 mm in the hor-
izontal direction perpendicular to the direction of movement.
The poorer performance of this direction is likely due to
occlusion by the body. We measured the root-mean-square
error of the elbow joint angle in the vertical plane to be 4.7
degrees. For monkey N, the automated tracking was less
successful due to the animalʼs smaller limbs, more motion
blur, and irregular walking patterns, and some points were
hand-corrected to obtain more accurate tracking. For this
monkey, manual corrections were required for about one
frame out of every 50 frames. This represents a substantial
improvement over manually determining all points. No
manual corrections were required for monkey I.

The frames that represent the beginning and end of each
step are highlighted in figures 4(a)–(c). These plots represent
4.1 seconds of walking, during which monkey I takes about
three steps when walking at a slow speed, about four steps
when walking at a medium speed, and about five steps when
walking a fast speed. To summarize the behavior over the
analyzed datasets, the cumulative distribution function (CDF)
of step rates, the inverse of each step duration, is plotted for
monkey I in figure 4(d) and monkey N in figure 4(e). Monkey
I has a more consistent step rate as shown by a steeper slope
in the CDF than monkey N.

3.2. Neural spiking in PMd encodes walking phase

A central aim of motor neuroscience is understanding which
behaviors are encoded by neural activity. In head-fixed
monkey models, the standard approach has involved repeat-
ing the identical behavior for many trials while recording
neural activity. Consistent features in neural recordings across
trials are considered encodings of the behavior, and incon-
sistent features are considered noise. In freely-moving

monkey models, there is no trial structure to exploit. How-
ever, we can classify behavioral epochs into categories (e.g.
reaching or walking) and ask if the neural activity during
these epochs encodes the corresponding behaviors. Neural
activity encodes behavior if there are statistical differences in
the neural activity between two behavioral conditions.

In other words, we narrowly define ‘encoding’ to indicate
that the mutual information between the neural activity and
the categorical behaviors is greater than zero. The manner in
which information is encoded remains ambiguous. For
example, motor cortex is heavily connected to both somato-
sensory cortex and output motor areas (e.g., the spinal cord).
When we find that motor cortex encodes behavior with this
method, we have not determined whether we are measuring
the encoding of the proprioceptive signals or the output motor
command (if a distinction can be made). Instead, we have
determined that motor cortex contains information that can
differentiate between the behaviors, and thus, encodes the
behavior though we may not know how.

In the treadmill monkey model, we asked whether neural
spiking in PMd encodes the phase of quadrupedal walking.
We divided continuous walking of each monkeyʼs walking
epoch (see Methods) into individual steps, which begin and
end with the right arm (contralateral to implant) coming into
contact with the treadmill after it is swung forward. A full step
cycle is further divided into two epochs: the stance phase
when the right arm is in contact with the treadmill followed
by the swing phase when the right arm swings forward
through the air. In figure 5, raster plots for threshold crossings
are shown for 96 (32) channels for monkey I (N) while
walking for 5 seconds at a medium (fast) speed. The channels
are arranged by the timing of the peak firing rate within the
phase of walking. The phase of walking is also marked below
each raster plot with the stance phase in black and the swing
phase in white. In the raster plots it is clear that a periodicity
exists in the threshold crossings that closely matches the

Figure 3.Neural recording. Broadband neural data, sampled at 30 kilo-samples per second, is recorded from PMd using HermesD as monkey
I walks on a treadmill (I20121024). (a)–(b) Two of the 32 channel waveforms are plotted. (c)–(d) LFP is filtered out of the signal, and
threshold crossings are found at 4 times the RMS (threshold marked by black horizontal line). (c) A raster plot of these two channels during
walking.
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periodicity in the phases of walking and that different chan-
nels have different phase relationships with the phases of
walking.

We further demonstrate the relationship between the
periodicity of spiking and walking by aligning neural spiking
on an individual channel to individual steps. We have chosen
multi-electrode array technology to emphasize simultaneous
recordings across many channels in order to investigate
population dynamics. One drawback of this technological
choice is that signal quality degrades over time, and we
cannot always isolate single neurons. However, we were able
to isolate single neurons on a few channels, and they appear
to have a simple relationship with the phase of walking (see
supplementary figure 2). This relationship tends to be stable

across days (see supplementary figure 3). In figure 6, raster
plots and firing rates are shown for a hand-sorted single-unit
on a single electrode (channel) for each step as monkey I and
N walk at slow, medium, and fast speeds. Individual steps are
aligned at t = 0, which is when the right arm comes in contact
with the treadmill after the swing phase of walking. These
single units appear to have the same relationship with the
phase of walking independent of speed.

