
  

 
 

Abstract— Neural prostheses are being developed to restore 
speech to people with neurological injury or disease. A key 
design consideration is where and how to access neural 
correlates of intended speech. Most prior work has examined 
cortical field potentials at a coarse resolution using 
electroencephalography (EEG) or medium resolution using 
electrocorticography (ECoG). The few studies of speech with 
single-neuron resolution recorded from ventral areas known to 
be part of the speech network. Here, we recorded from two 96-
electrode arrays chronically implanted into the ‘hand knob’ 
area of motor cortex while a person with tetraplegia spoke. 
Despite being located in an area previously demonstrated to 
modulate during attempted arm movements, many electrodes’ 
neuronal firing rates responded to speech production. In offline 
analyses, we could classify which of 9 phonemes (plus silence) 
was spoken with 81% single-trial accuracy using a combination 
of spike rate and local field potential (LFP) power. This 
suggests that high-fidelity speech prostheses may be possible 
using large-scale intracortical recordings in motor cortical 
areas involved in controlling speech articulators. 

I. INTRODUCTION 

Regaining the ability to communicate is a critical need for 
people who cannot speak due to neurological injury (such as 
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stroke) or disease (such as ALS). Brain-computer interfaces 
(BCIs) can potentially restore speech by converting neural 
signals related to what a person wants to say into synthesized 
speech or digital text [1]. A number of speech BCI strategies 
have been proposed, including decoding covert (silent) 
speech [2]–[4] or more abstract language signals [5]. Here, 
we explored decoding the neural correlates of attempted 
speech production [6]–[10], which has several potential 
advantages. First, a decoder training protocol in which the 
user attempts to speak a specific instructed sound may 
provide a naturalistic control scheme, even in mute patient 
populations; an analogous approach has allowed successful 
calibration of BCIs based on intended arm movements in 
people with paralysis [11], [12]. Second, decoding attempted 
speaking may be less likely to inadvertently communicate the 
user’s private internal monologue. Last, studies with 
participants capable of overtly speaking (such as this study) 
provide neural data with accompanying ground truth acoustic 
data. This facilitates investigating the neural dynamics 
underlying speech production [13] and developing strategies 
for decoding this activity. 

What kinds of neural signals are useful for a speech BCI, 
and from where can they be recorded? Most studies to date 
decoded EEG or ECoG signals, typically from face 
sensorimotor cortex, Broca’s area, and superior temporal 
gyrus [1], [14]. In comparison, intracortical recordings during 
speech production remain relatively unexplored, although a 
handful of studies have examined activity in temporal gyrus 
[15]–[17], ventral precentral gyrus [7], [18], orbitofrontal 
cortex [16], and Broca’s area [19]. Inspired by recent arm 
movement BCI research, where the highest-performing 
systems use signals from multielectrode arrays implanted in 
motor cortex [12], [20], we wondered whether  speech-
related neural activity could also be decoded using this sensor 
type. As a first step towards establishing feasibility, we 
recorded neural signals during overt speaking by a human 
participant in the BrainGate2 clinical trial. This person was 
previously implanted with arrays in dorsal areas of motor 
cortex known to be involved in arm and hand control [12]. To 
the best of our knowledge, action potential (spiking) signals 
in this area have not previously been examined during 
speaking, and there have not been reports of speech decoding 
from motor cortex using high channel count intracortical 
sensors. While our approach is limited by array placement 
that is probably suboptimal for detecting speech-related 
activity, it allows an initial assessment without incurring the 
additional risk of implanting arrays in what is traditionally 
thought of as eloquent cortex. 
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Figure 1.  Spiking activity in dorsal motor cortex during speech production. (A) Schematic of the experimental setup (top) and task structure (bottom). The 
participant heard an auditory prompt consisting of two beeps followed by a phoneme. After a brief delay, a go cue consisting of two clicks instructed him to 
repeat back the phoneme. Neural data were recorded throughout the task using a NeuroPort system. Acoustic data were recorded and digitized alongside the 
neural signals. The acoustic amplitude during one example trial is shown above the trial timeline. VOT is voice onset time. (B) Imaging-derived 3D model 
of the participant’s brain showing the locations of two 96-electrode arrays implanted in motor cortex. CS is central sulcus. (C) (Left) raster plot shows the 
times of neuronal action potentials (tick marks) for one example electrode during all trials. Each row denotes a trial, which are grouped by which phoneme 
the participant spoke. Ø is silence condition. Data are aligned to both the go cue and the VOT, which was on average 1210 ms after the go cue. (Right) traces 
show trial-averaged firing rates (mean ± 1 s.e.) for the same electrode as well as two other electrodes. (D) Map of electrode locations showing which 
electrodes’ firing rates changed significantly (p < 0.001) during speaking, compared to the silence condition. Shading denotes how many of the nine 
different phonemes evoked a response on a given electrode; the marker corresponding to zero phonemes is hollow. The three example electrodes from panel 
C are marked with circles of the corresponding color. Electrodes that did not record spikes are shown as smaller dots.  

