A Recurrent Neural Network that Produces EMG from Rhythmic Dynamics
- David Sussillo*, Mark Churchland**, Matt Kaufman*** & Krishna Shenoy*
 - Stanford University, **- Columbia University, *- Cold Spring Harbor

It remains an open question how the firing rates of neurons in motor cortex (M1) lead to the EMG activity that ultimately drives movement. Recently, Churchland et al. \(^1\) reported that neural responses in monkey M1 exhibit a prominent quasi-rhythmic pattern during reaching, even though the reaches themselves are not rhythmic. They argued that M1 could be understood as “an engine of movement that uses lawful dynamics”, i.e., that M1 could be viewed as a dynamical system. A major question posed by their work is finding a concise set of equations for a dynamical system that uses rhythmic patterns to drive EMG.

We approached this problem by training a nonlinear recurrent neural network (RNN)\(^2\) to generate the recorded EMG during the same reach tasks used in \(^1\). Because feedback connections endow the system with the ability to change dynamically in time, RNNs are a natural class of models to use when studying cortical circuits.

We trained the RNN to simultaneously generate the EMG activity recorded from three muscles (deltoid, pectoral, and biceps) for 27 ‘conditions’ (reach types). The network was provided with condition-specific static inputs as an initial condition, derived from the actual preparatory activity of recorded neurons (panel A and B). The RNN architecture consisted of a simulated M1 circuit (sM1, 150 neurons), which provided input to three separate spinal cord circuits (sSC1-3, 25 neurons each performing nonlinear filtering of sM1 drive input). **There were only two constraints on the system during optimization: 1) successfully generate the EMG and 2) using regularization techniques, do so as simply as possible.**

After training the RNN, it generated EMG with normalized RMS of 0.04 (panel B).

We examined the network dynamics and uncovered a remarkably simple system that showed similarities to M1 on the individual neuron level (panels C and D). Further, the sM1 circuit exhibited oscillatory dynamics as a major component of the network activity. These dynamics, in turn, drove the spinal circuits to generate the EMG. The dimensionality of sM1 activity during simulation of the plan and movement required 15 principal components (PCs) to capture 99% of the variance, in reasonable agreement with M1 data. The spinal cord circuits required 3-5 PC dimensions.

We investigated the nature of the sM1 population dynamics by applying a recently-developed technique for identifying dimensions containing dynamical structure, jPCA\(^1\). The dynamics in the 1st jPC plane were strongly oscillatory and explained 23% of the variance of the network activity (panels E for monkey J, panel F for the RNN that generated EMG of monkey J). These rotations were produced by dynamics in the RNN whose linear approximation – around a local fixed point – contained strongly oscillatory structure reflected by eigenvalues with a large imaginary component. In addition to the rotational dynamics, we found a strong component of the neural trajectory, roughly orthogonal to the jPC plane (80 degrees), which carried the trajectories into the rotation. This component was similar across all conditions, and is thus captured by the ‘cross-condition mean’. Panel G shows a cartoon from \(^1\), illustrating the idea, while panel H shows data from the sM1 circuit visualized in the space spanned by the jPC plane and the cross-condition mean.

In summary, these simulations provide an existence proof that a dynamical system, when appropriately seeded, can generate the EMG of multiple muscles. Crucially, the dynamics are simple and consist primarily of (1) rotational dynamics and (2) a cross-condition mean that brings the trajectories near the region in phase space where the rotations occur. We emphasize that neither the similarities of the RNN units to M1 neurons, nor the oscillatory patterns were built into the system.