Finally, we investigated to what extent PMd encodes the
phase of walking. Because many channels did not have single
units that we could isolate, we chose to compare threshold
crossings so that we can study higher channel counts. Blur-
ring information of multiple units on a single electrode due to
threshold crossing can only hurt our measurement of the
extent to which motor cortex is involved in walking. As a
simple quantitative measure to determine if a channel is
tuned, we compare the square root (a standard transformation
for making Poisson processes more normal [44]) of the
average firing rate of threshold crossings during the stance
phase and the swing phase (see supplementary figure 4). We
exclude neural channels with an average firing rate below 5
spikes per second in both phases of walking, with artifacts

Figure 4. Walking behavior. Videos of the walking behavior were
analyzed using computer vision to determine locations of the
monkeyʼs right shoulder, elbow, and wrist. Panels (a), (b), and (c)
plot the shoulder, elbow, and wrist in the vertical plane as monkey I
walks at slow, medium and fast speeds (I20121024). Each trace
represents the position of the upper arm and lower arm in each
frame. Successive traces are offset by 4 cm to separate the arm
position for each frame. Frames where the right wrist comes in
contact with the treadmill are highlighted; they represent the end of
the swing phase and the beginning of the stance phase. The
cumulative distribution functions (CDF) of step rate for slow (red),
medium (blue) and fast (green) walking (measured from point of
contact to the next point of contact) are plotted in panels (d) for
monkey I (I20121024) and (e) for monkey N (N20120821 and
N20120822). Monkey I walks at a more consistent rate for a given
speed than monkey N.

Figure 5. Raster plot of walking with gait phase. (a) Threshold
crossings as monkey I walks at 3.0 kph (medium speed) for 5 s. The
phase of the gait are plotted below the raster plots with the stance
phase in black and the swing phase is grey. To sort the channels, first
we calculated the firing rate of each channel for each step (consisting
of a stance phase followed by a swing phase). Because each step has
a different duration, we normalized the step timing to its phase from
0 to π2 . Then we averaged the firing rate for each channel across
time-normalized steps. Finally, we found the phase where the
maximum average firing rate occurred and sorted channels by this
value. (b) Threshold crossings as monkey N walks at 3.0 kph (fast
speed) for 5 s.
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due to an amplifier saturating, or that were disconnected due
to interfacing issues. These channel selection criteria reduced
the number of channels from 96 (32) to 76 (20) for monkey I
(N). The fewer active channels in monkey N data is due to
poorer signal quality of the electrode array, which degraded
more quickly over time than the signal quality of the array
implanted in monkey I. We found that 70/76 (11/20) channels
are significantly tuned ( <p 0.01, a two-sample T-test) for
monkey I (N). Thus, most channels in both monkeys encode
the two phases of the gait cycle during quadrupedal walking.

3.3. Average firing rate covaries with wrist velocity during step

In addition to showing that neural activity encodes certain
behaviors, motor neuroscience seeks to describe how neural
activity covaries with behavioral kinematics. In both head-
fixed and freely moving monkey models, differences between

similar movements, such as speed and trajectory, are regres-
sed against neural activity to investigate how neural activity
changes with changes in behavior. Using head-fixed reaching
monkey models, it has been shown that differences in
reaching speeds for similar reach trajectories are associated
with differences in neural firing rates [45, 46], and we
hypothesize that differences in walking speeds would like-
wise be associated with differences in firing rates.

