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Supplementary Information 1 

Methods 2 

1. Subjects 3 

Our experiments were performed on two adult male macaque monkeys (Macaca mulatta, ages 8-4 

10 and 12-14 years old over the course of the experiments for monkeys H and F, respectively). 5 

Monkeys were trained to perform a direction discrimination task with reaching movements of the 6 

arm as operant responses. These were the same subjects used in our previous study11, but with new 7 

experiments. All training, surgery, and recording procedures conformed to the National Institutes 8 

of Health Guide for the Care and Use of Laboratory Animals and were approved by Stanford 9 

University Animal Care and Use Committee.   10 

2. Apparatus 11 

Monkeys sat in a custom-made primate chair (Stanford Machine Shop) in front of a video 12 

touchscreen, with their heads restrained using a surgical implant. The front plate of the chair could 13 

be opened, allowing the subjects to reach the touchscreen with the arm contralateral to the 14 

implanted hemisphere. The ispsilateral arm was gently restrained using a Delrin tube and a cloth 15 

sling. Stimuli were shown on the video touchscreen (ELO Touchsystems 1939L), which was 16 

positioned approximately 35.5 cm away from the monkeys’ heads and allowed hand position to be 17 

tracked at 75 Hz. Eye position was continuously tracked with an infrared eye tracker at 1 kHz 18 

(EyeLink 1000, SR Research, Canada).  19 



3. Motion discrimination task  20 

The task employed is a variation of the classical random dots motion discrimination task, in which 21 

the subject uses an arm movement as the operant response11 (Fig. 1a). We used a variable duration 22 

version of this task in which the duration of the stimulus presentation varied from trial to trial. 23 

There were two types of trials in our experiments: open-loop, in which the stimulus duration was 24 

determined by the experimenter at the beginning of the trial and closed-loop, in which the duration 25 

was contingent on a specific pattern of neural activity detected in real time (see Experiments 1-3). 26 

The subject was never cued on what type of trial it was on. For open-loop trials stimulus duration 27 

ranged from 500-1200 ms (median 670 ms) and was randomly chosen on each trial by sampling 28 

an exponential distribution. For closed-loop trials the possible values for duration ranged between 29 

250-1200 ms and were determined on each trial either by the timepoint at which the termination 30 

conditions were met or a predetermined random duration sampled from the open-loop distribution, 31 

whichever came first. All trials started with the onset of a fixation point (FP; 1.5 degree diameter) 32 

on the video touchscreen (Fig. 1a). To initiate the task, the monkey was required to maintain both 33 

eye and hand fixation within ± 3 degrees of the FP as long as it remained on the screen. Importantly, 34 

throughout the entire trial, the monkey was required to always maintain direct hand contact with 35 

the screen, otherwise the trial would be aborted.    36 

After 300 ms of fixation, two targets (1.5 degree diameter) appeared on opposite sides of the FP 37 

(eccentricities between 10 and 17 degrees). After a 500 ms delay the random dot stimulus was 38 

presented for the durations mentioned above, after which it was removed from the screen. The 39 

monkey was asked to report the net direction of motion (0 or 180 degrees) by reaching to the target 40 

in the corresponding direction. The difficulty of the task was adjusted by changing the fraction of 41 



dots moving coherently in one direction (motion strength). After stimulus offset the monkey either 42 

entered a delay period during which it was required to withhold his response for 400-900 ms (on 43 

30% of the open-loop trials) or was immediately presented the go cue (on 70% of the open-loop 44 

trials and all closed-loop trials). The go cue was then signaled by the offset of the FP at which 45 

point the monkey was free to gaze anywhere and report his decision with his arm by reaching one 46 

of the two targets. Although gaze was monitored, reward acquisition depended solely on reaching 47 

to the correct target. Finally, for a response to be considered valid, the monkey was required to 48 

hold its hand position within ± 4 degrees of the center of the target for 200 ms. The monkey was 49 

then rewarded with a drop of juice for correct choices and given a timeout (2-4 seconds) for 50 

incorrect ones. Zero coherence trials were rewarded randomly with a probability of 0.5 since there 51 

was no correct response on these trials. The motion discrimination task was run on an Apple Mac 52 

Pro running Mac OS. 53 

4. Random dots stimuli   54 

The stimuli used in our psychophysical experiment were random dot kinematograms (RDK) 55 

generated using MATLAB and Psychophysics Toolbox. The details for generating the random 56 

dots stimuli have been described previously11. However, to allow for closed-loop experiments 1 57 

and 2 (see below) we introduced a modification to be able to terminate the dot presentations early 58 

if needed. The stimulus code was designed to precompute a sequence of kinematograms that 59 

contain both random and moving dots. The sequence was then presented ballistically with no need 60 

to continuously compute the content of each frame. Our modification allowed for DV values to be 61 

received asynchronously from the real-time decoder and evaluated during the dots presentation. If 62 

the DV criteria defined by the particular experiment were met, the dot presentation could then be 63 



terminated without the remaining frames being shown. For the experiment in which an additional 64 

pulse of motion energy was injected (closed-loop experiment 3, see below), we arranged for two 65 

sequences of kinematograms to be precomputed before presentation: one without the pulse, the 66 

other for the 200 ms pulse itself. Contingent on the evolution of DV values, the stimulus could 67 

then be rapidly switched from the standard sequence to the pulse sequence. 68 

For both monkeys, the motion strength could take one of 6 possible values within a set, but the 69 

sets were slightly different between subjects: [0%, 1.6%, 3.2%, 6.4%, 12.8%, 25.6%] for monkey 70 

H and [0%, 3.2%, 6.4%, 12.8%, 25.6%, 51.2%] for monkey F. The top coherence (51.2%) was 71 

dropped and a very low coherence (1.6%) was introduced for monkey H, due to its superior 72 

discrimination ability. For pooled analyses across the two subjects, we grouped trials into relative 73 

coherence levels as follows: level 0: 0%/0% level 1: 1.6%/3.2%, level 2: 3.2%/6.4%, level 3: 74 

6.4%/12.8%, level 4: 12.8%/ 25.6%, and level 5: 25.6%/51.2% for monkey H/F. 75 

The direction and coherence of the motion were randomly assigned on each trial by sampling from 76 

a uniform distribution with replacement. For zero-coherence stimuli all dots were displaced 77 

randomly but, due to the stochasticity of that process, one obtains non-zero net motion toward the 78 

targets over a small number of frames.  79 

5. Behavioral training      80 

Both monkeys had been extensively trained on fixed and variable duration versions of the motion 81 

discrimination task using an arm reach movement as the operant response prior to the current 82 

study11. A few training sessions (all open-loop trials) were used to get the subject accustomed to 83 



the new task timing (0.5-1.2 s stimuli and no delay on 70% of the trials).  Real time decoding 84 

sessions only started when psychophysical performance was stable.     85 

6. Behavioral analysis 86 

Psychophysical performance was assessed in two ways: by describing the percentage of correct 87 

choices as a function of (unsigned) stimulus coherence and by describing the percentage of 88 

rightward choices as a function of signed stimulus coherence.  89 

The percentage of correct choices as a function of motion strength (stimulus coherence) was fit by 90 

a cumulative Weibull distribution function:  91 

 𝑃correct (𝑐) =  1 − 0.5 × 𝑒(−
𝑐
𝛼)𝛽

 Eqn. 1 

where Pcorrect is probability correct, c is motion strength, α is the psychophysical threshold (the 92 

value of c that corresponds to ~82% correct responses), and β is a parameter that controls the shape 93 

of the function, especially its steepness.  For behavioral analyses shown in Extended Data Fig. 1a, 94 

Eqn. 1 was fit separately for trials in each stimulus duration quartile for each subject (monkey H 95 

quartiles: Q1: [0.500 , 0.574] s, Q2: [0.574 , 0.680] s, Q3[0.680 , 0.827] s,  Q4: [0.827, 1.200] s; 96 

monkey F quartiles: Q1: [0.500 , 0.574] s, Q2: [0.574 , 0.667] s, Q3[0.667 , 0.813] s,  Q4: [0. 813, 97 

1.200] s). 98 

The proportion of rightward choices, Pright, as a function of motion strength and direction was fit 99 

by a logistic regression:  100 



 
𝑃right (𝑐) =  

1

1 + 𝑒−𝛽1 × ( 𝛽0+𝑐)
 Eqn. 2 

where c is motion strength, β1 is the slope parameter and −β0 is the motion strength corresponding 101 

to the indifference point. This value was used to assess the monkey’s behavioral bias on each 102 

session.  103 

7. Electrophysiological recordings 104 

Two multielectrode arrays (Blackrock Microsystems, Utah) with 96 electrodes each (1mm long 105 

platinum-iridium electrodes, 0.4 mm spacing, impedance average of approximately 400 KOhm) 106 

were implanted in primary motor and dorsal premotor cortex of each monkey (Fig. 1b). The 107 

methods for determining the array placement were described in our previous study11. For monkey 108 

F, the M1 array became unusable between the end of the previous study and the start of the current 109 

study. Due to lack of neural signal from the M1 array, only the PMd array was used for this animal. 110 

Continuous neural data were acquired and saved to disk from each channel (sampling rate 30 kHz) 111 

and thresholded at -4.5 RMS using the Cerebus recording system (Blackrock Microsystems, Utah) 112 

and two separate PCs (one for each array) running Windows 8. Waveforms corresponding to 113 

threshold crossings were not sorted and each channel could contain one or more unit(s). Sorting 114 

waveforms would require a significant lead-up time before the beginning of the experiment and 115 

could negatively affect the ability to combine data and use decoders across days (see below, 116 