A - Network architecture. Condition-dependent preparatory activity provides the initial conditions (ICs) for the RNN to dynamically generate the EMG output. The RNN has four parts, a simulated M1 and 3 simulated spinal cord circuits, one for each muscle. B - 4 out of the 27 example triplets: input (black), RNN output (blue), and target EMG (orange). C - 4 example PSTHs from M1 from monkeys performing a reach task. The 27 conditions are color coded from green through black to red, based on the level of plan-period activity. D - 4 example PSTHs from the RNN sM1 circuit chosen to highlight the similarity of dynamics between neurons in M1 and sM1. E - Projection of monkey j3 data onto first jPC plane, from 1. F - Projection of sM1 data onto first jPC plane. This jPC plane explained 23% of the variance of sM1 activity. G - Cartoon provided in 1 to provide an intuition for how M1 might organize the cross-condition mean with respect to the rotations in the jPC plane. The cross-condition mean takes system trajectories from all ICs together to the oscillatory region and back again. H - A phase space diagram of sM1 activity during preparatory and movement phases across all 27 conditions. The visualized subspace is spanned by the two jPC vectors and an additional vector that captures the variance of the first principal component of the cross-condition mean (axis in red). Colored circles show the ICs provided by the preparatory input to the RNN. During movement, the sM1 dynamics move towards the jPC plane, yielding the rotational dynamics that ultimately drive the simulated spinal cord circuits to produce their respective EMG.
Translational and Computational Motor Control (TCMC) 2012
an exciting day of movement research!

Friday Oct 12, 9:00am - 8:00 pm
Hilton New Orleans Riverside
Room: Grand Salon B
Morning Session (Translational): 9am-1pm
Afternoon Session (Computational): 2pm-8pm

2012 Program:

9:00 am – 10:35 am

Plenary Lecture: From Synapse to Hemisphere – Imaging Recovery after Stroke – Nick Ward

Short- and long-term plasticity associated with peripheral nerve injury
Galit Pelled

The Importance of Mouse Medial Premotor Cortex, Early Re-Training, and Fluoxetine In The Recovery From a Focal Stroke Induced Motor Deficit
Steven Zeiler, Ellen Gibson, Robert Hoesch, Ming Li, Paul Worley, Richard O’Brien, John Krakauer

Multisensory Integration of Vision and Intracortical Microstimulation for Sensory Substitution and Augmentation
Maria Dadarlat, Joseph O’Doherty, Philip Sabes

10:35 am – 11:25 am: Poster Session/Break

11:25 am – 1:00 pm

Plenary Lecture: The Potential of Robots for Neurological Assessment – Steve Scott

Merging and Fractionation of Muscle Synergies as Physiological Markers of Motor Cortical Damage
Vincent C. K. Cheung, Paolo Bonato, Emilio Bizzi
Evidence for central and sensory drive in human stepping
Virginia W., Chu T., George Hornby, Brian Schmit

Spatiotemporal analysis of multi-stroke drawing movements in Parkinson’s disease reveals an impaired speed-accuracy tradeoff.
Leonie Asboth, Jordan Brayanov, Maurice Smith, Daniel Press

1:00 pm – 2:00 pm: Lunch Break

2:00 pm – 3:45 pm

Plenary Lecture: Neurogenetic Modulation of Reinforcement Learning Parameters – Michael Frank

Variability-Driven Predictive Control of Grip Forces
Alkis Hadjiosif, Maurice Smith

Multiple learning processes operate continuously throughout learning
Jordan Taylor, John Krakauer, Richard Ivry

A Recurrent Neural Network that Produces EMG from Rhythmic Dynamics
David Sussillo, Mark Churchland, Matt Kaufman, Krishna Shenoy

3:45 pm – 4:15 pm: Poster Session/Break

4:15 pm – 5:45 pm

Adaptation of Feedback Control and Voluntary Reaching Behaviour
Tyler Cluff, Stephen Scott

Motor adaptation and the proprioceptive estimates of limb state
Max Berniker, Konrad Kording

Optimal control predicts human and animal behavior in tasks with competing goals
Vassilios Christopoulos, Paul Schrater, Richard Andersen

Internal models engaged by brain-computer interface control
Matthew Golub, Byron Yu, Steven Chase

5:45 pm – 6:15 pm Poster Session/Break

6:15 pm – 8:00 pm

Uncovered hidden ability of nondominant arm for bimanual action
Atsushi Yokoi, Masaya Hirashima, Daichi Nozaki

Neural synergies constrain the acquisition of abstract Brain-Machine Interface skill
Andrew Jackson, John Barrett, Thomas Hall, Jennifer Tulip, Kianoush Nazarpour

