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Abstract—We present POMP (Pareto Optimal Motion Plan-
ner), an anytime algorithm for geometric path planning on
roadmaps. For robots with several degrees of freedom, colli-
sion checks are computationally expensive and often dominate
planning time. Our goal is to minimize the number of collision
checks for obtaining the first feasible path and successively
shorter feasible paths. We assume that the roadmaps we search
over are embedded in a continuous ambient space, where nearby
points tend to share the same collision state. This enables us to
formulate a probabilistic model that computes the probability
of unevaluated configurations being collision-free. We update
the model over time as more checks are performed. This model
lets us define a weighting function for roadmap edges that is
related to the probability of the edge being in collision. Our
approach is to trade off between these two weights, gradually
prioritizing edge length over collision likelihood. We also show
that this tradeoff is approximately equivalent to minimizing
the expected path length, with a penalty of being in collision.
Our experiments demonstrate that POMP performs comparably
with RRTConnect and LazyPRM for the first feasible path, and
BIT* for anytime performance, both in terms of collision checks
and total planning time.

I. INTRODUCTION

A significant computational bottleneck of randomized path
planning for robots in high-dimensional spaces is the ex-
pensive nature of testing for collisions. For roadmap-based
methods [15], this bottleneck is manifested in checking
edges, which have multiple embedded configurations. Our
work attempts to explicitly minimize the number of collision
checks while searching for the optimal path in a roadmap.

For many path planning problems, the execution speedup
obtained via the shortest path is often negated by the extra
planning effort required to find it. Performing a collision
check provides exact information but is computationally
expensive. Instead, we use a model of the world to estimate
the probability of unevaluated configurations to be free or in
collision, as we discuss in Sec. III. We ensure that updating
and querying the model is inexpensive. Searching for paths
based on collision probability does not guarantee optimality,
but may speed up the computation of some feasible path.
Furthermore, we develop an anytime algorithm to search for
successively shorter paths.

A number of previous works have addressed this problem
- using the probability of collision as a heuristic to guide the
search over paths to obtain a feasible path[21]; lazily and
optimistically searching for the shortest path in a roadmap
[3]; probabilistically modelling obstacle locations to combine
exploration and exploitation in a hybrid approach [16]; using
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Fig. 1: The first row demonstrates the anytime behaviour of POMP. A
sequence of successively shorter trajectories is shown, from the first feasible
path obtained in a to the shortest feasible path in c. The second row shows
the collision checks required by POMP and RRTConnect respectively to
obtain a feasible path. POMP uses a belief model about the configuration
space to guide the search for paths that are most likely to be free, and
requires fewer collision checks than RRTConnect.

collision probabilities learned from previous instances to
modify the roadmap cost function, and filter out unlikely
configurations [22]. We mention further related work on the
various aspects of our approach in Sec. II.

Past work lacks, however, a way to connect the two
problems of finding a feasible path quickly and finding the
shortest feasible path in the roadmap. We mathematically
define the problem we wish to solve, and some related
notation, in Sec. IV. Our key insight is that this can be
achieved by balancing the probability of collision and the
length of a path in the objective, as we show in Sec. V.
We name our algorithm POMP, or Pareto Optimal Motion
Planner. We show that its behaviour is approximately equiv-
alent to searching for paths of minimum expected cost, with
a gradually decreasing penalty of being in collision. The
implementation of POMP is outlined in Sec. VI.

In our experiments in Sec. VII, we evaluate the perfor-
mance of POMP in terms of total planning time and number
of collision checks. We compare against RRTConnect [17]
and LazyPRM [3] for computing the first feasible path
and against BIT˚ [10] for the anytime behaviour. We run
tests over many high dimensional path planning problems.
The results demonstrate that POMP performs comparably or
better than other widely used algorithms.

Our major contribution is the development of an anytime
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Fig. 2: A schematic diagram of the configuration space belief model.

framework that uses a model of the configuration space to
search for successively shorter paths that are likely to be
feasible. While there are some limitations, which we mention
in Sec. VIII, our algorithm achieves good performance in
practice over a number of different planning problems. Figure
1 exemplifies the overall behaviour of POMP.

