Presentation Abstract

Program#/Poster#: 252.08/KK11

Presentation Title: Application of a high performance intracortical brain computer interface for communication in a person with amyotrophic lateral sclerosis

Location: WCC Hall A-C

Presentation time: Sunday, Nov 16, 2014, 1:00 PM - 5:00 PM

Presenter at Poster: Sun, Nov. 16, 2014, 4:00 PM - 5:00 PM

Topic: ++D.18.d. Neuroprosthetics: Control of real and artificial arm, hand, other grasping devices

Authors: *C. PANDARINATH*¹,²,³, P. NUYUJUKIAN⁴,⁵,¹,³, V. GILJA¹,⁸, C. H. BLABE¹,³, J. A. PERGE⁹,¹²,¹⁰, B. JAROSIEWICZ¹¹,¹²,¹⁰, L. R. HOCHBERG¹²,⁹,¹³,¹⁴,¹⁰, K. V. SHENOY²,³,⁶,⁷,⁴, J. M. HENDERSON¹,³;


Abstract: An important potential application for Brain Computer Interfaces (BCIs) is the control of computer cursors and keyboards for the restoration of communication.
This report, combined with a paired report (Nuyujukian et al., SfN 2014), describes the development and application of one such BCI for use by a participant with amyotrophic lateral sclerosis (ALS), as part of the BrainGate2 FDA Pilot clinical trial. Our participant was achieving typing rates between 4.4-6 words per minute (22-30 net correct selections per minute), representing, to our knowledge, the highest reported communication rates of any human BCI. Participant T6 is a 51 yr old woman with declining motor function due to slowly-progressive ALS. She was implanted with a 96-channel electrode array (Blackrock Microsystems) in the hand area of dominant motor cortex. The data presented here were collected more than 13 months post-implantation. Spiking activity and high-frequency local field potential power (150-450Hz) were extracted for use as control signals. The ReFIT Kalman Filter (Nuyujukian et al., SfN 2014, Gilja*, Nuyujukian*, et al., Nat Neuro 2012) was used for continuous 2-dimensional cursor control. To achieve full “point-and-click” control of the computer interface, we added, in parallel, an algorithm for detecting transitions between movement and click-states: the Hidden Markov Model (HMM; Nuyujukian et al., SfN 2012). The participant generated a volitional click signal by attempting to squeeze her non-dominant hand (ipsilateral to the implanted array). This caused a suppression of neural firing, which could be detected as an intention to click. At each time step, the HMM estimated the state likelihoods based on a multivariate Gaussian model of the neural data, the previous likelihoods, and the prior probability of state transitions. Performance of the combined point-and-click interface was measured using two tasks - a grid task, in which the participant acquired randomly presented targets on a 6x6 square grid, and a keyboard task, in which the participant typed phrases using a QWERTY-keyboard layout without, using word completion or error correction. In the grid task, the participant was acquired targets with less than 10% false click rate and a bitrate between 2.2-3 bits per second. In the keyboard task, the participant was able select characters at speeds between 22-30 net correct selections per minute (4.4-6 wpm). These results demonstrate the successful translation of high-performance BCI methods for continuous control and discrete selection. This promising point-and-click interface could serve as a practical method to restore communication for persons with severe paralysis.

Disclosures:

C. Pandarinath: None. P. Nuyujukian: None. V. Gilja: None. C.H. Blabe: None. J.A. Perge: None. B. Jarosiewicz: None. L.R. Hochberg: None. K.V. Shenoy: None. J.M. Henderson: E. Ownership Interest (stock, stock options, royalty, receipt of intellectual property rights/patent holder, excluding diversified mutual funds); Nevro - Medical Advisory Board - stock options, Circuit Therapeutics - Chair, Medical Advisory Board - stock options. F. Consulting Fees (e.g., advisory boards); Medtronic - ad hoc consulting, Neuropace - Neurosurgical Advisory Board.

Support:

Craig H. Neilsen Foundation
Stanford Institute for Neuro-Innovation and Translational Neuroscience
Stanford BioX-NeuroVentures
Garlick Foundation
Stanford Medical Scientist Training Program