Decoder training). Since units were not isolated within each channel our resulting units were most 117 

likely multi-unit clusters. Any extremely noisy channels were deactivated at the beginning of a 118 

session, and all other channels were used in this study.  119 



8. Datasets     120 

Data were collected in two sets of experiments. In the first set of experiments we performed closed-121 

loop experiments 1 and 2 (see below). For this set, for each monkey we analyzed all datasets that 122 

met two behavioral inclusion criteria: 1) over 500 trials and 2) a behavioral bias (|β0|) under 4%, 123 

as determined by a logistic regression fit (see above). These criteria were imposed to ensure that 124 

we have a sizeable number of trials per condition (6 coherence x 2 directions = 12 conditions) and 125 

that the behavior of the monkey is virtually unbiased, such that both neural and behavioral results 126 

are more easily interpretable. These criteria resulted in a selection of 17/17 and 15/20 sessions for 127 

a total of 16468 and 15826 trials for monkey H and F, respectively.  128 

In the second set of experiments we performed closed-loop experiment 3. This set of experiments 129 

was performed later, on separate sessions, but using the same two subjects, arrays and decoding 130 

techniques as the first set. In this set of experiments, we analyzed all datasets with over 550 trials. 131 

These criteria resulted in a selection of 48/48 and 32/33 sessions for monkey H and F, respectively. 132 

For all experiments in monkey H, PMd and M1 were recorded simultaneously. 133 

9. Decoder training  134 

We chose to use a logistic regression classifier based on our preliminary previous results showing 135 

excellent offline prediction accuracy in variable duration tasks11 and because of the direct 136 

probabilistic interpretation of its output. Our decision variable (DV) was defined as the log odds 137 

ratio of observing a particular behavioral choice (T1: rightward choice or T2: leftward choice) given 138 

the population response �⃗� : 139 



 
DV = log 

𝑃(𝑇1|�⃗�  )

𝑃(𝑇2|�⃗�  )
 =  𝛽0 (𝑡) + ∑𝛽𝑖(𝑡) × 𝑟𝑖(𝑡)

𝑛

𝑖=1

 Eqn. 3 

Where 𝑟𝑖(𝑡) are the z-scored summed spike counts for each neuron and time window, β0 is an 140 

intercept term and βi(t) are the classifier weights (one for each unit and epoch). Data from all 141 

electrodes with valid waveforms were combined.  142 

For simplicity, we decided to use only 3 different decoders for an entire trial (Fig. 1a), instead of 143 

a different one for each 50 ms time window in the trial11. We applied the first decoder from fixation 144 

up to and including the dots period, the second for the delay period and the third for the post go 145 

cue period. After extensive offline tests on a few sessions, the precise epochs for classifier training 146 

were defined as the following: 147 

 • Dots epoch: from 150 to 1000 ms after dots onset; 148 

 • Delay epoch: from 250 to 350 ms after dots offset; 149 

 • Post-go cue epoch: from 200 to 400 ms after onset of the go cue. 150 

LASSO regularization was applied to prevent over-fitting when calculating each set of ß weights. 151 

A Lambda parameter constraining the L1 norm of the ß vectors was calculated separately for each 152 

of the 3 decoders using 10-fold cross validation on the corresponding time epochs listed above. 153 

For each decoder the Lambda value with minimum cross-validation error was chosen. Extended 154 

Data Fig. 6b shows beta weights for an example set of 3 decoders for monkey H sorted by epoch 155 



and ranked by magnitude. Positive weights correspond to rightward preferring channels while 156 

negative weights correspond to leftward preferring channels. LASSO regularization sets weights 157 

of channels with little or no predictive activity to zero. On average, 56% (78%) of the channels 158 

were included in the dots epoch decoder, 34% (65%) in the delay epoch, and 44% (74%) in the 159 

post-go epoch for monkey H (F) (Supplementary Table 5). 160 

The linear classifier was determined offline using recently collected data (from real-time 161 

experiments). All 50 ms samples of neural data during the selected period (above) for each epoch 162 

were used to train the classifier. The classifier was trained on 90% of the trials and tested on 10% 163 

of the trials using 10-fold cross-validation. The weights from one of the cross-validation folds were 164 

then used in the upcoming real-time experiments. Decisions to train new decoders were based on 165 

experimenter judgment in attempts to optimize performance: if a substantial decrease in real-time 166 

decoding performance and/or an increase in the DV offset at baseline was observed, a new 167 

classifier was trained and used in the following session. New classifiers were typically used every 168 

5 sessions, but some proved to be stable over up to 14 sessions (Extended Data Fig. 6a). 169 

10. Real-time decoding 170 

An essential requirement to compute a real-time read-out of neural activity is the ability to 171 

continuously and (nearly) instantaneously access and perform computations on the neural activity 172 

being recorded. To accomplish this, the spikes for each channel were temporally smoothed using 173 

a causal half-Gaussian kernel with 50 ms standard deviation (to mitigate spurious Poisson 174 

fluctuations) and summed for the most recent 50 ms. These smooth spike counts were then stored 175 

in a 192x1 (96x1 for monkey F) vector of neural activity and z-scored individually for each 176 



channel, using previously calculated μ (mean) and σ (standard deviation) vectors. Z-scoring neural 177 

activity was crucial to ensure a reliable and stable real-time readout by preventing the highest firing 178 

channels from dominating it. Finally, the z-scored neural activity was projected onto a previously 179 

calculated linear decoder (a set of β weights, one for each channel) to obtain our linear readout of 180 

internal decision state: a real time decision variable (DV)2.  181 

The value of the DV was updated every 10 ms, reflecting the neural activity of the preceding 50 182 

ms. Because we used a half-gaussian kernel, data preceding the 50 ms window also influenced our 183 

DV estimate (with more recent spikes carrying more weight). 95% of the data contributing to the 184 

spike counts was limited to the last 100 ms (i.e an additional 50 ms in the past to each 50 ms 185 

window). The sign of the DV was used to predict the upcoming behavioral choice: positive for 186 

rightward choices and negative for leftward choices. Prediction accuracy was calculated for each 187 

time point using the real-time DV and quantified as the fraction of trials in which the classifier 188 

correctly predicted the monkey’s upcoming choice. Baseline prediction accuracy was defined as 189 

the average accuracy for the first 80 ms of the random dots stimulus, and latency as the first of 6 190 

consecutive 10 ms time bins with a prediction accuracy value above baseline, Wilcoxon Sign Rank 191 

test p<0.001.  192 

In addition to using the DV sign to predict choices, the DV value and its history on a single trial 193 

could be used (if desired) to impose conditions for termination of the random dots stimulus 194 

(experiments 1 and 2) or presentation of a motion pulse (experiment 3), effectively closing the 195 

loop on the experiment. 196 

While the β weights were not updated online (during the course of one experiment), the μ and σ 197 



vectors for each epoch were learned continuously during the course of the experiment, due to 198 

changing recording conditions and signals from day to day. The μ and σ vectors were initialized 199 

at the beginning of the session using the values calculated offline when training the most recent 200 

decoder. Once the session started, the initial μ and σ vectors were blended with online calculated 201 

values for the first 25 trials, using a blending factor α: 202 

 𝛼𝑗 =  max ((25 − 𝑗)/25,0)) , where j is the trial number. Eqn. 4 

For trial j, sample number t and for a given epoch in trial, the μ and σ vectors were defined as a 203 

weighted mixture between the initial values μinitial(epoch) and σinitial(epoch) and the estimate of the 204 

current session’s values μcurrent(t,epoch) and σcurrent(t, epoch): 205 

 𝝁blended(𝑡, epoch) =  𝛼𝑗 ∗ 𝝁initial(epoch) + (1 − 𝛼𝑗) ∗ 𝝁current(𝑡, epoch) Eqn. 5 

 206 

 𝝈blended(𝑡, epoch) =  𝛼𝑗 ∗ 𝝈initial(epoch) + (1 − 𝛼𝑗) ∗ 𝝈current(𝑡, epoch) Eqn. 6 

After the first 25 trials α was set to zero which implies the μ and σ vectors kept being continuously 207 

updated throughout the session but were no longer blended with values from the previous days. 208 

The update rule for μcurrent(t, epoch) was: 209 



 
𝝁current(𝑡, epoch) =

[𝝁current(𝑡 − 1, epoch)] ∗ 𝐾 + 𝑟

𝐾 + 1
 Eqn. 7 

𝐾 =  𝑁samples(𝑡, epoch) 210 

where r is the most recently sampled vector of spike counts and K is the current number of samples 211 

of spike count vectors obtained so far for this particular epoch. 212 

The update rule for σcurrent(t, epoch) was: 213 

 𝝈current(𝑡, epoch)

= √
𝐾 − 1

𝐾
∗ 𝝈2

current(𝑡 − 1, epoch) + 
1

𝐾
∗ (𝑟 − 𝝁current(𝑡, epoch))2 

Eqn. 8 

 After updating the μcurrent(t, epoch) and σcurrent(t, epoch) vectors, the number of samples for the 214 

corresponding epoch was also updated:  215 

  𝑁samples(𝑡, epoch) =  𝑁samples(𝑡 − 1, epoch) + 1 Eqn. 9 

Importantly, even though we had only 3 different decoders (Fig. 1a) we effectively used 5 different 216 

epochs in experiments 1 and 2: Fixation, Targets, Dots, Delay and Post Go-Cue. The Dots decoder 217 

was also used in the Fixation and Targets epochs, but because average firing rates are different 218 

between these, different μ and σ vectors had to be used. In experiment 3, there was no delay period, 219 

and we continued to use the Dots decoder in the Post Go-Cue period in order to track the post-220 

pulse evolution of the DV. Every 50 ms sample of neural data for a given epoch was used to update 221 



the corresponding μ and σ vectors as described above. We let the μ and σ vectors converge for 222 

∼200-300 trials, in the beginning of each experimental session, before starting any closed-loop 223 

experiments. One way to check for this convergence was to monitor the average DV value for the 224 

first 150 ms of the Dots epoch. Since we verified through offline analyses that no systematic pre-225 

planning activity towards one of the two targets was present in PMd or M1 during this time 226 

window, we expected the average DV value in this period to be ∼0. Under these conditions a DV 227 

offset (systematic difference between the average DV value and 0) suggested that an artificial bias 228 

was being introduced in the decoded DV through inaccurately estimated μ and σ vectors, leading 229 

the algorithm to under or overestimate the contribution of certain channels to the DV.  Having 230 

similar μ and σ vectors across days (Extended Data Fig. 6c-d) sped up their online convergence 231 

thus increasing the number of trials available for closed-loop experiments within a session.  232 