Is there a reaching speed that minimizes metabolic cost?
Helen Huang, Alaa Ahmed

Plenary Lecture: A New Model of Motor Coding – Dan Margoliash
Clinical & Translational Posters (Morning Session):

Characterizing post-injury transcallosal plasticity with patch clamp recording
Ya Yang, Yan Jouroukhin, Galit Pelled

Visualizing real-time changes in expression of immediate early genes associated with plasticity
Yan Jouroukhin, Assaf Gilad, Galit Pelled

Long term plasticity in a pediatric rat model of traumatic brain injury
Nan Li, David Glover, Manda Saraswati, Courtney Robertson, Galit Pelled

Short-afferent inhibition during different movement phases of finger flexion
Mike Asmussen, Mark Jacobs, Kevin Lee, Chris Zapallow, Aimee Nelson

Dynamic gating of error signals during cerebellum-dependent learning
Rhea Kimpo, Jacob Rinaldi, Christina Kim, Karl Deisseroth, Jennifer Raymond

Stroke damage to the posterior parietal cortex provides causal evidence for its involvement in visual-to-motor transformations of reach targets
Aarlenne Khan, Laure Pisella, Gunnar Blohm

Changes in the location of Cortico-muscular coherence following stroke
Holly E Rossiter, Christiane Eaves, Marie-Helene Boudrias, Chang-hyun Park, Gareth Barnes, Vladimir Litvak, Simon Farmer, Nick S Ward

An in vivo assay of age-related changes in synaptic function in human motor cortex: An MEG study
Stephanie Bowen, Holly Rossiter, Rosalyn Moran, Nick Ward

Hemiparesis as loss of motor skill: stroke mimics the dominant/ non-dominant difference in motor control
Tomoko Kitago, Jeffrey Goldsmith, Vincent Huang, Adrian Haith, Ciprian Crainiceanu, Pietro Mazzoni, Joern Diedrichsen, John Krakauer

Robotic Stroke Assessment of Upper Limb Afferent Feedback for Motor Corrections in a Postural Perturbation Task
Teige C. Bourke, Angela M. Coderre, Sean P. Dukelow, Kathleen E. Norman, Stephen H. Scott

Intuitive bimanual tasks for robotic assessment
Carl Jackson, Sean Dukelow, Stephen Scott

Task interference in constraint-induced movement therapy revealed by graph structure learning
Yukikazu Hidaka, Carolee Winstein, Nicolas Schweighofer

Cafeteria diet-induced metabolic syndrome: incorporating human disease co-morbidity in preclinical stroke models
Mariana Gomez-Smith, Carine Nguemeni, Matthew Jeffers, Dale Corbett
3D Robotic training in chronic stroke improves motor control but not motor function
Vincent S. Huang, Sophia L. Ryan, Leslie Kane, Sylvia Huang, Jessica R. Berard, Tomoko Kitago, Pietro Mazzoni, John W. Krakauer

Long-term Decoding Stability without Retraining for Intracortical Brain Computer Interfaces
William Bishop, Cindy Chestek, Vikash Gilja, Paul Nuyujukian, Stephen Ryu, Krishna Shenoy, Byron Yu

Computational Posters (Afternoon Session):

The identification of a rapidly-decaying, high-precision proprioceptive sensory memory and its effects on motor adaptation
Andrew Brennan, Howard Wu, Maurice A Smith

Sensitivity of movement vigor to changes in rate of reward
Thomas Reppert, Pavan Vaswani, Reza Shadmehr

Motor generalization: the effects of training breadth
Max Berniker, Hamid Mizraei Buini, Konrad Kording

Using parallel force clamps to quantify human adaptation to assistive and resistive perturbations
Ellisha Marongelli, Alexandra Foshage, Paul Wanda, Kurt Thoroughman

The temporal dynamics of parietal gain fields preclude their being used by the motor system to determine target position in space.
Michael Goldberg, Benjamin Xu, Carine Karachi

How Does Error Amplification Improve Task Performance?
Christopher Hasson, Masaki Abe, Dagmar Sternad

What takes time in the reaction time? Deciding task goals or specifying motor commands?
Adrian Haith, David Huberdeau, John Krakauer

Evidence for a forward update in state estimation following mechanical perturbations
Frédéric Crevecoeur, Stephen Scott

Goal-Equivalent Trial-to-Trial Control of a Generalized, Redundant Reaching Task
Jonathan Dingwell, Rachel Smallwood, Joseph Cusumano

and the special COSMO Summer School poster:

Effect of Baseline Variability in Motor Learning: Meta-analysis over multiple data sets
Moria Fisher*, Farnaz Abdollahi*, J. Ryan Morehead, Keturah Bixby

MORE NEWS SOON
Advances in Computational Motor Control 2011

Organized by Emo Todorov and Konrad Kording.