One might ask whether neural activity covaries with the
speed or position of the wrist across all time points. This is
equivalent to determining how well neural activity can predict
the position of wrist over time, a measurement made by
Fitzsimmons and colleagues during bipedal walking [18]. We,
too, find that neural activity covaries well with wrist speed
(data not shown). However, this is equivalent to saying that
the neural activity is tuned to walking as we have shown in
the previous section. If neural activity is tuned to the phase of

Figure 6. Neural correlates of walking. Raster plots of multi-unit activity on channel 21 as monkey I walks at (a) slow, (b) medium and (c)
fast speeds (I20121024). Each row represents a step aligned at t = 0 to the right arm coming in contact with the treadmill after stepping
forwards. (d) Firing rate for each step is calculated by averaging over 50 ms nonoverlapping bins. Raster plots for monkey N walking at (e)
slow, (f) medium and (g) fast speeds and (h) the corresponding firing rate (N20120822).
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walking and if the wrist position and speed co-varies sys-
tematically over each movement, then neural activity will
covary with speed as well.

We tested to see if the average firing rate during indivi-
dual steps is correlated significantly with the peak forward
wrist speed of the step. This requires a single-trial analysis
examining how well neural activity can account for trial-by-
trial changes in wrist speed. For each step, we calculated the
peak forward speed of the wrist from the computer vision
measurements of walking behavior. Firing rates are calculated
by convolving each channelʼs spike train with a Gaussian
window with a standard deviation of 50 ms, and the average
firing rate over the step duration was measured. Channels
excluded in the previous section were again excluded. A total
of 323 (173) steps are included for monkey I (N). A linear
regression was performed to determine whether there is a
significant relationship between the average firing rate and the
peak forward speed of the wrist during walking. Example
channels from each monkey are plotted in figures 7(a), (b). Of
the 76 (20) channels analyzed, 52 (7) were found to have
significant slopes ( <p 0.01) in the regression for monkey I
(N); channels were sorted by R2 value, and the R2 values are
plotted in figures 7(c)–(d) with slope values inset. Despite
recording from PMd in both monkeys, in monkey I, most
channels exhibit an increase in average firing rate for steps
that have faster swings, and in monkey N, most channels

exhibit a decrease in average firing rate for steps that have a
faster swing. This could be due to, among other reasons,
slightly different placements of the electrode array with
respect to anatomical landmarks (i.e., intra-operative varia-
tion) or due to different function localization in each monkey
with respect to anatomical landmarks. Of the 52 (7) channels
that significantly covary with wrist speed, 48/52 (4/7) are also
found to be encoded to the different phases in walking in the
previous section for monkey I (N). Thus, channels that were
found to significantly covary with peak wrist speed were
likely to encode the phases of walking.

3.4. Neural trajectories are rotational, evolve at step rate, and
separate by speed

The previous two sections examine the relationship between
multi-unit spiking on individual channels and quadrupedal
walking, but it is equally (if not potentially more) important to
understand how the entire population relates to movement
(e.g., [47]). Recent work in motor neuroscience has used
dimensionality reduction techniques to view how neural
activity of the population evolves. The top two or three
dimensions calculated from dimensionality reduction can be
plotted together, and the evolution of the neural population
firing rates over time can be viewed as neural trajectories in
this space (e.g., [44, 48]).

Figure 7. Average firing rate covaries with peak speed of step. Peak firing rate (spikes/sec) of a (a) channel 31 from HermesE for monkey I
(I20121024) and (b) channel 21 from HermesD for monkey N (N20120821 and N20120822) versus maximum forward speed (meters/sec) of
the wrist per step with regression line. The distribution of R2 values for all included channels (black bars are significant, <p 0.01) for (c)
monkey I and (d) monkey N with corresponding regression slopes inset. R2 value represents how much average firing rate variance is
explained by peak wrist speed variance.
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We performed factor analysis on multi-unit firing rates as
monkey I walks at different speeds. We could not perform
this analysis on data from monkey N because there are not
enough active channels to build neural trajectories. A single
step is plotted in figure 8(a) with the stance phase of walking
in bold followed by the swing phase of walking. Neural tra-
jectories for 10 steps at slow, medium and fast speeds are
plotted in red, blue, and green in figure 8(b), respectively. The
neural trajectories for steps at different speeds share similar
rotational trajectories though there are small systematic dif-
ferences in trajectories for different speeds. These small dif-
ferences are likely caused by the number of channels that
covary with step velocity as shown in the previous section. A
major difference between the neural trajectories for different
walking speeds is their angular frequency. The average
angular frequency of the neural trajectories is measured for
the 10 steps for each walking speed and plotted in figure 8(c).
The average step rate (measured in steps per second) for the
10 steps is plotted in figure 8(d). Converting units from
radians per second to cycles per second, it is apparent that the
angular velocity of the neural trajectories occur at the same
rate as the step speed.