Using a single decoder for an entire epoch was far more efficient to implement than using a 233 

different decoder for each time point (as it reduced the number of μ and σ vectors that had to be 234 

learned online). In addition, and as demonstrated in an offline analysis (Extended Data Fig. 3c-e), 235 

there is no performance difference between a single and multiple decoders for dots and go cue 236 

epochs for either brain area. Because choice modulation in PMd/M1 changes dramatically around 237 

the peri-movement period a single decoder for an entire trial was not feasible (Extended Data Fig. 238 

4). 239 

In the end, our method yielded a reliable real-time decision state read out and required only ~18% 240 

(15%) of trials in a session for calculating the values of μ and σ for monkey H (F), leaving the 241 

remainder available for imposing neurally contingent conditions in closed-loop. The real time 242 

decoder was run on two separate PCs (server and client) using the Simulink Real-Time/xPC 243 



platform (Mathworks, Massachussetts). 244 

11. Closed-loop experiments 245 

11.1 Experiment 1: Virtual boundaries 246 

On each trial we set a virtual threshold, or boundary (B), for the magnitude of the DV during the 247 

dots epoch. If the DV on the current trial reached B or −B ± tolerance, the dots presentation was 248 

terminated and the monkey asked to report its decision.  If the bound was not reached on a given 249 

trial, stimulus presentation continued to a preset duration for that trial which was randomly 250 

sampled from an exponential distribution ranging from 500-1200 ms.  Closed-loop trials for which 251 

the boundary was not reached were effectively indistinguishable from open-loop trials. 252 

Typically, 5 values for boundaries spanning 0.5 to 5 (DV units) were used every session and one 253 

of them was randomly assigned on each trial (uniform distribution).  The tolerance used was ± 254 

0.25 DV units. We imposed a minimum duration for all trials to avoid spurious bound crossings, 255 

which could be problematic for low bound values in particular. In all sessions the minimum 256 

duration was 250 ms, a conservative estimate of the latency for choice related signals driven by 257 

the visual stimulus to appear in PMd and M1.  258 

After the minimum stimulus duration was reached, the DV was assessed every 10 ms to determine 259 

whether it fell within ± 0.25 DV units of the boundary chosen for the current trial (B or −B). If so, 260 

the stimulus was terminated within 34 ms of the boundary being met (see Methods section 11.4), 261 

and we defined DVtermination as the DV value that triggered stimulus termination (thus, DVtermination 262 



took values within ±0.25 DV units of the boundary ±B assigned on each trial). If the bound for the 263 

particular trial was not reached, the presentation continued up to the maximum stimulus duration 264 

selected for that trial which had been obtained by randomly sampling from an exponential 265 

distribution: 500-1200 ms (median 670 ms). 266 

Finally, we randomly interleaved closed-loop trials from both experiments 1 and 2 on 70% of the 267 

trials (see breakdown below) with open-loop trials on 30% of the trials. In open-loop trials no DV-268 

dependent termination condition was imposed. The motivation for interleaving closed-loop and 269 

open-loop trials was to make it extremely hard for the monkey to learn that accelerating the 270 

dynamics of choice related signals11 (potentially by recruiting more choice related neurons or 271 

increasing their modulation) and thus hitting bounds sooner could potentially increase its reward 272 

rate. Not accounting for this possibility could lead to an undesirable change in the monkey’s 273 

strategy during the course of the closed-loop experiments, which could become problematic when 274 

combining data across days.  275 

11.2 Experiment 2: CoM detection 276 

Under our logistic regression framework, the signature of a putative CoM is a sign change of the 277 

decision variable. Since these sign changes could happen at any time during the trial, capturing 278 

them required not only monitoring the most recent state of the DV, but its history throughout the 279 

trial. Because there was noise in our DV estimation and DVs usually started close to 0 at the 280 

beginning of the trial we imposed selection criteria to detect likely CoMs based on the neural data. 281 

A necessary feature for all potential CoMs was a zero crossing in the sign of the DV: change of 282 

DV sign from negative to positive reflected a change in the likelihood of a rightward decision from 283 



less than 50% to greater than 50%, and vice versa for the opposite change in sign. To eliminate 284 

zero crossings resulting solely from measurement noise, we imposed four additional criteria: 285 

• Minimum DV value after zero crossing; 286 

• Minimum DV value with opposite sign before zero crossing;  287 

• Minimum duration of DV sign stability after zero crossing; 288 

• Minimum duration of DV sign stability before zero crossing; 289 

The minimum DV values before and after zero crossing were symmetrical for most sessions, as 290 

were the periods of minimum duration of DV sign stability (negative or positive values for all time 291 

points). If a zero crossing was detected and all four criteria were met, the stimulus presentation 292 

was interrupted and the animal was virtually immediately (within 34 ms or less, see Methods 293 

section 11.4) prompted to report a decision. The exact parameters used for each session can be 294 

found in Supplementary Table 4.  295 

By sweeping the parameter space we could test zero crossings that differed in magnitude and 296 

stability. Analogously to the virtual boundary experiment, if the minimums were not met and a 297 

CoM thus not detected, the stimulus presentation continued uninterrupted for a random duration 298 

ranging from 500-1200 ms, selected prior to the start of the trial. A minimum stimulus duration of 299 

250 ms was also in place. 300 



Because putative CoMs are quite rare2, in the first set of experiments we devoted 70% of the 301 

closed-loop trials to detect them leaving the remaining 30% as virtual boundary trials. The exact 302 

fraction of trials with CoM depends dramatically on how we parameterize them. The longer the 303 

minimum periods of consistent sign and the higher the minimum DV value in the initial 304 

commitment stage, the rarer they become. Running both experiments on the same sessions ensured 305 

that the mapping from DV to choice likelihood was held during the CoM experiments and provided 306 

the most faithful indirect validation of initial commitment we could obtain. 307 

11.3 Experiment 3: Motion pulse perturbation 308 

In this experiment, motion pulses were introduced on some trials with motion coherences near or 309 

below psychophysical threshold. No motion pulses were presented for suprathreshold coherences 310 

based on the results of a pilot experiment (not shown) in which pulses presented at suprathreshold 311 

coherences were more perceptually salient and led to changes in the animals’ strategy. As in 312 

Experiment 1, on each trial we set a virtual boundary (B) for the magnitude of the DV during the 313 

dots epoch. In this experiment, 100% of trials with dots coherence at or near psychophysical 314 

threshold were treated as closed-loop trials (this corresponds to trials with maximum unsigned 315 

coherence of 6.4% for monkey H and 12.8% for monkey F; psychophysical thresholds were 316 

measured using the Weibull function described above in Eqn. 1, Methods section 6). Low-317 

coherence trials in which the boundary was not reached (per the criteria below) and trials with 318 

suprathreshold dots coherences were all effectively open-loop.  319 

If the DV on a closed-loop trial reached B or −B ± tolerance (±0.25 DV units), after a minimum 320 

stimulus duration of 50 ms, a 200-ms motion pulse was presented, followed immediately by 321 



termination of the visual stimulus and presentation of the cue for the monkey to report its decision. 322 

If not, dots presentation continued for a pre-assigned duration drawn randomly from an 323 

exponential distribution of 500-1200 ms. Four integer values for boundaries (spanning 1 to 4 DV 324 

units) were used every session, and one of them was randomly assigned on each trial (uniform 325 

distribution). 326 

Motion pulses were 200-ms periods of additional dots stimulus presentation with small additive 327 

average coherence (±2% or 4.5% from the initial dots coherence on the same trial for monkey H 328 

and F, respectively, where positive coherence values indicate rightward motion); thus pulses 329 

effectively randomly added either a small amount of rightward or leftward motion evidence to the 330 

stimulus. Pulse strength was calibrated in pilot experiments, in which we converged upon 331 

coherence shifts that slightly but significantly biased each animal’s behavior, without being overtly 332 

perceptually salient (biases were measured using the logistic regression on rightward choice 333 

described above in Eqn. 2, Methods section 6). Animals were rewarded for correct reaches in the 334 

direction of the coherence of the initial dots stimulus (randomly assigned on 0% coherence trials), 335 

regardless of the pulse direction.  336 

11.4 Estimated latency for real time closed-loop setup 337 

To validate our setup, we measured the latency between a neural condition being met and the 338 

corresponding task change being implemented. We tested this latency by generating simulated DV 339 

steps in the same model used to detect when DV triggering conditions were met in the real 340 

experiments. We used these simulated steps to trigger the onset of a bright light on the touchscreen 341 

in front of a photodetector, again within the same code used to run the task and generate the stimuli 342 



in the real experiments. We then passed both the simulated DV and the photodetector output 343 

signals into an oscilloscope, triggered the display on the “DV” steps, and manually measured the 344 

delay to onset of the bright dot. Almost all measured delays were within 2 frames, or 26 ms. 345 

11.5 Estimated trial count savings for real time closed-loop setup  346 

The real time setup allowed for precise experimental control over which DV values or DV history 347 

to use to trigger a modification in the task (stimulus termination or pulse). However, it could be 348 

argued that given enough data, similar trials would have been captured simply by either 349 

terminating the stimulus (as in experiments 1 and 2) or presenting the pulse (as in experiment 3) 350 

at a random point in the trial and then back sorting them offline (by DV value or history after the 351 

data is collected). Note that such an open-loop experiment would require an alternative algorithm 352 

for stimulus modification, e.g. random timing within a pre-specified interval. It is conceivable that 353 

the sampling algorithm itself could affect the animals’ behavioral strategy and/or the average 354 

evolution of the DV over the course of a trial, which could impact our trial count yield in unknown 355 

ways. 356 

To estimate how much more trial-count efficient it was to use our real time setup compared to 357 

offline back-sorting trials where the stimulus was presented for a random duration, we used the 358 