II. RELATED WORK

For robotic path planning, algorithms have widely used
graph-based and sampling-based approaches. Algorithms like
Dijkstra’s graph search [9] and A* [14] work with some
chosen discretization of the problem domain. An alternative
approach that has proved effective for high-dimensional sys-
tems is sampling-based planning, which randomly samples
the problem domain. Two popular methods involve the cre-
ation of a graph in state space, as in Probabilistic Roadmaps
(PRM) [15] or expanding trees from the start state, as in
Rapidly-exploring Random Trees (RRT) [18].

The original probabilistic roadmap approach explicitly
evaluated all nodes and edges of the roadmap for feasibility.
As a result of the expensive nature of collision-checking,
the idea of lazy evaluation of paths became popular. One
approach is selecting paths for lazy evaluation based on
lowest path length [3], while another is minimizing the
probability of the path being in collision, irrespective of
length [21]. Our work serves to connect these two ideas
under the overall objective of obtaining feasible, successively
shorter paths with reduced collision-checking effort.

We reason about both the path length and the probability
of collision for an individual candidate path. This analysis
is built upon a considerable body of work dealing with bi-
criteria path problems. Early work has conducted a system-
atic study of these problems [13], and devised methods to
obtain non-dominated or Pareto optimal paths [7]. It has also
provided insights directly relevant to shortest path problems
for robots[20].

The probability of collision of a path is derived from an
approximate model of the configuration space of the robot.
Since we explicitly seek to minimize collision checks, we
build up an incremental model using data from previous
collision tests, instead of sampling several, potentially irrele-
vant configurations apriori. This idea has been studied [4, 5]
in similar contexts. Furthermore, the evolving probabilistic
model can be used to guide future searches towards likely
free regions. Previous work has analyzed and utilized this
exploration-exploitation paradigm for faster motion planning
[1, 16, 22, 23].

Symbol Description

C Configuration space
Cobs Obstacle C-Space
Cfree Free C-Space

q Configuration
� C-space model for collisions

⇢pqq Probability of q being collision-free
GpV,Eq Graph we search over

wl edge weight based on length
wm edge weight based on probability

Lp⇡q path cost based on length
Mp⇡q path cost based on probability

TABLE I: Terminology

III. CONFIGURATION SPACE BELIEFS

We consider the problem of geometric path planning for a
robot with n degrees of freedom. We denote the configuration
space (C-space) of the robot by C Ñ Rn. We denote the set
of all configurations in collision by Cobs, giving us the free
space Cfree ” CzCobs.

For high dimensional problems, maintaining an explicit
representation of Cobs (and hence Cfree) is not computation-
ally feasible. We are interested in regimes where we have
an implicit representation in the form of a collision checker,
which takes as input a configuration q P C and outputs which
of the two sets Cobs or Cfree the configuration belongs to. As
mentioned in Sec. I, we focus on problem domains where
performing each check is computationally expensive.

We observe immediately that the collision checker is an
expensive but perfect binary classifier, classifying a queried
configuration into Cobs or Cfree. We can then formulate an
inexpensive but uncertain model � that takes in a config-
uration and outputs its belief that the query is collision-
free, represented as ⇢ : C fiÑ r0, 1s. We can build and
update this model using a black-box learner [22]. Given a
query q, we now have the choice of either inexpensively
evaluating ⇢pqq from the model �, or expensively querying
the collision checker. A representation is shown in Figure 2.
In this work, we use a k-nearest-neighbour (k-NN) lookup
model to estimate the belief of a query. Further details of this
are in Sec. VI.

IV. PROBLEM DEFINITION

Following the probabilistic roadmap framework [15], we
search for paths on a graph G “ pV,Eq embedded in C.
Given start and target vertices s and t, a valid path ⇡ in G
is a sequence of adjacent edges connecting s and t. A path
is feasible if every included edge is in Cfree.