We found considerable speech-related firing rate changes 
and were able to decode spoken phonemes with high 
accuracy using both intracortical multiunit spikes and LFP. 

II. METHODS 

A. Participant and Neural Sensors 
Participant ‘T5’ gave informed consent and voluntarily 

enrolled in the BrainGate2 intracortical neural prosthesis 
clinical trial (http://www.clinicaltrials.gov/ct2/show/ 
NCT00912041). This study was approved under an 
Investigational Device Exemption by the US Food and Drug 
Administration and by the Institutional Review Boards of 
Stanford University (20804) and Partners Healthcare / 
Massachusetts General Hospital (2011P001036). T5 is a 
right-handed man, 64 years old at the time of the study, 
diagnosed with C4 AIS-C spinal cord injury ten years prior to 
these research sessions. He is able to speak normally and 
converses naturally without hearing assistance, but has some 
trouble hearing from his left ear. Two 96-electrode Utah 
arrays (1.5 mm electrode length, Blackrock Microsystems) 
were surgically implanted in T5’s left dorsal motor cortex 
(Fig. 1B) fourteen months prior to the present study. The 
arrays were targeted to arm-related motor cortical areas 
because two goals of the BrainGate2 trial are demonstrating 
BCI communication using point-and-click keyboards and 
restoration of reach and grasp function via control of a 
robotic arm or functional electrical stimulation. 

 

B. Verbally Prompted Speaking Task 
The participant performed a task in which he spoke ten 

different phonemes (vowels, consonants, and consonant-
vowel syllables), one per trial, thirty times each. During each 
trial he was prompted as to which phoneme to speak by an 
audio recording of that phoneme being played to him through 
computer speakers positioned facing his right ear. Each trial 
consisted of two beeps to alert the participant that the trial 
was starting, followed by the phoneme prompt. Then, two 
clicks served as the ‘go cue’ that instructed the participant to 
speak the prompted phoneme. The experimental setup and 
the phases of each trial are diagrammed in Fig. 1A. As a 
baseline for comparison, there was an eleventh ‘silence’ 
condition in which the trial structure was identical, except 
that the speakers played a nearly-silent recording of the 
ambient background noise during recording of the phoneme 
prompts. The participant was instructed not to say anything in 
response to this silence prompt. He was also asked to avoid 
trying to move or speak during a trial, except when prompted 
to speak, and to keep his gaze fixated on the same object in 
the room in front of him. 

The task was performed in three blocks, with each block 
consisting of ten sets of eleven trials (one trial of each 
condition presented in a random order). There was a brief 
pause between sets (~10 seconds) which ended when the 
participant indicated that he was ready to continue. A longer 
pause of several minutes between blocks encouraged the 
participant to rest, adjust his posture, drink water, etc. We 
excluded infrequent trials in which the participant misspoke 
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or mistimed his response, or when there were unexpected 
sounds in his environment. The participant frequently 
misheard da as ga or ba; we labeled those trials based on his 
response, rather than the prompt, and excluded the remaining 
da trials from further analysis due to low trial count. The 
dataset consists of one experimental session (day) during 
which the number of accepted trials for each condition were: 
30 each of silence, i, a, k, p, and sh; 28 ae; 31 ba; and 50 ga. 

Voice onset time (VOT) was manually annotated for each 
trial by visual and auditory inspection of the recorded audio 
data. To allow for a consistent application of VOT-aligned 
data analysis and visualization, a faux VOT was marked for 
each silence trial; this silence VOT was matched to the mean 
time between the go cue and VOT for all the spoken 
phonemes during the same block. 

C. Neural Signal Processing 
During the experiment session, wired cables were 

connected to the participant’s cranial pedestal connectors. 
Voltages recorded by the NeuroPort system (Blackrock 
Microsystems) were analog band-pass filtered between 0.3 
Hz and 7.5 kHz, and then digitized at 30 kHz. Seventeen of 
the electrodes were removed from further analysis because 
they were disconnected or exhibited large noise artifacts. The 
signals from each of the remaining 175 electrodes were then 
split into spikes and LFP features. The spikes signal path 
consisted of re-referencing within each array using common 
average referencing followed by digitally high-pass filtering 
the voltage (400 Hz cutoff frequency, zero-phase by forward 
and reverse DF-II filtering). For each electrode, a spike was 
detected at every millisecond if the voltage dropped below an 
electrode-specific threshold. The resulting threshold crossing 
spike trains represent action potentials from one or several 
neurons in the immediate vicinity of the electrode; we did not 
perform spike sorting (i.e., attempt to attribute threshold 
crossing waveforms to putative single neurons) for this BCI-
focused study, as per other recent iBCI studies [12]. For 
examining the spikes data (III.A, Fig. 1), thresholds were set 
at -4.5 times each electrode’s rms voltage value. We 
excluded 70 electrodes that recorded fewer than one 
spike/second and five with cross-talk (all but one electrode in 
subsets with correlations > 0.5 with one another were 
discarded). For the classification analyses (III.B, Fig. 2), we 
relaxed the threshold to -3.5 × rms because we found this 
slightly increased classification accuracy due to inclusion of 
more multiunit spikes which contained useful information. 
Spike series were smoothed with a 25 ms s.d. Gaussian to 
generate the peristimulus time histograms shown in Fig. 1C.  