CoM experiment as a case study given how rare change of mind events are (10.6% (17.2%) of 359 

trials for monkey H (F)). 360 

For simplicity, we focused on sessions 1, 2 and 3 from Monkey F, which all have the same (and 361 

intermediate) CoM requirements (Supplementary Table 4). We started by calculating the yield 362 



from the real time experiment in closed-loop as the ratio between detected CoM trials and trials in 363 

which CoMs were checked (i.e. all closed-loop trials in which the stimulus could be terminated if 364 

the conditions dictated by the CoM parameters were met, Supplementary Table 4):  365 

 YieldCL =  #CoMs detected #trials CoMs checked = 11.91%⁄  Eqn. 10 

To calculate the yield for offline back-sorting trials we used the open-loop trials in the same 366 

sessions, which were terminated after a random stimulus duration. Importantly, the stimulus 367 

duration on these open-loop trials was sampled from the same distribution as for the closed-loop 368 

trials in which CoMs were checked, which allows for a fair yield comparison. We calculated the 369 

yield from offline back-sorting as the ratio between the number of trials that would have met all 370 

the criteria for CoMs for the same session and the total number of open-loop trials: 371 

 YieldOL =  #Valid putative CoMs #Open loop trials = 1.85%⁄  Eqn. 11 

Since the goal would be to probe the new choice preference shortly after the zero crossing (putative 372 

change of mind), not many hundreds of ms later, we only considered CoM trials that were (closed-373 

loop) or that would have been (open-loop) terminated within 150 ms of the zero crossing. This 374 

cutoff value corresponded to the 82nd percentile of post zero crossing durations for the closed-loop 375 

trials analysed in these sessions.  376 

In this analysis, YieldCL was 6.43 times higher than YieldOL. This result implies that had we not 377 

used a real time setup in closed-loop we would have had to collect 6.43 times the number of trials 378 

(and thus sessions) to obtain the same number of events.  This would in turn mean collecting 379 



around 100 sessions/monkey just for experiments 1 and 2 (assuming the same 30%/70% trial split 380 

used in the real time experiments), rendering this experiment practically unfeasible.  381 

12. Logistic regression analysis of neural and behavioral data 382 

12.1 Comparison of motion energy, mean DV and single trial DV as predictors of choice – Closed-383 

loop experiment 1 384 

To contextualize the choice prediction accuracy of our single-trial DV in the first closed-loop 385 

experiment, we compared it to the performance of two other variables: the average motion energy 386 

of the stimulus within each trial, and mean DV across trials (for the corresponding stimulus 387 

coherence and time of stimulus termination). Motion energy quantifies the strength of the visual 388 

stimulus along the horizontal axis and was calculated by convolving the positions of the dots with 389 

spatio-temporal filters as previously described9. Due to the stochastic nature of the random dots 390 

kinematograms, even within the same stimulus coherence level and direction, the motion energy 391 

fluctuates from moment to moment and from trial to trial. For this reason, motion energy provides 392 

a finer description of the visual evidence favoring a specific choice than stimulus coherence, and 393 

we used it as a regressor here to quantify how stimulus fluctuations on individual trials predict 394 

choice behavior.  395 

We performed the model comparison analysis in two complementary ways. First, we built three 396 

models (nested) each containing an additional variable of interest (average Motion Energy, Mean 397 

DV and Single trial DV).  Second, we trained three separate models (single regressor) each 398 

containing only one of the three variables of interest. The first way tests how much additional 399 



predictive power each regressor adds to an increasingly complex model and the second way tests 400 

how each individual regressor by itself compares to the others. 401 

For all models, we performed the following logistic regression on the probability of rightward 402 

choice: 403 

 
𝑃right =  

1

1 + 𝑒−𝑧
 . Eqn. 12 

For nested model 1 and single regressor model 1: 404 

 z =  𝛽0  + 𝛽ME  ×  ME̅̅ ̅̅  Eqn. 12a 

For nested model 2: 405 

 z(𝑐, 𝑡) =  𝛽0  + 𝛽ME  ×  ME̅̅ ̅̅  + 𝛽Mean DV  ×  Mean DV(𝑐, 𝑡) Eqn. 12b 

For nested model 3: 406 

 z(𝑐, 𝑡) =  𝛽0  + 𝛽ME  ×  ME̅̅ ̅̅  + 𝛽Mean DV  ×  Mean DV(𝑐, 𝑡)

+ 𝛽DV  × DVtermination 

Eqn. 12c 

For single regressor model 2: 407 



 z(𝑐, 𝑡) =  𝛽0  + 𝛽Mean DV  ×  Mean DV(𝑐, 𝑡) Eqn. 12d 

For single regressor model 3: 408 

 z =  𝛽0  + 𝛽DV  × DVtermination Eqn. 12e 

Where applicable, c is motion coherence, ME̅̅ ̅̅  is average motion energy within a single trial and t 409 

is elapsed time of stimulus presentation. We used 10-fold cross-validation to test the accuracy of 410 

each model. Accuracy was defined as the percentage of correctly predicted choices on held out 411 

test data. The regressors can be interpreted as follows: 412 

ß0 – A constant term that captures the choice preference bias of the subject. A significant 413 

positive (negative) coefficient implies the subject has a right (left) side choice bias that 414 

cannot be attributed to the other regressors.  415 

ME̅̅ ̅̅ – Average Motion Energy within a single trial, calculated as described above for each 416 

trial in closed-loop experiment 1 and averaged for a specific window of time during the 417 

trial defined by latency (offset between DV and ME traces) and window size (averaging 418 

period duration). In other words, for regression at time t, ME was averaged between [t- 419 

(window size + latency)], t-latency]. To find the best model, 16 pairwise combinations of 420 

4 values for latency ([100,150,200,250]) and 4 values for window size ([40,80,120,160]) 421 

were tested. A significant positive coefficient indicates the subject is using stimulus motion 422 

energy information to guide choice in a way that is expected from the structure of the task 423 

(increasing probability of a rightward choice as visual evidence changes from strong 424 



leftward to strong rightward values). A significant negative coefficient would indicate the 425 

opposite. The highest prediction accuracy was obtained using 100 ms latency for both 426 

monkeys and 160 (120) ms window size for monkey H (F). For this reason, these were the 427 

parameters used for averaging ME in Eqn. 12a-12c. 428 

Mean DV(t) - Average DV across all open and closed-loop trials as a function of stimulus 429 

duration and stimulus coherence. A significant positive coefficient indicates that the 430 

average DV at the time of termination and stimulus coherence for each trial is predictive 431 

of choice likelihood with strong positive Mean DV values leading to higher likelihood of 432 

a rightward choice and strong negative Mean DV values to higher likelihood of a leftward 433 

choice. A significant negative coefficient would indicate the opposite. 434 

DVtermination - As defined in Methods section 11.1, the DV value at the time the stimulus 435 

was terminated and the go cue presented. A significant positive coefficient indicates that 436 

the DV at termination is predictive of choice likelihood beyond the other regressors with 437 

strong positive DV values leading to higher likelihood of a rightward choice and strong 438 

negative DV values to higher likelihood of a leftward choice. A significant negative 439 

coefficient would indicate the opposite. 440 

12.2 Effect of experimental and internal factors on choice – Closed-Loop Experiment 1 441 

For the first closed-loop experiment we investigated the effect of experimental factors (stimulus 442 

coherence and stimulus duration) as well as internal factors (DV at termination and DV derivative 443 

at termination) on choice behavior in our task. 444 



To quantify the effect of these factors on choice behavior, we performed the following logistic 445 

regression on the probability of rightward choice: 446 

 
𝑃right(𝑐) =  

1

1 +  𝑒−𝑧
, Eqn. 13 

where z = 𝛽0  + 𝛽coh  × coherence + 𝛽DV  × DVtermination + 𝛽DV Diff  ×  DV Diff447 

+ 𝛽stimulus duration  ×  stimulus duration448 

+ 𝛽stimulus duration∗𝐷  ×  (stimulus duration ∗ 𝐷) 449 

ß0 and DVtermination are defined as above (see Methods section 12.1). The remaining regressors can 450 

be interpreted as follows: 451 

Coherence – Signed coherence of the stimulus presented on that trial (positive for rightward 452 

stimuli and negative for leftward stimuli). A significant positive coefficient indicates the 453 

subject is using coherence information to guide choice in a way that is expected from the 454 

structure of the task (increasing probability of a rightward choice as stimulus coherence 455 

changes from strong leftward to strong rightward values). The converse would be true for 456 

a significant negative coefficient. 457 

DV Diff – DV derivative calculated as the change in the DV value over the 50 ms preceding 458 

termination. A significant positive coefficient indicates that the DV derivative at 459 

termination is predictive of choice likelihood beyond stimulus coherence and DVtermination, 460 

with strong positive DV Diff values leading to higher likelihood of a right choice and strong 461 

negative values to higher likelihood of a left choice. For a significant negative coefficient 462 



the opposite would be true. The DV Diff term is proxy for the direction the DV is heading 463 

at and shortly after stimulus termination, presumably due in part to stimulus motion energy 464 

already in the visual processing pipeline at the time of termination.   465 

Stimulus Duration – Duration of the period between stimulus onset and stimulus offset for 466 

each trial. A significant positive/negative coefficient indicates an increased 467 

rightward/leftward bias for longer trials. 468 

Stimulus Duration * D – Interaction term in which the stimulus duration is multiplied by 469 

the sign of the correct choice for a given trial (stimulus direction, D; +1 for right, -1 for 470 

left). A significant positive coefficient indicates improved discrimination performance for 471 

longer trials. The converse would be true for a significant negative coefficient. 472 

The results from this regression analysis can be found in Supplementary Table 2.  473 