To save computation, although we create the graph explic-
itly, we do not evaluate it apriori, so we do not know if any of
its vertices or edges are in Cfree or Cobs. This setup is similar
to that of the LazyPRM [3], which then searches over the
graph optimistically until it finds the shortest feasible path.
We suggest two improvements: (1) to use the belief model
to better guide the search to find feasible solutions more
quickly and (2) provide an anytime algorithm that produces
better solutions as the search progresses, eventually finding
the shortest feasible path on the roadmap. An illustration for
a simple 2D problem is shown in Figure 3.
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Fig. 3: An illustration of the benefit of using configuration space beliefs. The upper and lower rows show runs of POMP on a 2D planning problem, with
some finite model radius and zero radius respectively. The heatmap represents the belief model with green representing the belief of being free, and orange
the belief of being in collision. The thin grey edges are unevaluated. The dashed edges are being evaluated. Thick grey edges are evaluated free, and thick
magenta edges are evaluated in collision. The blue edges in the rightmost pictures represent the first feasible path in each case. Using the belief model,
POMP requires 10 evaluations for the first feasible path, while without the model, it requires 18 evaluations.

A. Edge weights

We define two edge weight functions. The first is wl :

E Ñ r0,8q and measures the length of an edge based
on some metric on C. An example metric is the Euclidean
distance between the end-points of the edge. For edges that
are evaluated to be in collision, the weight is set to 8. The
path length is represented as Lp⇡q “ ∞

eP⇡
wlpeq.

The second is wm : E Ñ r0,8q, and it relates to the
probability of the edge to be collision-free based on our
model M . Specifically, wmpeq “ ´logp⇢peqq, where ⇢peq is
the probability of e to be collision-free. Note that a known-
free edge has wmpeq “ 0 and a known-colliding edge
has wmpeq “ 8. If we assume conditional independence
of configurations given the edge, we can write the log-
probability of a path being in collision, Mp⇡q, in the same
summation form as Lp⇡q:

´log Pp⇡ P Cfreeq “ ´log

π

eP⇡
⇢peq “

ÿ

eP⇡
wmpeq ” Mp⇡q

We will refer to this M as the collision measure of the path.
Ensuring that both Mp⇡q and Lp⇡q are additive over edges
enables efficient searches.

B. Weight Constrained Shortest Paths (WCSP)

Our first objective is to obtain some initial feasible path
quickly, irrespective of path length. We search for paths that
are most likely to be free according to our model. Once we
have a feasible path, we search only for paths of shorter
length, based on their likelihood of being free. Specifically,

we want to search over paths most likely to be free, with
a length lower than some upper bound, where the bound
reduces over time, with each feasible solution. This can be
represented as repeatedly solving

⇡̂ “ argmin
⇡

Mp⇡q

subject to Lp⇡q † L˚
(1)

and subsequently evaluating the returned solution for feasi-
bility. The initial bound L˚

0 “ 8, after which L˚
1 “ Lp⇡̂0q,

where ⇡̂0 is the first feasible solution, and L˚
2 “ Lp⇡̂1q

and so on. Therefore, the first iteration of the problem is an
unconstrained shortest path problem. For a particular finite
upper bound, however, this problem is an instance of the
Weight Constrained Shortest Path problem.

V. APPROACH

We will justify why solving the exact problem we have de-
fined earlier, is not possible efficiently. We then motivate the
objective function as a convex combination of both weights.
Subsequently, we will show that this is approximately equiv-
alent to searching for a path of minimum expected length.

A. Iteratively solving the WCSP problem
We visualize paths on a 2D plane in terms of their two

weights - the path length L and the collision measure M .
Each path is a point on this plane, as shown in Figure 4.

For such bicriteria problems, a point (path) is strictly dom-
inated by another point if it is worse off in both criteria. For
instance, if there are two points �, �1 such that Lp�1q • Lp�q
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Fig. 4: The LazyWCSP algorithm performs a horizontal sweep on the
length(L) - measure(M ) plane to select the left-most point. If each point
chosen is feasible, and there are no updates to the model, this sweeps out
the Pareto frontier of valid points, with respect to initial weights.

and Mp�1q • Mp�q, then � strictly dominates �1, i.e. � ° �1.
A point is Pareto optimal if it is not strictly dominated by
any other point. The set of Pareto optimal points is known
as the Pareto frontier.