Though prominent features of the neural trajectories
seem to be consistent across walking speed, systematic dif-
ferences may be embedded in the population neural trajec-
tories. Recently it has been suggested that a separation of

rotational dynamics may exist as a mechanism for neural
populations to generate oscillatory output signals from input-
specified target frequencies [49]. We investigated whether
there was a systematic offset in any direction by searching for
a direction, z, in state-space that best separates the population
between walking speeds.

There are a number of methods to separate two classes,
including linear discriminant analysis, logistic regression, and
support vector machines. We found these methods work well
to separate the neural trajectories for slow and fast walking
(data not shown). However, these methods do not incorporate
the neural trajectories for walking at medium speed. There-
fore, to find the separation direction z, we used least-squares
to predict the walking speed from each point in the trajectory
for a single walking epoch (continuous walking for approxi-
mately 40 steps) at each speed. Indeed, the neural trajectories
are well separated when projected onto z, as shown in
figure 8(e). This method outperformed two other previously
described class separation methods on cross validated data.
The overall variance in this separation direction is quite low;
for example, 0.18% of the total neural variance for slow
walking is in the direction of z compared to 30.87% and
20.94% of the total neural variance is in the direction of the
first factor x1 and the second factor, respectively. The dis-
tribution of the training dataset separated well on this axis
figure 8((f), top), but the low variance could mean that we are

a b c

e f g

d

Figure 8. State-space view of neural population activity during walking. State-space view is computed for monkey I neural activity
(I20121024) by using factor analysis. (a) State-space view of neural population for a single step at medium speed for, stance phase (bold)
followed by swing phase. (b) State-space view of slow, medium, and fast walking for 10 consecutive steps plotted in red, blue, and green,
respectively. (c) Average angular frequency in radians per second for 10 steps of slow, medium, and fast walking. (d) Average step rate in
steps per second for 10 steps of slow, medium, and fast walking. (e) Separation along z dimension plotted versus projection into top factor of
factor analysis. For clarity, the medium walking speed has been omitted and the z-axis has been scaled by a factor of 6. (f) Distribution of
slow, medium, and fast walking in the direction of separation for training data (top) and for testing data (middle and bottom). (g) ROC curves
for separating slow and fast walking (training dotted, testing solid).
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finding a separation in the noise. We then projected testing
data composed of the six remaining epochs not used to learn
the direction z onto the learned direction z to verify that the
separation was real, figure 8((f), middle and bottom). Finally,
we illustrate the large separation of slow and fast speeds by
showing a receiver operating characteristic plot, which shows
how well we classify neural trajectories into the correct
speeds as a function of decision threshold (see figure 8(g)).
The dotted curve represents the separation of slow and fast
walking for the training neural trajectories, and the two black
curves for the test neural trajectories. For the testing datasets,
we can correctly separate more than 85% of the slow and fast
walking trajectories by a linear classifier. We find that, though
neural trajectories have largely similar features for different
speeds, they have a small, but robust separation along the
direction z.

4. Discussion

4.1. PMd modulated during walking

Many textbooks describing the control of locomotion in
mammals focus on the role of central pattern generators in the
spinal cord (e.g., [50]). The role of cortex is often described as
being used for skilled walking, such as walking over obstacles
or on ladders (e.g., [51]). Studies using decerebrate cat
models have shown that unskilled walking need not have
cortical inputs to produce walking movements due to central
pattern generators, but to the best of our knowledge no studies
have effectively demonstrated the existence of central pattern
generators in higher order primates with well developed
corticospinal tracts [52]. Thus, we feel that treadmill loco-
motion is not only a reasonably accessible behavior to study
because it is relatively stereotyped, but also a behavior that
can lead to insights into motor function.