12.3 Offline logistic regression of neural activity on choice 474 

For each session, the responses of all neurons in 90% of the trials were fit with a logistic model 475 

that attempted to separate rightward (T1) and leftward (T2) upcoming choices. The logistic model 476 

was fit in 50 ms windows, advanced in 20 ms steps over the entire trial duration: 477 

 
𝑃(𝑇1|𝑟  ) =  

1

1 + 𝑒−(𝛽0 (𝑡)+∑ 𝛽𝑖(𝑡)×𝑟𝑖(𝑡)
𝑛
𝑖=1 ) 

 Eqn. 14 

 478 



Where 𝑃(𝑇1|𝑟  ) is the probability of observing a particular behavioral choice (T1 or rightward 479 

choice in this case) given the population response �⃗� ; 𝑟𝑖(𝑡) are the z-scored spike counts for each 480 

neuron and time window, β0(t) is an intercept term and βi(t) are the classifier weights (one for each 481 

neuron and time window).   482 

The remaining 10% of the trials were tested using the previously trained model and its accuracy 483 

was recorded. The same process was followed 10 times for each window (10-fold cross-validation) 484 

and the percentage of correctly predicted choices recorded. This process was repeated for 485 

consecutive windows displaced by 20 ms and yielding a prediction accuracy trace for each session 486 

and brain area. Both correct and error trials were included in this analysis to assure there would 487 

not be an imbalance between high coherence trials (more likely to be correct trials) and low 488 

coherence trials, which would bias the classifier to perform better on high coherence trials.  489 

An L1-regularization technique (LASSO) was used to constrain the norm of the β coefficients 490 

fitted by the model to prevent over-fitting. The lambda parameter that determines the strength of 491 

the penalty for the L1 norm was calculated for the 50 ms window preceding the go-cue by 492 

sweeping through 25 potential values and selecting the value with lower deviance by running 10-493 

fold cross validation. This lambda value was then used for the model for all time points. 494 

Finally, a slightly different procedure was used when training a single classifier over an entire 495 

epoch. The four epochs used for training the four corresponding classifiers were:  496 

 • Targets epoch: [-150, 350] ms aligned to targets onset; 497 



 • Dots epoch: [150, dots offset] ms aligned to dots onset; 498 

 • Go epoch: [-600, 0] ms aligned to go cue; 499 

 • Peri-movement epoch: [-200, 600] ms aligned to reach; 500 

All valid 50 ms samples of neural data during the selected period (above) for each epoch were 501 

used as a sample to train the corresponding classifier. Valid 50 ms samples were those fully 502 

included within the time limits of each epoch. We used the 10-fold cross-validation and LASSO 503 

regularization methods explained above. However, the regularization parameter lambda was 504 

calculated individually for each epoch through cross-validation and chosen as the value with 505 

minimum expected deviance. Accuracy was calculated as fraction of test trials correctly predicted 506 

at every 50 ms long window (stepped in 20 ms increments). 507 

12.4 Effect of experimental and internal factors on choice – Closed-loop experiment 2 508 

For the second closed-loop experiment we investigated the effect on choice behavior of the four 509 

parameters enforced during the experiment to detect neural candidate CoMs: DV deflections 510 

before and after the CoM and duration of the required period of stability in the sign of the DV 511 

before and after the CoM. Signed stimulus coherence was also included in the regression given its 512 

large influence on choice behavior in our task. 513 

To quantify the effect of these factors on choice behavior, we performed the following logistic 514 

regression on the probability of rightward choice: 515 



 
𝑃right(𝑐) =  

1

1 +  𝑒−𝑧
, Eqn. 15 

where z =  𝛽0  + 𝛽coh  × coherence + 𝛽DV  × DVtermination + 𝛽DVmaxopposite  × DVmaxopposite516 

+ 𝛽time post CoM∗𝐷1
 ×  time post CoM ∗ 𝐷1517 

+   𝛽time pre CoM∗𝐷2
 ×  time pre CoM ∗ 𝐷2 518 

Here, 𝐷1 is the sign of the DV at termination following the CoM, and 𝐷2 is the opposite of 𝐷1, 519 

enforced prior to the CoM. ß0, coherence, and DVtermination are defined as above (see Methods 520 

section 12.1 and 12.2). The remaining regressors can be interpreted as follows: 521 

DV max opposite – Maximum deflection in DV value with sign opposite to DVtermination, 522 

achieved prior to the candidate CoM (zero-crossing). A significant positive coefficient 523 

indicates that the maximum opposite DV deflection decreases the likelihood of the final 524 

choice being congruent with the sign of the DV at termination: a strong early negative 525 

deflection would decrease the odds of a final rightward choice and vice-versa. The 526 

converse would be true for a significant negative coefficient. 527 

Time post-CoM * D1 – Interaction term in which the duration of the stability period after 528 

the zero-crossing is multiplied by the sign of DVtermination for a given trial. A significant 529 

positive coefficient implies that a longer post-CoM duration is associated with an increased 530 

likelihood that the final choice is congruent with the sign of the DV at termination. The 531 

converse would be true for a significant negative term. 532 



Time pre-CoM * D2 – Interaction term in which the duration of the stability period before 533 

the zero-crossing is multiplied by the opposite sign of DVtermination for a given trial. A 534 

significant positive coefficient implies that a longer pre-CoM duration is associated with a 535 

decreased likelihood of the final choice being congruent with the sign of the DV at 536 

termination. The converse would be true for a significant negative coefficient. 537 

The results from this regression analysis can be found in Supplementary Table 3.  538 

13. DV variability 539 

Within trial variability was computed by first calculating the difference between consecutive DV 540 

values (estimated every 10 ms) for every trial in the datasets collected for experiments 1 and 2 541 

(open and closed-loop). This step yielded a DV derivative trace for each trial aligned to dots onset. 542 

For each trial these traces were computed only up to the offset of the stimulus and did not include 543 

any delay or post go-cue DV data. The DV derivative traces were then sorted and averaged for 544 

each choice (Extended Data Fig. 10a-b) or each signed coherence level (Extended Data Fig. 10c-545 

d). Longer trials are increasingly rare due to the shape of our stimulus duration distribution, but 546 

this asymmetry does not influence the interpretation of the time course of average DV derivative 547 

as this metric only captures within trial variability and not across trial variance. 548 

14. DV and motion energy correlation  549 

Motion energy (ME) was calculated for each trial in the datasets collected for experiments 1 and 550 

2 (open and closed-loop) as described above (Methods section 12.1). The ME trace obtained for 551 



each trial captures the strength of the stimulus at every timepoint during the stimulus presentation 552 

on individual trials. To evaluate the effect of motion energy on DV we performed a linear 553 

regression of single trial DV traces on single trial ME traces. From experiments 1 and 3 we 554 

determined that, due to neural latencies, a stimulus fluctuation only exerts an effect on the decoded 555 

DV ~180 ms later. For this reason, the regression was always performed between DV(t) and ME(t–556 

180ms) or earlier. In Extended Data Fig. 9a-b, each green trace corresponds to a different way to 557 

estimate the motion energy that might affect DV at time t. For the lightest trace and for every 558 

timepoint, t, ME was averaged between (t–180ms) and (t–200ms) for every trial and used to regress 559 

against DV(t). A separate regression was performed for each timepoint and the resulting variance 560 

explained was plotted. The same process then was repeated for every other green trace by 561 

progressively increasing the averaging window for ME in 20 ms increments from (t–180, t–200) 562 

ms to (t–180, t–500) ms. As a control the DV was also regressed against signed coherence for each 563 

trial (Extended Data Fig. 9a-b grey traces). This analysis was used to assess how much of the DV 564 

variance across coherences is explained by motion energy or signed coherence as a function of 565 

time.  566 

To assess how much DV variance within each coherence level could be explained by the motion 567 

energy of the stimulus we first sorted the DV traces for each signed coherence level. For each 568 

signed coherence level and each timepoint we regressed DV(t) against the instantaneous ME(t–569 

180ms) for the corresponding trials and calculated the variance explained (Extended Data Fig. 9c-570 

d).    571 

Finally, we performed a within-coherence analysis to assess the impact of the motion energy on 572 

the direction and magnitude of the DV zero-crossings we captured as putative CoMs (Extended 573 



Data Fig. 9e-f). To do this, we calculated the signed DV slope in the 100 ms centered on the DV 574 

zero-crossing defining the CoM as the difference between DV at +50 ms and DV at -50 ms aligned 575 

to CoM divided by the window size (100 ms) for all CoM trials. We then sorted the slopes by the 576 

corresponding signed coherence level. For the trials in each signed coherence level, we regressed 577 

the DV slope around the CoM against the ME averaged over the 100 ms preceding the CoM, offset 578 

by the 180 ms estimated neural latency described above (ME was averaged between (t*–180ms) 579 

and (t*–280ms) for every trial, where t* is the time of the CoM zero-crossing). 580 

15. CoM regularities  581 

To test whether the effects of coherence on the number of CoMs were statistically significant we 582 

used a bootstrap method to generate 1000 distributions of CoM events with the corresponding 583 

coherences by sampling with replacement from the distribution of captured events for each subject 584 

separately. For each subject each distribution had the same number of observations as those 585 

captured in experiment 2: 985 for monkey H and 1727 for monkey F. For each randomly sampled 586 

distribution the number of CoMs for each coherence level was counted. The resulting counts were 587 

then regressed against the coherence level they belonged to. CoM count was highly and negatively 588 

correlated with coherence for both subjects (p<0.001). 589 

To test whether the CoMs were more likely to correct a mistake than lead to one (corrective vs. 590 

erroneous), we followed a similar bootstrapping procedure and generated 1000 distributions of 591 