Consider a simple approach that evaluates paths lazily,
called the LazyWCSP method. It repeatedly performs a
horizontal sweep over the points in the plane under some
horizontal line, the upper length bound (initially there is
no line as the bound is 8). It selects the left-most one
(with minimum collision measure) to evaluate, say ⇡i. If
the path is infeasible, it is moved infinitely to the right,
and if feasible, it is moved left onto the y-axis, with the
collision measure becoming 0. The upper bound L˚ is now
Lp⇡iq, represented by a horizontal line. The collision data
of previously unknown configurations updates the model �,
which in turn updates the x-coordinate of certain points.

Recall that the search for the first feasible path ⇡̂0 is
an unconstrained shortest path problem with edge weights
defined by wm and lazy evaluation of paths [21]. For the
subsequent paths, we have to repeatedly solve the WCSP
problem lazily.

There are two major issues with that approach. Firstly,
from a practical viewpoint, the WCSP problem is known
NP-Hard. There are algorithms for solving it in pseudopoly-
nomial time, by dynamic programming [8] and Lagrangean
relaxation [12], but it is highly inefficient to do so repeatedly.
Secondly, and more fundamentally, the progress of Lazy-
WCSP does not appropriately address our goal of trading
off between path length and collision measure. Consider the
scenarios in Figure 5. In 5(b), LazyWCSP would evaluate a
point ⇡1 of marginally lower collision measure and higher
path length than another one, ⇡2. In the general case, where
they may be many such points, as in 5(c), this leads to
prioritizing several paths that are less promising, i.e. that have
a lower gain in length with respect to collision measure.

B. Convex Hull of Pareto frontier
Let us assume that we do not update the model � between

successive searches; the x-coordinates of unevaluated paths
do not change. If an evaluated path is free, it becomes the
best feasible solution, otherwise it is removed. Under this
assumption, LazyWCSP traces out the Pareto frontier of the
feasible paths with respect to their initial coordinates, as
shown in Figure 4. In both of the examples in Figure 5,
this defers the evaluation of the more promising ⇡2.
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Fig. 5: Two problematic scenarios for using LazyWCSP. A toy case is shown
in a, along with two possible corresponding length(L) - measure(M ) plots.
In b, a small decrement in collision measure for ⇡1 is prioritized over a
larger decrement in path length for ⇡2. In c, all points above the blue line
and to the left of ⇡2 are evaluated before the more promising ⇡2. These
points correspond to several paths through A.

We can control the tradeoff between the two weights by
defining the objective function as a convex combination of
the two weights,

J↵p⇡q “ ↵Lp⇡q ` p1 ´ ↵qMp⇡q , ↵ P r0, 1s
This is the key idea behind our algorithm POMP, or Pareto-
Optimal Motion Planner (Algorithm 1). Minimizing J↵ for
various choices of ↵, traces out the convex hull of the Pareto
frontier of the initial coordinates, as shown in Figure 6(a).
The ↵ parameter represents the tradeoff between the weights.
Also, optimizing over J↵ implicitly satisfies the constraint on
L. If the current solution is ⇡i, then for any path ⇡1

J↵p⇡1q † J↵p⇡iq
ùñ ↵Lp⇡1q ` p1 ´ ↵qMp⇡1q † ↵Lp⇡iq r as Mp⇡iq “ 0s
ùñ Lp⇡1q † Lp⇡iq

The path objective function is additive over edges, so each
iteration of the algorithm is now a shortest path search
problem. The edge weight for each search is

w↵
j peq “ ↵wlpeq ` p1 ´ ↵qwmpeq , ↵ P r0, 1s (2)