If corticospinal control is more important in these higher
order primates, it is unsurprising that in our data we found
that most of the recorded channels in PMd encoded the phase
of walking. Here again, we point out the ambiguity of the
encoding. The neural signals in premotor cortex may arise
from sensory regions, or they may be controlling the loco-
motion, or both. Although this ambiguity is unresolved, it is
clear that the information about the phase of walking is pre-
sent in threshold crossings in PMd.

On the other hand, if walking were truly controlled solely
by the spinal cord, then it is unclear what purpose this
modulation within motor cortex serves. One possible expla-
nation comes from studies that have shown that successful
skilled walking, such as walking on ladders and responding to
changing terrain, requires cortical input. This means that
cortex is required when changes to gait patterns are required.
Therefore, modulation found within motor cortex may
represent tracking of the phase of walking such that appro-
priate corrective movements can be instructed when inter-
vention is required.

4.2. Implications for studies of voluntary movement

Scientific endeavors to understand how the brain controls
voluntary movement have relied on using animal models that
narrowly focus on a handful of behaviors. However, the
neural responses to this limited set of behaviors is often
complex and does not always follow simple, interpretable
relationships. The hope for freely-moving models is to be able
to find consistent relationships across many more sets of
voluntary behaviors.

Studying the control of voluntary movement in this
manner requires a new strategy for analyzing neural corre-
lates. Instead of focusing on a repeated behavior for many
trials, freely-moving animal models require recording many
behaviors over an extended period of time, then using modern
algorithms for large datasets to find consistent patterns within
the data. To be analyzed efficiently, new statistical and
machine learning techniques are required to study the neural
correlates of behavior. One approach is to segment behavior
into categorical epochs (e.g., reaches upwards) where beha-
vior is similar, and then to analyze those behavioral epochs
for common neural motifs (see supplementary figures 5 and
6). Conversely, we can use machine learning techniques to
look for patterns in neural data and analyze the behavioral
correlates of those patterns. Here, we present the types of data
inquiries that can be used in freely-moving animal models for
the treadmill monkey model.

The treadmill monkey model has a number of advantages
and disadvantages over in-cage and in-the-wild monkey
models. The benefit of the treadmill monkey model is that
similar behaviors (steps) are easy to collect in a short amount
of time because the animal walks continuously. This sim-
plifies the data storage problem because only a limited time is
needed to collect sufficient behavior. In addition, computer
vision for a task like walking is much easier than for tasks in
the cage and in the wild where occlusion from cameras can
make the computer vision task more difficult. For these rea-
sons, we chose to limit the scope of this initial study to
walking. However, to realize the full potential of freely-
moving animal behavior, these systems need to be designed
for and rigorously evaluated in multiple behavioral contexts.
Though the complexity of developing in-cage and in-the-wild
monkey models is higher, they have the benefit of lower
complexity in gathering raw data. Data acquisition requires
little intervention once the neural recording and behavioral
monitoring systems are set up. The complexity is shifted from
difficult recordings to difficult data analysis. However, in-
cage and in-the-wild monkey will produce richer data leading
to new insights in the control of voluntary movement.

4.3. Implications for BMIs

Given the inherent complexity of neural correlates of move-
ments, it is difficult to determine how the neural population
will respond to novel behaviors. For computer cursor BMIs,
the space of novel behaviors is reduced because the cursor is
confined to a 2D plane, and thus reaching monkey models
have provided perhaps a sufficient amount of data to train
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prosthetic decoders—assuming that the person with paralysis
is tetraplegic, and thus is approximately as immobile as the
head-fixed (and thus shoulder-constrained) monkey model.
However, to design decode algorithms for whole-arm BMIs
capable of working with people who are ambulatory and have
a single-arm amputation, more knowledge about neural cor-
relates of complex reaches is needed. People who use whole-
arm prosthetics will likely need to change postures or move to
new environments; the effect of which is unknown on neural
correlates. Freely-moving monkey models afford us the
opportunity to study these factors.

5. Conclusion

In this work, we have presented the design of a freely-moving
monkey model. By using telemetered neural recording tech-
nologies and markerless computer vision techniques, we were
able to study the neural correlates of quadrupedal walking for
the first time. The techniques presented here build a founda-
tion for freely-moving monkey models that future work can
build on to study the neural correlates of many behaviors
providing a comprehensive look at how the brain controls
voluntary movement.
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