CoM events (excluding 0% coherence trials, in which correct and erroneous are undefined). For 592 

each randomly sampled distribution the number of CoMs for each condition was counted. The 593 

difference between the median counts of corrective and erroneous CoMs was tested by performing 594 



a one-sided Wilcoxon rank sum test (p<0.001) testing the hypothesis than corrective counts were 595 

higher than erroneous counts. 596 

Accurate and stable decoder performance (Extended Data Fig. 6) was crucial for studying rare 597 

events such as CoMs, which could not have been characterized adequately using a single session’s 598 

data.  599 

16. Pulse effects 600 

To quantify the overall behavioral effect of the pulses, we performed the following logistic 601 

regression on the probability of a rightward choice:  602 

 
𝑃right(𝑐) =  

1

1 +  𝑒−𝛽1 × ( 𝛽0+ 𝛽pulse𝐷+𝑐)
 , Eqn. 16 

 603 

where c is motion coherence, β1 is the slope parameter, D is the pulse direction, and −β0 is the 604 

motion strength corresponding to the indifference point.  605 

To determine the effect of the pulse on the evolving DV, we first estimated the minimum latency 606 

for the visual stimulus information to influence the DV by calculating the first time of significant 607 

divergence of rightward vs. leftward DV traces during dots presentation on open-loop trials with 608 

stimuli of maximal motion strength (±25.6%, 51.2% coherence for monkey H, F), assessed using 609 

a two-sample t-test with correction for a false discovery rate of 0.0544. We refer to this estimate as 610 



the “evidence representation latency” (ERL; 170, 180 ms, bootstrapped SEM with 1000 iterations 611 

of 58, 63 ms for monkey H, F, respectively). We then measured the evolution of the DV after pulse 612 

presentation by calculating the difference between the empirically observed DV at each time point 613 

t and the DV at the “pulse evidence representation latency” (PERL, or time of pulse onset plus the 614 

ERL): 615 

 δDV(𝑡) = DV(𝑡) − DVPERL. Eqn. 17 

DV values for all neural pulse analyses were calculated using the decoder trained from the Dots 616 

epoch (see Methods sections 9-10). Because the DV calculated using the Dots decoder became 617 

dramatically less reliable in the time bins preceding reach onset (see Extended Data Fig. 4), we 618 

truncated these DV traces 150 ms before the single-trial reaction times (RTs). However, because 619 

single-trial RTs varied, the number of trials contributing to each data point dropped off with 620 

increasing time post-PERL. Therefore, to standardize the time window for analysis of neural pulse 621 

effects across trials, DV traces were terminated no later than 100 ms before the subject’s median 622 

RT. Any trials for which the online DV traces were corrupted (truncated) before the end of this 623 

time period (0 (1) closed-loop pulse trial for monkey H (F)) were excluded from further analysis. 624 

Additionally, there were rare trials in which the online DV traces peaked dramatically over the 625 

course of the trial, or with very large offsets from 0 at baseline. These outlier trials, defined as 626 

trials with DV offset magnitudes reaching >50 DV units (33 (0) closed-loop pulse trials for monkey 627 

H (F)), or DV values reaching magnitudes >100 DV units (4 (3) closed-loop pulse trials for 628 

monkey H (F)), were also excluded from further analysis. 629 

16.1 Dissociating the influence of pulse time and DV at pulse onset – Closed-loop experiment 3 630 



We adopted a data-driven, somewhat brute force approach to disentangle the effects of DVPERL 631 

and time. The same approach was used separately to analyze the neural and behavioral pulse effects 632 

(measured using the change in the DV post-PERL or the monkey’s choice, respectively). In 633 

essence, we first calculated the condition-averaged response variable (choice or post-PERL change 634 

in DV) for each of many conditions specified below, then subtracted the condition-averaged effect 635 

from single trial measurements for each trial belonging to each condition. This yielded a set of 636 

residual values, one for each trial, that we then combined across all conditions to generate 637 

statistical power. To calculate how the time-adjusted pulse effect varied with DVPERL, stimulus 638 

duration was included in the definition of the conditions (described below). Thus residuals were 639 

calculated separately for each time bin before combining the data to examine the effect of DVPERL 640 

on the pulse effect. Similarly, to calculate how the DV-adjusted pulse effect varied with time, 641 

DVPERL (not time) was included in the definition of conditions and the individual trials were re-642 

sorted among conditions before subtraction of the condition-averages. This yielded a set of 643 

residuals that were calculated separately for each DVPERL bin before being combined across 644 

conditions to achieve statistical power. This basic procedure was used to calculate the data of 645 

Figure 4e-h and Extended Data Figure 8c-j. We now describe the procedure in detail.   646 

The data set for this analysis consisted of all trials with motion pulses in experiment 3 (19111 trials 647 

for monkey H and 20358 for monkey F). We define the response variables as follows:  648 

Choice: Binary values assigned 1 for rightward choices and 0 for leftward choices. 649 

∆DV: We consider neural pulse effects over the time window from PERL to 100 ms 650 

before median RT or 150 ms before the single-trial RT (whichever came first; see 651 



Methods section 16 above). In order to quantify the single-trial change in DV after the 652 

pulse, we define ∆DV as the DV averaged over the last 50 ms of that time window, minus 653 

the DV averaged in the 50ms pre-PERL. This variable is continuous.  654 

We also define the following predictors: 655 

Coherence: Signed coherence of the baseline (pre-pulse) dots stimulus. This variable 656 

could take one of 7 possible values on a given trial for each subject (3 negative/leftward, 657 

one zero, and 3 positive/rightward peri- and subthreshold coherences) 658 

DVPERL: The DV at the time of pulse onset plus the estimated PERL for each subject, as 659 

described above. Negative values correspond to greater likelihood of a leftward choice, as 660 

per conventions in experiments 1 and 2. This variable is continuous but was rounded to 661 

the nearest integer for conditionalization as described below. Trials with DVPERL values ≤ 662 

-5.5 or ≥ 5.5 were discarded (359 trials were discarded for monkey H and 455 for 663 

monkey F, corresponding to 1.9% and 2.2% of trials, respectively). 664 

Stimulus duration: Duration of the period between stimulus onset and offset for each 665 

trial, including the 200 ms motion pulse. This variable could take values between 250 and 666 

1400 ms. To pool data across subjects, the stimulus duration was normalized to fall in the 667 

range [0 1] for each subject before pooling. 668 

Pulse direction: Binary values assigned 1 for rightward pulse trials and -1 for leftward 669 

pulse trials. 670 



We used these variables as follows to calculate, statistically evaluate, and visualize the residual 671 

pulse effects described in general terms above. 672 

Step 1: Re-sign variables according to the direction of the baseline stimulus 673 

To reduce the number of conditions in the following analyses, we re-signed all relevant 674 

variables according to their congruence with the baseline motion stimulus (this allowed 675 

us to use the unsigned baseline stimulus coherence in later steps). For trials with leftward 676 

(negative) baseline coherences, we flipped the signs (or the values of the binary choice 677 

variable) of DVPERL, pulse direction, choice, and ∆DV. The sign-adjusted variables are 678 

denoted with daggers. Thus pulse direction† is positive (‘congruent’) for trials with 679 

rightward pulses on rightward baseline dots or leftward pulses on leftward baseline dots; 680 

it is negative (‘incongruent’) for trials with rightward pulses on leftward baseline dots or 681 

leftward pulses on rightward baseline dots.  After re-signing, choice† takes a value of 1 682 

for correct responses and 0 for incorrect responses, because the direction of the baseline 683 

stimulus determines the correct response in our task. 684 

Pulses were also presented on trials with 0% baseline motion coherence. In that case, we 685 

used the sign of DVPERL as a proxy for the momentary directional evidence at the time of 686 

pulse onset. Thus, on 0% coherence trials with DVPERL < 0, we flipped the signs of 687 

DVPERL, pulse direction, choice, and ∆DV. 688 

Step 2: Sort trials into conditions 689 



For analyses of pulse effects over time, to isolate the effects of stimulus duration from 690 

those of the pre-pulse motion strength and DVPERL, trials were first sorted into one of 88 691 

conditions (11 rounded DVPERL integer values from -5 to 5 * 4 unsigned baseline 692 

coherence levels * 2 pulse directions), irrespective of stimulus duration. For analyses of 693 

pulse effects over DVPERL, to isolate the effects of DVPERL from those of the pre-pulse 694 

motion strength and stimulus duration, trials were sorted into one of 64 conditions (eight 695 

stimulus duration quantiles * 4 unsigned baseline coherence levels * 2 pulse directions), 696 

irrespective of DVPERL. (As mentioned above, we accounted for 697 

congruence/incongruence with the baseline dots stimulus by re-signing the variables in 698 

Step 1, which eliminates the need to sort by the signed baseline coherence.)  699 

Step 3: Calculate single-trial residual pulse effects around within-condition means 700 

This is the critical step in isolating the predictor variable of interest for each analysis. 701 

Residual behavioral pulse effects (choice†
res) were calculated by subtracting the mean 702 

choice† for each condition from the single-trial choice† values for trials within that 703 

condition. Similarly, residual neural pulse effects (∆DV†
res) were calculated by 704 

subtracting the mean ∆DV† for each condition from the single-trial ∆DV† values. Note 705 

that the conditions were defined differently for analyses of pulse effects over stimulus 706 

duration vs. DVPERL, as described in Step 2. We denote these different residuals with the 707 

subscript resT for the analyses of pulse effects over stimulus duration, and resD for the 708 

effects over DVPERL. 709 

Step 4: Quantify effects 710 



Statistical analysis  711 

Based on preliminary observations, we expected that pulse effects might decrease at 712 

longer stimulus durations, even after accounting for the effects of the baseline motion 713 

strength and DVPERL. To test this hypothesis, we re-sorted the residuals (choice†
resT or 714 

∆DV†
resT) by pulse direction only, and then fit curves to the residual pulse effects 715 