When the previous assumption is relaxed, i.e. when collision
measures of paths are updated after each search, the corre-
sponding points move and the Pareto frontier moves as well.
POMP begins with ↵ “ 0 and the upper bound L˚ “ 8, as
stated before. After the first feasible solution is obtained, ↵ is
increased, and for each value of ↵, the shortest path search
is carried out with the weight function w↵

j . Either POMP
finds a feasible path, and the next search uses this path as
the current solution, or it does not, and the previous solution
is returned. In the latter case, there are no further updates the
model can make (as the path returned is fully evaluated), and
no other paths can be found with the current ↵. Therefore the
search is restarted after increasing ↵. A visual description of
an intermediate search of POMP is in Figure 6.
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Fig. 6: The key insights to our algorithm. As shown in a, under the
assumption of no model updates, the convex hull of the Pareto frontier of the
paths is traced out for different values of ↵. The actual behaviour of POMP
in the absence of that assumption is shown through b - d. The diagonal sweep
corresponds to searching with J

↵, and the first point found in the sweep
corresponds to the path that minimizes J

↵p⇡q. When a path is evaluated,
other paths may have their M -values increased or decreased, and may
be deleted if they share infeasible edges with it.

Note that we can use the A˚ algorithm for the underlying
search by scaling the Euclidean heuristic (or any admissible
one) by ↵. Two aspects of the ↵ parameter affect the
performance of POMP. One of them is scheduling the values.
It can either be increased monotonically from ↵1 > 0 to 1 or
restarted from ↵1 > 0 each time a feasible path is found.
We noted empirically that the monotonic increase traced
out a sequence of candidates similar to that obtained from
restarting, so we chose that to reduce the number of searches.
Another issue is the step size of ↵. The two quantities that
are added in the cost function have different units, and the ↵
values need to be chosen so as to balance them reasonably,
depending on the problem instance.

C. Minimizing Expected Cost

We will show that the behaviour of POMP is equivalent to
minimizing expected path length, with some approximation.
This formulation has been used in similar contexts [19].

Let ˆJp⇡q “ ErJp⇡qs be the expected length of path ⇡. By
the linearity of expectation,

ˆJp⇡q “
ÿ

eP⇡
ŵjpeq

where ŵjpeq is the expected length of e. For any edge
e, we use a length model where the length of the edge, if
free, is wlpeq, and if in collision is �wlpeq, where � is a
penalty factor p� ° 1q. Though we require ⇡ P Cfree, we do
not consider a wlpeq{8 length model as that would make
expected lengths infinite for any unevaluated edges. Because
the algorithm eventually evaluates edges, no infeasible paths
will be reported as solutions.

ŵjpeq “ ⇢peqwlpeq ` p1 ´ ⇢peqq�wlpeq

Algorithm 1 POMP

Input : G “ pV,Eq, wl, wm, s, t, �

1: repeat
2: ⇡0 – Dijkstra_PathpG,wmq
3: LazyEvalPathpG,⇡0,�q
4: if ⇡0 P Cfree then
5: yield ⇡0

6: until ⇡0 P Cfree
7: ⇡curr “ ⇡0

8: ↵ – ↵1

9: while ↵ § 1 do
10: w↵

j peq “ ↵wlpeq ` p1 ´ ↵qwmpeq, @ e
11: ⇡new – AStar_PathpG,w↵

j q
12: LazyEvalPathpG,⇡new,�q
13: if ⇡new ‰ ⇡curr and ⇡new P Cfree then
14: ⇡curr – ⇡new
15: yield ⇡curr

16: Increment ↵
17: ⇡shortest – ⇡curr

Algorithm 2 LazyEvalPath

Input : G “ pV,Eq,⇡, �

1: for e P ⇡ do
2: if e is unevaluated then
3: Evaluatepeq
4: Update � with collision data for e. This updates

wm for all unevaluated edges.
5: if e P Cobs then
6: wlpeq, wmpeq – 8 ô Known blocked edge.
7: return ⇡ P Cobs
8: else
9: wmpeq – 0 ô Known free edge.

10: return ⇡ P Cfree

The equivalence to Eq. 2 is observed from the following:

ŵjpeq “ ⇢peqwlpeq ` p1 ´ ⇢peqq�wlpeq
“ wlpeqr⇢peq ` p1 ´ ⇢peqq�s
“ wlpeqr1 ` p1 ´ ⇢peqqp� ´ 1qs
“ wlpeq ` wlpeqp� ´ 1qp1 ´ ⇢peqq

By the Taylor series expansion,

logp⇢peqq “ ⇢peq ´ 1 ´ p⇢peq ´ 1q2
2

` . . .