Seven different LFP features were derived from the 
voltage signals. The local motor potential (LMP) was 
obtained by first re-referencing within each array, and then 
smoothing the LFP with a 50 ms boxcar filter. This low 
frequency signal is believed to strongly reflect local synaptic 
input [21], and we previously found that it is highly 
informative for decoding arm movement kinematics [22] and 
errors [23]. Six additional LFP features were derived by 
taking the power of each signal after band-pass filtering (3rd 
order Butterworth) 10 to 25 Hz, 25 to 40 Hz, 40 to 65 Hz, 65 
to 125 Hz, 125 to 250 Hz, or 125 to 5,000 Hz. The latter two 
“high gamma” bands are believed to capture a considerable 
amount of action potential waveform power [24]. 

D. Classification of Spoken Phonemes from Neural Signals 
We performed a classification analysis to estimate how 

much information about spoken phonemes was present in the 
recorded neural signals. Each trial’s neural data were 
processed into a vector of neural features. The trials were 
divided into a training set used to fit the classifier parameters, 
and a (separate) testing set used to measure how well the 
classifier could use unfamiliar neural data to predict which 
phoneme (or silence) was being spoken. More specifically, 
neural features (e.g., spike rate or LFP power) were binned in 
ten non-overlapping 100 ms bins spanning from 500 ms 
before to 500 ms after VOT. Multiple features could be 
derived from each electrode, and all of the time bins’ features 
were concatenated as a single feature vector. Thus, the 
classifier used in Fig. 2C operates on a 175 electrodes × 2 
features per electrode × 10 time bins = 3500-dimensional 
feature vector. The class label associated with each trial’s 
neural data vector was the phoneme being spoken. 

We used the off-the-shelf multiclass support vector 
machine (SVM) classifier implementation in MATLAB 
(Mathworks Inc.). Specifically, the model was fit using the 
multiclass model object (fitcecoc) using the SVM template 
(templateSVM) with key parameters Standardize = true, 
KernelFunction = ’linear’, ‘OutlierFraction’ = 0.05. For 
feature comparisons, the test set consisted of one trial chosen 
at random from each label, while all the other trials were used 
as training data. This procedure was repeated 1,001 times to 
provide an estimate of the variability of the performance 
across difference samplings of test/train data. Once the best 
feature(s) were identified, we measured the classifier’s 
performance in a leave-one-trial-out manner where each 
trial’s phoneme was predicted using a classifier trained using 
every other trial. This analysis maximized the available 
training data, and its result is shown in Fig. 2B. The 
distribution of chance-level prediction accuracy was 
measured by randomly permuting the class labels of all 
training and test trials and repeating the train-and-test 
procedure 101 times. 

III. RESULTS 

A. Neural Responses to Phoneme Production 
We recorded neural activity in the hand knob area of 

motor cortex using two chronically-implanted 96-electrode 
arrays while a person with paralysis spoke individual 
phonemes in response to an audio prompt. Firing rates 
changed on many electrodes leading up to, and following, 
voice onset. Fig. 1C shows the response patterns of three 
example electrodes, which were chosen to exemplify the 
diversity of strong responses. Across both arrays, 71 out of 
100 electrodes showed a significant change in firing rate 
depending on which phoneme, or silence, was spoken (p <  
0.001, ANOVA comparing individual trials’ firing rate from 
500 ms before to 500 ms after VOT). Excluding silence, 65 
electrodes significantly changed firing rates across spoken 
phonemes. Tuning to different phonemes was broad in the 
sense that the majority of electrodes which responded during 
any phoneme responded during multiple phonemes (Fig. 1D). 