Session 1: 1:00 - 2:45

Invited talk: Motor learning
Reza Shadmehr

Structure of motor variability predicts differences in motor learning rates
Yohsuke Miyamoto, Howard Wu, Bence Ölveczky and Maurice A Smith

Modeling transfer of opposite visuomotor adaptation of the digits of the same hand
Willemijn Schot, Eli Brenner and Jeroen Smeets

Feedback-dependent generalization of visuomotor adaptation
Jordan Taylor and Richard Ivry

Break: 2:45 – 3:00

Session 2: 3:00 – 4:30

On the origins of motor noise
Kris Chaisanguanthum, Helen Shen and Philip Sabes

Motor coordination is habitual rather than optimal
Aymar de Rugy, Gerald Loeb and Timothy Carroll

Movement mechanics and muscle activity do not fully explain reductions in energetic cost
Helen Huang, Rodger Kram and Alaa Ahmed

Energy conservation principle in natural human movements
Dongsung Huh and Terrence Sejnowski

Coffee break: 4:30 – 5:00
Session 3: 5:00 – 6:45

Invited talk: The cerebellum
Timothy Ebner

Purkinje cells compute sensory prediction errors
Laurentiu Popa, Angela Hewitt and Timothy Ebner

Inactivation of PRR induces hypometric reaches similar to optic ataxia
EunJung Hwang, Markus Hauschild, Melanie Wilke and Richard Andersen

An optimal control model of the compensatory eye movement system
Ginzburg, M., Sibindi T., Frens. M. and and Donchin, O.

Posters and coffee: 6:45 – 8:00

Generalization patterns reveal that visuomotor adaptation is composed of two distinct components
Jordan Brayanov, Biljana Petreska and Maurice Smith

Movement Adaptation under Conditions of Risk and Instability
Michael Trent and Alaa Ahmed

The representations of reach endpoints in posterior parietal cortex depend on which hand does the reaching
Steve Chang and Lawrence Snyder

Internal models and their many coordinate frames
Max Berniker and Konrad Kording

Minimum acceleration with constraints of center of mass: A unified model for arm movements and object manipulation
Raz Leib and Amir Karniel

Decoding arm kinematics from ECoG Signals in humans during a reach task
Chandan Reddy, Oliver Flouty, Hiroto Kawasaki, Hiroyuki Oya, Lee Miller and Matthew Howard III

Testing whether humans have an accurate model of their own motor uncertainty in a speeded reaching task
Hang Zhang, Nathaniel Daw and Laurence Maloney

Selection of arm movements during evidence accumulation
Jason Friedman and Matthew Finkbeiner

Evidence for model-free learning during force field adaptation
Adrian Haith, Sarah Pekny, Reza Shadmehr and John Krakauer

Seeking safe strategies for transporting complex objects
Christopher Hasson, Tian Shen and Dagmar Sternad
Proceedings of the Annual Symposium

Advances in Computational Motor Control

Emanuel Todorov, Reza Shadmehr and Konrad Kording (editors)

ISSN 1944-4001

Volume 9, 2010

Selection and control of limb posture for stability
David Franklin, Luc Selen, Sae Franklin and Daniel Wolpert

Dynamic intelligence through online optimization
Emanuel Todorov, Yuval Tassa, Paul Kulchenko and Tom Erez

Visuo-motor learning is guided by the Riemannian structure of the observed kinematics
Zachary Danziger and Ferdinando Mussa-Ivaldi

The incremental adaptive effect of movement observation differs from that of action
Paul Wanda and Kurt Thoroughman