(choice†
resT or ∆DV†

resT) over the full distribution of stimulus durations using the built-in 716 

function fitnlm in MATLAB. 717 

The behavioral and neural pulse effects were fit separately using the following equations 718 

for a half-Gaussian curve centered at the minimum stimulus duration: 719 

  choiceresT
† = dirpulse × (𝛽baseline + 𝛽amplitude × 𝑒−z) Eqn. 18 

and 720 

  ∆DVresT
† = dirpulse × (𝛽baseline + 𝛽amplitude × 𝑒−z) Eqn. 19 

where z = 
(durstim − min (durstim))2

𝛽width
2  721 

Here dirpulse is the pulse direction (-1 for stimulus incongruent and +1 for stimulus 722 

congruent pulses, as defined above) and durstim is the stimulus duration. A significant 723 



positive fitted amplitude coefficient (ßamplitude) for a given model implies that the pulse 724 

effect decreases over time. 725 

Analogously, our preliminary observations suggested that pulse effects might decrease at 726 

large |DVPERL| values, even after accounting for the effects of the baseline motion 727 

strength and the stimulus duration. To test this hypothesis, we re-sorted the residuals 728 

(choice†
resD or ∆DV†

resD) by pulse direction only, and then fit curves to the residual pulse 729 

effects (choice†
resD or ∆DV†

resD) over the full distribution of |DVPERL| values, again using 730 

the MATLAB fitnlm function. 731 

Here, the behavioral and neural pulse effects were fit separately using the following 732 

equations for a half-Gaussian curve centered at zero: 733 

  choiceresD
† =  dirpulse × (𝛽baseline + 𝛽amplitude × 𝑒−z) Eqn. 20 

and 734 

  ∆DVresD
† =  dirpulse × (𝛽baseline + 𝛽amplitude × 𝑒−z) Eqn. 21 

where z =  
|DVPERL|

2

𝛽width
2  735 



Here, dirpulse is again the pulse direction (-1 for stimulus incongruent and +1 for stimulus 736 

congruent pulses, as defined above). A significant positive fitted amplitude coefficient 737 

(ßamplitude) for a given model implies that the pulse effect decreases over |DVPERL|. 738 

We also performed a final complementary statistical analysis of the pulse effects over 739 

signed DVPERL, hypothesizing that the effects would peak near zero/at lower DVPERL 740 

magnitudes. To test this hypothesis, we again took the residual pulse effects re-sorted by 741 

pulse direction only, and then fit curves to the residuals (choice†
resD or ∆DV†

resD) over the 742 

full distribution of signed DVPERL values. 743 

Here, the behavioral and neural pulse effects were fit separately using the following 744 

equations for a Gaussian curve centered at zero: 745 

  choiceresD
† = dirpulse × (𝛽baseline + 𝛽amplitude × 𝑒−𝑧) Eqn. 22 

and 746 

  ∆DVresD
† = dirpulse × (𝛽baseline + 𝛽amplitude × 𝑒−𝑧) Eqn. 23 

where z = 
(DVPERL − 𝛽center)

2

𝛽width
2  747 



Here, dirpulse is the pulse direction as defined above. A significant positive fitted 748 

amplitude coefficient (ßamplitude) for a given model implies that the pulse effect decreases 749 

at larger DVPERL magnitudes. 750 

Visualization 751 

To visualize the variation of the pulse effects over time, we binned the residuals 752 

(choice†
resT or ∆DV†

resT) into eight equally populated stimulus duration quantiles and 753 

subdivided each duration quantile by pulse direction (minimum trial counts in each 754 

subdivided condition: 1122, 1217 for monkey H, F respectively). We calculated the mean 755 

residual value in each of these 16 new conditions, and quantified the overall pulse effect 756 

as the difference between the mean residuals for congruent minus incongruent pulse 757 

trials, ∆(Mean choice†
resT) or ∆(Mean ∆DV†

resT), in each of the 8 stimulus duration bins. 758 

Because we did not have both congruent and incongruent pulses on individual trials, and 759 

because the number of congruent and incongruent pulses in each condition did not 760 

perfectly match, we used a bootstrap procedure to estimate the standard error of these 761 

differences between mean residuals. We randomly resampled each distribution, with 762 

replacement, to build 1000 new distributions of the same sample size as the original in 763 

each of the 32 conditions described above (stimulus duration quantile and pulse 764 

direction). For each resampled data set, we calculated the difference between the mean 765 

residuals for congruent minus incongruent pulse trials in each of the 8 stimulus duration 766 

bins. We used the standard deviation of these 1000 differences of means to estimate the 767 

standard error of the mean of the original measurements. In Fig. 4g-h (Extended Data 768 

Fig. 8e-f), we plotted in black the mean and bootstrapped SEM of the overall pulse 769 



effects in the data (difference between residuals for congruent and incongruent pulse 770 

trials) for each of the 8 stimulus duration bins. We then overlaid in blue the model fits 771 

(described in “Statistical analysis” above) to the actual data in each of the 8 stimulus 772 

duration bins. 773 

For analyses of pulse effects over |DVPERL|, we re-sorted the residuals (choice†
resD or 774 

∆DV†
resD) by the rounded |DVPERL| and pulse direction to calculate the mean in each of 775 

those 12 new conditions (minimum trial counts in each subdivided condition: 501, 504 776 

for monkey H, F respectively). We then quantified the overall pulse effect as the 777 

difference between the mean residuals for congruent minus incongruent pulse trials for 778 

each of the 6 |DVPERL| values, plotted in black in Fig. 4e-f (Extended Data Fig. 8c-d, 779 

∆(Mean choice†
resD) or ∆(Mean ∆DV†

resD)). Error bars for these differences of means 780 

were calculated by the bootstrap procedure described above. We overlaid in blue the 781 

model fits to the actual data in each of the 6 |DVPERL| conditions. This procedure was also 782 

followed using the 11 rounded signed DV†
PERL values to generate Extended Data Fig. 8g-783 

j (minimum trial counts in each subdivided condition: 149, 151 for monkey H ,F 784 

respectively). 785 

17. General statistical analysis and reproducibility 786 

Sample sizes were chosen based on our labs' experience and standards in the field. Trial count 787 

targets for experiment 3 were based on the effect sizes and sample sizes used in prior 788 

psychophysical and electrophysiological studies with similar motion pulses9,19. Unless explicitly 789 

described, behavioral data without neural recordings are not reflected in the main body of the 790 



manuscript; we only report behavioral data during neural recordings. Any extremely noisy neural 791 

recording channels were deactivated at the beginning of a session, and all other channels were 792 

used in this study. Trial parameters (including stimulus difficulty, stimulus direction, stimulus 793 

duration, pulse direction, delay duration, and DV boundary values) were randomly assigned. 794 

Blinding was not relevant for this study because trial parameters within each experiment were 795 

automatically randomly assigned and interleaved without cues (subjects could not anticipate, and 796 

experimenters did not autonomously control, the parameters used on a given trial). All data 797 

collection and analyses were carried out in two subjects and were generally consistent as 798 

presented in this article; no additional replications were attempted.  799 



Supplementary Notes 800 

Supplementary Note 1 – Effect of coherence and stimulus duration on DV and prediction 801 

accuracy. 802 

Figure 2c (Extended Data Fig. 1d) combines trials across a wide range of coherences and 803 

stimulus durations, aggregated across 17 (15) sessions from monkey H (F). To identify 804 

experimental factors that might influence the observed relationship between DV at termination and 805 

prediction accuracy, we first resorted the same trials in Figure 2c by stimulus coherence. The 806 

results show that there is a separation between the curves for high and low coherence trials 807 

(Extended Data Fig. 1e) with higher accuracy for high coherence trials. The shift is small but 808 

reliable across monkeys. We hypothesized that this difference resulted from motion energy signals 809 

already en route from the retina to PMd/M1 (~175 ms latency) when the DV reached stimulus 810 

termination. More motion energy signals would be arriving from this neural ‘pipeline’ on high 811 

coherence trials, leading to a slightly higher DV than we measured at stimulus termination.   812 

To assess this possibility, we measured the derivative of the DV around termination and 813 

performed the following two analyses. First, we checked whether DV derivative explained a 814 

significant fraction of choice variance beyond DV value alone (see Methods section 12.2). For 815 

both monkeys the effect of DV derivative (defined as the DV slope in the last 50 ms of stimulus 816 

presentation) was significant (p = 0.02, p = 4.5x10-11 for monkey H and F, respectively) and the 817 

effect was congruent with our hypothesis: stronger positive derivatives predicted higher likelihood 818 

of rightward choices and stronger negative derivatives predicted higher likelihood of leftward 819 

choices (Supplementary Table 2, “DV diff”). Second, we tested whether high coherence trials were 820 

associated with higher DV derivatives at termination by performing linear regression of DV 821 



derivatives as a function of signed coherence. For both monkeys signed coherence was strongly 822 

predictive of DV slopes: p = 2.17 x10-171 and R2 = 0.23 for monkey H and p = 1.57 x10-105 and R2 823 

= 0.16 for monkey F. These results confirm that DV derivative is predictive of choice beyond DV 824 

alone and show that higher coherence trials are associated with higher DV derivatives. The data 825 

are consistent with our hypothesis above that the DV continues to evolve under the influence of 826 

‘pipeline’ sensory information for a short interval following stimulus termination, resulting in 827 

somewhat better prediction accuracy than expected from the DV at termination, especially at high 828 

coherences. 829 

Sorting trials by duration (Extended Data Fig. 1f) reveals a different effect: the centers of 830 

the quantiles are strongly shifted to the right (higher DV magnitudes) for longer stimuli compared 831 

to shorter stimuli. This effect is expected from multiple sequential sampling models9,15,17,19. In drift 832 

diffusion models, for example, diffusion to high decision bounds requires more time than for low 833 

bounds given constant stimulus coherence12. However, we tested whether stimulus duration per se 834 

was a significant predictor of choice independently of DV value by including two additional 835 

regressors in our logistic model of choice: stimulus duration (representing choice bias as a function 836 

of time) and an interaction term between stimulus duration and direction (representing increased 837 

sensitivity to stimulus coherence as function of time). Neither regressor was significant for either 838 

monkey (p>0.05, Supplementary Table 2), implying that the likelihood of making one or the other 839 

choice depended on DV value independently of the time required to reach that value.  840 