B. Phoneme Classification Performance 
To help evaluate the feasibility of a speech BCI that 

decodes these intracortical signals, we tested how well we 
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Figure 2.  Predicting spoken speech from neural data. (A) Comparison of 
cross-validated classification accuracies when predicting the spoken 
phoneme using threshold crossing spikes (red), various LFP-derived features 
(blue), and a concatenation of spikes and LFP features (purple). Each bar 
shows mean ± 1 s.e. across 1,001 resampled train/test data folds. All 
features’ accuracies were greater than chance (p < 0.01, shuffle test). Stars 
denote significant difference from the spikes-only classifier (rank-sum test, 
*p<0.05, ***p<0.001). (B) Confusion matrix for the combined spikes and 
125-5k Hz LFP power decoder. Note that the overall performance differs 
slightly from panel A because these results are using leave-one-trial-out 
cross-validation to maximize available training data. 

could predict which phoneme (or silence) was being spoken. 
Multi-class SVM classifiers were trained on different sets of 
neural features derived from each electrode; they were 
evaluated on held-out test data. Fig. 2A compares 
classification performance using various spike and LFP 
features alone and in combination. Lower-frequency power 
bands (10–25 Hz, 25–40 Hz, 40 –65 Hz) were also tested but 
were found to perform poorly (< 30% accuracy), and are not 
plotted. Threshold crossing spikes and very high frequency 
LFP power (125 – 5k Hz) yielded the highest accuracy 
amongst individual features, and a classifier combining both 
spikes and 125 – 5k power from each electrode resulted in a 
slight improvement over either feature alone. Fig. 2B shows 
the confusion matrix for classification using this hybrid 
decoder. Overall single-trial classification accuracy was 
81.2%, compared to 11.1% mean chance performance across 
101 label shuffles (range: 6.9% to 17.2%). The classification 
accuracy of each individual phoneme was higher than all of 
that phoneme’s shuffled classification accuracies.  

IV. DISCUSSION 

A. Speech-Related Activity in Dorsal Motor Cortex 
A surprising finding of this study is substantial speech-

related firing rate modulation in dorsal motor cortex. This 
area was not previously implicated in generating speech 
based on ECoG studies such as [13] and electrical stimulation 
mapping [25], [26]. One possible explanation for this 

difference is that dorsal motor cortical activity is not 
prominently evident in ECoG measurements due to spatial 
averaging [17], but can be detected in the spikes and LFP 
signals from penetrating electrodes. This activity could 
reflect functional connections between hand motor cortex and 
the language network [27], [28]. An alternative explanation is 
that the motor map of our participant is atypical due to his 
tetraplegia. This question will be difficult to resolve soon 
because there are currently few clinical reasons to record 
from within dorsal motor cortex of humans who are neither 
paralyzed, nor have intractable epilepsy (both of which can 
cause cortical remapping).  

We have now reported that the same motor cortical 
population, in the same participant, is modulated by 
attempted arm movements [12], movement task outcome 
error [23], and speech production. A recent report by a 
different group recording in similar areas (also from a person 
with paralysis) during word reading attributed activity to the 
sensorimotor semantic grounding of the words [29]. We 
hypothesize that the activity we observed during phoneme 
production is related to cortical control of the speech 
articulators (e.g., tongue and jaw), but further experiments 
are needed to better understand the role of this activity. 

B. Implications for Speech BCIs 
The single-trial classification accuracies reported here 

compare well to previous state-of-the-art results [9], [10], 
which report <80% mean classification accuracies when 
decoding amongst four or five spoken sounds ([7], [9] also 
decoded amongst a much larger number of phonemes with 
21- 36% accuracy, which we cannot make direct comparisons 
to). We attribute this to the high information content in the 
multiunit spiking activity recorded on many electrodes. We 
do not, however, wish to suggest that dorsal motor cortex is a 
preferred target for speech BCIs. Rather, we view these 
results — obtained from what are most likely suboptimal 
array locations — as an encouraging indication that speech 
decoding can be improved if large numbers of electrodes are 
implanted in cortical areas known to have strong speech-
related activity [13], [26], [30]–[32]. These results argue 
against prior speculation, based on the broad distribution of 
speech representations observed using ECoG, that the limited 
coverage of Utah arrays makes them ill-suited for studying 
speech [33]. Rather, our observation of complex 
spatiotemporal tuning for multiple phonemes within each 
individual Utah array extends previous micro-ECoG reports 
of fine-scale spatial differences between phonemes [34]. 

Here we classified isolated phonemes offline. A practical 
speech BCI will need to operate with low latency in closed-
loop [18], [34], either by classifying sounds within 
continuous speech [1], [35], or by directly decoding 
continuous variables such as formants [8], [18]. Decoding 
fluid speech will be more difficult due to coarticulation-
related neural variability [8], but it will benefit from recent 
advances in automated speech recognition [1], [36]; language 
models can provide strong priors on what the observed neural 
activity means based on the recent history of decoded 
speech. Future work should also examine whether alternative 
representational basis sets, such as movements of the 
articulators [35] or formant frequencies [8], [18], correlate 
more closely with intracortical activity than phonemes. 
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