Rethinking motor adaptation and savings: Error-based learning, use-dependent plasticity and operant conditioning
Vincent Huang, Pietro Mazzoni and John Krakauer

The Relationship Between the Temporal Structure of Motor Output Variability and Motor
Learning Ability
Howard Wu, Gary Sing, Logan Clark, Luis Nicolas Gonzalez Castro, Maurice Smith

Visuomotor perturbations and uncertainty about them: Generalization patterns suggest distinct representations
Hugo Fernandes, Ian Stevenson and Konrad Kording

Interval timing and its correlates in sensorimotor cortex
Mehrdad Jazayeri and Michael Shadlen

Infinite-horizon optimal control framework for goal-directed movements
Dongsung Huh, Emanuel Todorov and Terrence Sejnowski

Movement duration is selected to maximize the expected rate of reward
Adrian Haith and Reza Shadmehr

Feasibility before optimality: What complete solution sets tell us about muscle redundancy and synergies
Kutch, Valero-Cuevas

Combined intrinsic and extrinsic representation for visuomotor rotation learning
Brayanov, Smith

Movement Duration as an Emergent Property of Reward Directed Motor Control
Rigoux, Sigaud, Terekhov, Guigon

Intermittent visual feedback can boost visuomotor learning of rhythmic movements
Ikegami, Hirashima, Osu, Nozaki

Certainty of the kinematic plan influences arm stiffness during reaching
Yousif, Diedrichsen

Learning to draw after observing a teacher: iCub’s scribbles and shapes
Mohan, Zenzeri, Metta, Morasso, Sandini

Inferring Visuomotor Priors for Sensorimotor Learning
Turnham, Braun, Wolpert

Investigating the Role of Cocontraction and Movement Energetics in Voluntary Arm
Tsianos, Raphael, Loeb
Prior and Likelihood uncertainty are differentially represented in the human brain
Vilares, Fernandes, Kording

Skill learning as training-dependent changes in speed-accuracy trade-off functions
Shmuelof, Zarhan, Krakauer, Mazonni

Volume 8, 2009

Environmental memory in parietal cortex: A possible substrate for guidance of movement in the absence of visual stimulation
Sara Steenrod and Michael Goldberg

Rewiring neural connectivity by micro-stimulation
James Rebesco, Sara Solla and Lee Miller

Forward models and state estimation in compensatory eye movements
Maarten Frens, Beerend Winkelman and Opher Donchin

Predicting human motor performance using stochastic optimal control
Julian Tramper, Bert Kappen, and Stan Gielen

Optimal control framework successfully explains changes in neural modulations during experiments with Brain Machine Interfaces
Miriam Zacksenhouse, Koren Beiser, Joseph O'Doherty, Mikhail Lebedev and Miguel Nicolelis

Adaptive responses in the human motor system interpret arbitrary force perturbations as state-dependent dynamics
Gary Sing, Simon Orozco and Maurice Smith

When two systems work as one: Minimizing signal-dependent noise through Nash-Equilibria
Jörn Diedrichsen, Niall Lally and Ian O'Sullivan

A novel mechanism for the spacing effect: Competitive inhibition between adaptive processes can explain the increase in motor skill retention associated with prolonged inter-trial spacing
Gary Sing, Bijan Najafi, Adenike Adewuyi and Maurice Smith

Beside the point: Motor adaptation in task-irrelevant conditions
S. Schaefer, I. Shelly and Kurt Thoroughman

The Cost of Strategic Control: Attenuation of Adaptation
Jordan Taylor, Azeen Ghorayshi and Richard Ivry

Sensory weighting of force and position feedback in human motor control tasks
Jasper Schuurmans, Winfred Mugge, Alfred Schouten and Frans van der Helm
Computational models of goal equivalent control in human treadmill walking
Jonathan Dingwell, Joby John and Joseph Cusumano

The disparate roles of reward and sensory prediction errors in learning motor control
Jun Izawa and Reza Shadmehr

Bayesian integration and non-linear feedback control in a full-body motor task
Ian Stevenson, Hugo Fernandes, Iris Vilares, Kunlin Wei and Konrad Körding