 841 

Supplementary Note 2 – Interpretation and validation of individual neural CoMs 842 

By the most demanding standard, a true CoM requires a full commitment to an initial 843 

choice that is later reversed. We cannot assert unequivocally that this was the case for each putative 844 



CoM that we captured from the neural data since only one behavioral choice is reported per trial. 845 

However, in aggregate the median magnitude of DV deflection prior to the zero crossing was 2.1 846 

(2.2) for monkey H (F), indicating that the subjects were expected to have chosen their initial 847 

preference ~90% of the time had the trial stopped then. In addition, across all trials, we correctly 848 

predict the final choice in 80% (92%) of the trials for monkey H (F). Putting these two results 849 

together for the pre- and post-CoM likelihood of choice strongly suggests that the vast majority of 850 

captured CoMs in our experiment are indeed real CoMs, even though we cannot say with 100% 851 

confidence that the subject changed its mind on any individual trial.  852 

 853 

Supplementary Note 3 – Effect of DV trajectory parameters on choice likelihood. 854 

We formally tested the hypothesis that choice likelihood was influenced by some aspect of 855 

the DV trajectory history by regressing choice as a function of three additional parameters (in 856 

addition to the DV at termination) that were enforced and monitored in this experiment (see 857 

Methods section 12.4): maximum DV deflection before sign change, and duration of sign stability 858 

before and after DV sign change. For monkey F, no additional factor was choice predictive, 859 

whereas for monkey H both the duration of sign stability before and after the CoM were also choice 860 

predictive (Supplementary Table 3) as suggested by Extended Data Fig. 7a. 861 

 862 

Supplementary Note 4:  Intra-trial fluctuations in DV are likely driven by multiple factors, 863 

including the visual stimulus and noise sources.  864 

Interestingly, we frequently observed large, behaviorally relevant fluctuations in the DV—865 

equal in amplitude to many CoM fluctuations—even when the DV remained on one side of the 866 

discriminant hyperplane in non-CoM trials (e.g. Figs. 1e and 2b). We wondered whether these DV 867 



fluctuations were related to moment-to-moment stochastic variations in motion strength of the 868 

stimulus within single trials. While average motion energy explains a large portion of DV variance 869 

across coherence levels (Extended Data Fig. 9a-b, Methods 14), our data show that stochastic, 870 

momentary stimulus fluctuations are not the dominant cause of DV fluctuations within single trials 871 

(Extended Data Fig. 9c-d, Methods 14). Even in CoM trials, moment-to-moment motion strength 872 

fluctuations within coherence levels explain a very small proportion in the variance of the signed 873 

DV slope during the 100 ms centered around the zero-crossing defining the CoM, which 874 

determines the direction of the CoM (Extended Data Fig. 9e-f). Considered as a whole, the analyses 875 

in ED Fig. 9 suggest that single-trial DV fluctuations, including neurally defined CoMs, are likely 876 

shaped by a variety of factors, some dependent on the visual stimulus while others (including 877 

multiple possible noise sources) are independent of the stimulus. Further experiments will be 878 

needed to address the source(s) of these fluctuations and their relationship with fluctuations in 879 

other brain areas45 as well as other cognitive processes including motor preparation and 880 

execution46,47, attention, motivation, and confidence. 881 

 882 

Supplementary Note 5 – Computational models 883 

As mentioned in the Discussion, models of the decision-making process that are compatible 884 

with our finding of absorbing decision bounds include linear integration to a bound (such as a 885 

simple stopping criterion) or more complex nonlinear integration processes15,22,23,25. However, our 886 

finding that pulses are less effective when presented later in the trial cannot be explained without 887 

extensions of or alternatives to these models, such as those incorporating time-varying decision 888 

bounds or other “urgency” signals (which could be implemented via gain modulation rather than 889 

collapsing bounds)16-18,20,21,27,28,48,49. 890 



The bistable attractor dynamics and leaky-competing accumulator models can also be 891 

extended to permit commitment to a choice prior to their attractor states, by adding decision bounds 892 

to these models. Proper parameterization of these extended models could replicate our 893 

experimental observations. Interestingly, similar extensions have been used to explain behavior in 894 

reaction-time tasks15,22,23 but they are commonly avoided for fixed and variable duration tasks—a 895 

practice that should be revised in light of our results. Our results are also compatible with discrete 896 

attractor networks with a nonselective ramping input as proposed in Inagaki et al. 201924.  897 

Finally, we cannot completely rule out a time-dependent termination of attention to the 898 

visual stimulus in combination with a model that otherwise lacks a time dependent decision 899 

termination criterion. In independent behavioral experiments with the same two monkeys11, we 900 

estimated the psychophysical integration times to be ~530 ms and ~680 ms for monkeys H and F 901 

respectively, which is equivalent to the first ~3(~6) duration bins for monkey H(F) in Figure 4g,h. 902 

Thus, while variable attention might account for some of the decrease in pulse effect for longer 903 

duration trials in Figure 4g,h, it is unlikely to account for the more pronounced decrease in shorter 904 

duration trials.   905 

 906 

Supplementary Note 6 – Caveats and future directions  907 

In considering our results as a whole, it is reasonable to consider two caveats. First, the 908 

impressive choice prediction accuracy achieved in this study using a linear decoder does not imply 909 

that the brain’s decision formation process is also linear. In principle, a linear decoder could predict 910 

binary choices quite well even if the true neural process underlying decision formation were 911 

nonlinear, depending on the form of the nonlinearity (see, e.g., Sussillo et al. 201650 for an example 912 

of a linear neural to kinematic decoder which only slightly underperforms a more powerful 913 



nonlinear recurrent neural network). Regardless, our linear DV is tightly linked to choice behavior 914 

(e.g. Fig. 2c), showing that variations in the DV magnitude meaningfully track the ongoing process 915 

of decision formation despite any nonlinearities in the underlying neural mechanism.  Second, it 916 

is possible in principle that our decoded DV might in part reflect movement preparation or even 917 

small changes in muscle tone over the course of individual trials51-53. However, given the 918 

previously reported lack of EMG modulation during an enforced delay period in cued reaching 919 

tasks54-60, it is unlikely that such movement-related signals explain the bulk of the variance in our 920 

decoded DV. 921 

Future work could build upon our neurally contingent feedback approach with experiments 922 

designed to interrogate additional aspects of the neural computations underlying decision 923 

formation. For example, one could imagine closed-loop experiments that dynamically titrate 924 

stimulus information from moment to moment during the trial  to “clamp” the DV at particular 925 

values to further dissociate the DV from elapsed time in a given trial, or perhaps drive the DV to 926 

particular values earlier or later in a trial to better understand the effects of DV history on the 927 

upcoming choice (and its susceptibility to changes in the stimulus).  928 



Supplementary Tables 929 

Results for Models with 1 regressor + bias term 

Choice Prediction Accuracy at termination for LR models with 

the following regressors: Monkey H Monkey F 

Signed Coherence 77.80% 73.60% 

Motion Energy 74.50% 71.50% 

Mean DV 78.70% 72.90% 

Single Trial DV 88.40% 83.40% 

Results for nested models + bias term 

Choice Prediction Accuracy at termination for LR models with 

the following regressors: Monkey H Monkey F 

Motion Energy 74.50% 71.50% 

Motion Energy, Mean DV 78.10% 73.20% 

Motion Energy, Mean DV, Single Trial DV 89.30% 85.90% 

 930 

Supplementary Table 1 – Prediction accuracy results for single regressor and nested 931 

regressor logistic regression models for both subjects (see Methods section 12.1). 932 

  933 



 934 

 935 

Supplementary Table 2 – Coefficients obtained from logistic regression on choice – virtual 936 

boundary experiment (see Methods section 12.2). 937 

 938 

 939 

 940 

 941 

Supplementary Table 3– Coefficients obtained from logistic regression on choice - change of mind 942 

experiment (see Methods section 12.4).  943 



 

Subject Session 1  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

 

 

 

 

 

Monkey H 

tminPre(s) 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.15 0.15 0.15 0.1 0.05 0.15 0.15 

tminPost(s) 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.15 0.15 0.15 0.15 0.15 0.05 0.1 

DVminPre 2 1.5 3 1 2 1 1.5 3 1.5 1 2 2 2 2 2 2 2 

DVminPost 2 1.5 3 1 2 1 1.5 3 0.1 0.1 2 2 2 2 2 2 2 

tminDots(s) 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

 

 

 

 

 

Monkey F 

tminPre(s) 0.1 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.15 0.15   

tminPost(s) 0.1 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1   

DVminPre 2 2 2 1.5 3 1 2 3 1.5 1 1 1.5 1 2 2   

DVminPost 2 2 2 1.5 3 1 2 3 1.5 1 1 0.1 0.1 2 2   

tminDots(s) 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25   

 944 

Supplementary Table 4 – Parameters used for virtual boundaries and CoM closed loop 945 

experiments (monkeys H and F).  946 



 947 

 Number of Channels with non-zero weights for the Decoders 

 Monkey H - 192 channels available Monkey F - 96 channels available 

Decoder 

Monkey H - 

Dots 

Monkey H - 

Delay 

Monkey H - 

Post Go 

Monkey F - 

Dots 

Monkey F - 

Delay 

Monkey F - 

Post Go 

D1 122 77 92 71 53 60 

D2 117 54 51 78 72 76 

D3 131  98 67 53 74 

D4 70  108 80 73 66 

D5 79  86 67  73 

D6 120  84 71  60 

D7 112  96 80  80 

D8 100  97 79  78 

D9 113  81 74  67 

D10 124  70 75  60 

D11 121  66 80  73 

D12 88  74 83  86 

D13 89  86 79  75 

D14    74  57 

D15    66  75 

D16    77  77 

D17    70  72 

D18    83  82 

D19    73  65 

D20    71  69 

D21    71  69 

D22    70  79 

 948 

Supplementary Table 5 – Number of channels with non-zero weights for all decoders used 949 

in both subjects. 950 
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