Adaptive force control
Sandro Mussa-Ivaldi, M. Casadio and A. Pressman

The nervous system maps high-dimension sensory inflow to low-dimension motor outputs during postural responses
Lucas McKay and Lena Ting

Hierarchical control of bimanual movements revealed by arm dominance challenges the muscle homology principle
Natalia Dounskaia, Keith Nogueira and Elizabeth Drummon

Equilibrium point hypothesis revisited: Advances in the computational framework of Passive Motion Paradigm
Vishwanathan Mohan, Pietro Morasso, Giorgio Metta and Jacopo Zenzeri

An interpretive model of hand-eye coordination
Tom Erez

Spinal-like regulator for controlling wrist movements
Giby Raphael, George Tsianos and Gerald Loeb

Volume 7, 2008

Single-trial analysis of neural population activity during motor preparation

The activity of primary motor cortex is shaped by the properties of the musculoskeletal system
T. Lillicrap and S. Scott

Parallels between sensory and motor information processing
E. Todorov

Humans optimally adapt afferent feedback to stabilize unstable loads
A. Schouten, W. Mugge, E. de Vlugt and F. van der Helm

Interactions between sensory and motor components of adaptation predicted by a Bayesian model
A. Haith, C. Jackson, C. Miall and S. Vijayakumar
Uncertainty in state estimate and feedback determines the rate of motor adaptation
K. Wei and K. Kording

The cerebellum and the adaptive control of saccades via internal feedback
M. Xu, H. Chen-Harris, D. Zee and R. Shadmehr

Likelihood calculus: A new mathematical approach to understanding the dynamics of
Bayesian controllers with quantized internal representations
T. Sanger

On the feedback control of coordinated eye-head gaze shifts
D. Guitton and H. Galiana

Learning to learn: Environmental consistency modulates motor adaptation rates
N. Castro, M. Hemphill and M. Smith

Optimization strategies in human reinforcement learning
H. Hoffmann, E. Theodorou and S. Schaal

Exploration and exploitation in reward based visuomotor learning
J. Izawa and R. Shadmehr

More bits for behavior: From the movement of C. elegans towards the principles of animal
action
G. Stephens and W. Bialek

Adaptation to a sub-optimal desired trajectory
M. Mistry, E. Theodorou, G. Law, T. Yoshioka, S. Schaal and M. Kawato

Optimization analysis of human stance control predicts the observed non-linear stimulus-
response behavior of a system dominated by sensory noise
H. van der Kooij and R. Peterka

Understanding the role of the spinal cord in voluntary movement by discrete circuit
modeling: bottom-up strategy
G. Raphael and G. Loeb

A Bayesian explanation for curved movement paths
J. Smeets, H. Slijper, J. Richter, E. Over and M. Frens

Optimal feedback control of rhythmic movements: The bouncing ball revisited
R. Ronsse, K. Wei and D. Sternad

A control-theoretic investigation of dynamic spatial behavior
B. Mettler and Z. Kong

Gain fields for the distance between the ocular fixation point and the arm
S. Chang and L. Snyder

A new view of how the superior colliculus supports gaze stability
Z. Hafed and R. Krauzlis
The primate oculomotor system plans saccades to objects not points
M. Phillips and M. Goldberg

Volume 6, 2007

Adaptive optimal control approaches to sensorimotor learning
D. Braun, D. Wolpert, A. Aertsen, S. Rotter, R. Pas, E. Vaadia and C. Mehring

Optimal task-dependent changes of bimanual feedback control and adaptation
J. Diedrichsen and N. Dowling

It takes time for beliefs to converge on reality: An example from the motor system
J. Izawa and R. Shadmehr

Evidence accumulation and stopping bounds: Lessons from a probabilistic categorization task
T. Yang and M. Shadlen

Different dynamics of eye-hand coordination in depth and direction reflect differences in predictive control
S. Gielen and J. Welten

Human movement generation based on convergent flow fields: a computational model and a behavioral experiment
H. Hoffmann and S. Schaal

The evolution of force profiles in a motor adaptation task reveals motor primitives with spindle-like properties that predict the difficulty of learning different types of force-field perturbation
G. Sing, W. Joiner, T. Nanayakkara, J. Brayanov and M. Smith

Divided attention during motor memory formation affects specifically fast adaptive processes and alters mid-movement feedback control
J. Taylor and K. Thoroughman

Causal inference in motor adaptation
K. Wei and K. Kording

Anticipatory postural adjustments during the size-weight illusion reveal simultaneous Bayesian and 'anti'-Bayesian weight estimation
J. Brayanov and M. Smith

Volume 5, 2006

Primitives for optimal control
E. Todorov
Changing the noise in dynamics of reaching predictably changes control of reaching
J. Izawa, T. Rane, O. Donchin and Reza Shadmehr

The nervous system independently controls motion and force
V. Chib, M. Krutky, K. Lynch and F. Mussa-Ivaldi

Muscle synergies during locomotion define a flexible substrate for neural control
N. Krouchev, J. Kalaska and T. Drew

Adaptation induces curvature in saccades, revealing multiple time-scales of plasticity
H. Chen, W. Joiner, R. Shadmehr and D. Zee

Patterns of anterograde interference in reaching arm movements explained by a multi-rate learning model
G. Sing and M. Smith

A cerebellar model for predictive motor control: From reflex to preflex
J. McKinstry, G. Edelman and J. Krichmar

Long-term retention in the adaptive control of reaching explained by a model of short-term learning
M. Ifediba and M. Smith

Modeling neural representations of sensory feedback and changes in motor adaptive strategy
K. Thoroughman and M. Fine

Learning with unstable neural representations: experiment and theory
U. Rokni, A. Richardson, E. Bizzi and S. Seung

Narrow directional tuning explains both post-adaptation and trial-to-trial generalization patterns for visuomotor rotation learning
H. Tanaka, T. Sejnowski and J. Krakauer

Physically-based model for decoding motor-cortical activity
G. Shakhnarovich, S. Kim and M. Black

Volume 4, 2005

Bridging the gap between optimal feedback control and sensorimotor neurophysiology
E. Todorov and B. Huh

Optimal control predicts task-dependent feedback control of human hand movements
M. Chhabra and D. Knill

Optimal sensorimotor transformations for balance
D. Lockhart and L. Ting

The coordination of complex movements
J. Diedrichsen and R. Shadmehr
A sensory source for motor variation? An analysis of noise in pursuit eye movements
L. Osborne, S. Lisberger and W. Bialek

Movement drift is the result of optimal sensory combination
J. Smeets, J. van den Dobbelsteen, R. van Beers and E. Brenner

Neither hand nor cursor motions converge to linear paths under some visuomotor rotations: an adaptation study and model
A. Fishbach and F. Mussa-Ivaldi

Motor learning as a weighted average of past experience
A. Mattar and D. Ostry

Motor learning during the delay period between movements
V. Huang and R. Shadmehr

Distinct movement features are represented by distinct neurons in the motor cortex
E. Stark, R. Drori, I. Asher and M. Abeles

Trajectory formation before movement in the posterior parietal cortex
E. Torres, R. Quiroga and R. Andersen

A theory of cerebellum-dependent motor learning and timing based on rebound conductances in deep cerebellar nuclei neurons
D. Wetmore, E. Mukamel and M. Schnitzer

Modular computations in a hierarchical motor network
J. Jing and K. Weiss

Volume 3, 2004

Hierarchical optimal feedback control of redundant systems
E. Todorov and W. Li

Time-optimal control of fast point-to-point movements
M. Shapiro and R. Kenyon

Matching of sensing and motor volumes in active sensory systems
M. MacIver, M. Nelson and J. Burdick

The nervous system appears to minimize a weighted sum of kinematic error, force, and change in force when adapting to viscous environments during reaching and stepping
D. Reinkensmeyer, J. Liu, J. Emken and J. Bobrow

Modulation of the rate of error-dependent learning by the statistical properties of the task
M. Smith and R. Shadmehr

Experience-dependent adaptation of the spatial generalization of human motor adaptation
K. Thoroughman and J. Taylor
A vector ARX model of motor adaptation during reaching
R. Scheidt

Stimulation of the posterior parietal cortex interferes with arm trajectory adjustments during the learning of new dynamics
V. Della-Maggiore, N. Malfait, D. Ostry and T. Paus

Quick manual following response induced by large-field visual motion: What drives the response and how is it driven?
H. Gomi, N. Saijo, N. Abekawa, I. Murakami and S. Nishida

Simulation of 3D neuro-musculo-skeletal systems with contact
D. Pai, S. Sueda and Q. Wei

Role of movement preparation in movement generation
M. Churchland, B. Yu, S. Ryu, G. Santhanam, A. Afshar and K. Shenoy

On-line spatiotemporal learning and adaptation in the posterior parietal region during obstacle avoidance: Theory, behavior, and neurophysiology
E. Torres, C. Buneo and R. Andersen

Synchronized sensorimotor beta oscillations in motor maintenance behavior
S. Bressler

Recurrent cerebellar loops simplify adaptive control of redundant and non-linear motor systems
J. Porrill and P. Dean

Volume 2, 2003

Exploiting sensorimotor adaptation
J. Patton, F. Mussa-Ivaldi, Y. Wei, M. Phillips and M. Stoykov

Stabilization of cerebrocerebellar feedback control without internal dynamic models
S. Massaquoi

Can training change the desired trajectory?
O. Donchin and R. Shadmehr

Optimal trajectory of human arm reaching movements in dynamical environments
K. Ohta, R. Laboissiere and M. Svinin

Constant effort computation as a determinant of motor behavior
E. Guigon, P. Baraduc and M. Desmurget

Stochastic optimal feedback control of nonlinear biomechanical systems
E. Todorov

Computational understanding of the neural circuit for the central pattern generator for
locomotion and its control in lamprey
Z. Li, A. Lewis and S. Scarpetta

The boundary of instability as a powerful experimental paradigm for understanding complex dynamical sensorimotor behavior: dexterous manipulation as an example
M. Venkadesan, F. Valero-Cuevas and J. Guckenheimer

Models of Purkinje cell discharge during circular manual tracking in monkey
A. Roitman, S. Pasalar and T. Ebner

Is oppositely directed motor learning implemented with inverse plasticity mechanisms?
E. Boyden, R. Tsien, T. Chatila and J. Raymond

A computational model of reach decisions in the primate cerebral cortex
P. Cisek

Uncertainty reduction at the neuronal ensemble but not in single neurons during motor skill learning
D. Cohen and M. Nicolelis

Volume 1, 2002

Think before you act, but prepare an assortment of partial actions before you think
P. Cisek

A computational neural model of laminar frontal cortex and basal ganglia interactions in movement control
J. Brown, D. Bullock and S. Grossberg

Preparatory activity in motor cortex reflects consolidation of specific internal models
R. Paz, T. Boraud, C. Natan, H. Bergman and E. Vaadia

Modeling neural control of hindlimb movement during cat locomotion
D. Ivashko, B. Prilutsky, J. Chapin and I. Rybak

Studying octopus motor control using a computerized dynamic model
Y. Yekutieli, R. Sagiv, B. Hochner and T. Flash

Time-varying muscle synergies as low-level control modules
A. D'Avella and E. Bizzi

Uncovering representation from trial-to-trial changes in performance during adaptation
O. Donchin and R. Shadmehr

A computational model of adaptation to novel stable and unstable dynamics
D. Franklin, R. Osu, E. Burdet, M. Kawato and T. Milner

Interpreting motor adaptation results within the framework of optimal feedback control
E. Todorov
Minimization of jerk, not torque change or end point error, mimics human movement in
dynamically perturbing environments
K. Thoroughman and W. Wang

A model of dimensionality reduction in goal-oriented motions
E. Torres

Patterns in stroke patients’ submovements support adaptive forward/inverse learning model
B. Rohrer, H. Krebs, B. Volpe, W. Frontera, J. Stein and N. Hogan

This symposium is held as a satellite to the annual Society for Neuroscience meeting. All submissions
are peer-reviewed and those with the highest scores are included in the program. The acceptance rate
is below 50%.

Sponsored by the United States National Institutes of Health.