ùñ ´logp⇢peqq “ p1 ´ ⇢peqq [neglecting other terms]

Therefore, we obtain,

ŵjpeq “ wlpeq ` wlpeqp� ´ 1qwmpeq (3)

Compare this to w↵
j peq in Eq. 2

w↵
j peq “ ↵wlpeq ` p1 ´ ↵qwmpeq

” wlpeq ` p1 ´ ↵q
↵

wmpeq [for minimizing]

” wlpeq ` �wmpeq
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Fig. 7: The test cases we use for our experiments. We name them P1 through P6 for reference. The planning is for the right arm of the robot, which is at
the starting configuration in each case. The translucent rendered arm represents the desired goal configuration.

Therefore, the effect of � is equivalent to that of wlpeqp�´1q
as � goes from �1 " 1 to 1. � is constant for all edges, while
wlpeq is different for edges - but wlpeq is always bounded and
finite, so the equivalence between Eq. 2 and Eq. 3 (between
ŵjpeq and w↵

j peq) is retained.
Intuitively, � represents the penalty factor that POMP

assigns to additional collision checks. Reducing the penalty
factor � from �1 " 1 to 1 is analogous to increasing ↵ in
the earlier formulation from 0 to 1. Both operations represent
the increased risk of collision the algorithm is willing to take
while searching for edges that, if free, may potentially lead to
shorter paths. It should also be noted that at the stage where
↵ “ � “ 1, POMP is equivalent to LazyPRM [3].

VI. IMPLEMENTATION

A. Algorithm

POMP is outlined in Algorithm 1. Algorithm 2 is a helper
method for lazily evaluating paths. The term yield is used
instead of return to emphasize that the algorithm has anytime
behaviour.

B. Configuration Space Model

We have considered the model � : q fiÑ ⇢pqq as a black
box thus far, because a number of different models exist in
the literature [5, 16, 22] which could be used. We utilize a
k-NN method similar to one used previously [22].

When qi P C is evaluated for feasibility, we ob-
tain F pqiq “ 0 if qi P Cfree, 1 otherwise. Then we add
pqi, F pqiqq to the model. Given some new query point q, we
obtain the k closest known instances to q, say tq1, q2 . . . qku,
and then compute a weighted sum of F pqiq where a weight
wi “ 1

||q´qi|| . Therefore,

Prq in collision s “ 1 ´ ⇢pqq “ w.F

|w|

where w “ rw1, w2 . . . wksT and F “
rF pq1q, F pq2q . . . F pqkqsT .

In principle, the k-NN lookup is Oplog Nq while a colli-
sion check is Op1q. However, for the roadmaps that we tested
on, the time for a single collision check was significantly
higher than for a model lookup. Asymptotically, the lookup
time will exceed check time, which may happen in certain
kinds of problems.

VII. RESULTS

We evaluate POMP through a number of experiments on
HERB [25], a mobile manipulator designed and built by
the Personal Robotics Lab at Carnegie Mellon University.
We consider two hypotheses - the benefit of the model for
computing the first solution, and the anytime performance.

Our experiments are run on 6 different planning problems
for the 7-DOF right arm, shown in Figure 7. The first three
problems - P1, P2, P3 - are used for evaluating the first
hypothesis. They have goal configurations with significant
visibility constraints. The next three problems - P4, P5, P6 -
are used for the second hypothesis. Their goal configurations
are less constrained than the first set. Thus they have more
feasible solutions and better demonstrate anytime behaviour.

A. Experiments

For each problem, we test POMP over 50 different
roadmaps. The distribution of the nodes is generated by
Halton sequences [11], which have low dispersion, and the
node positions are offset by random amounts. The roadmaps
have approximately 14000 nodes, and the r-disk radius for
connectivity is 0.3 radians.

Using explicit roadmaps allows us to eliminate all nodes
and edges which have configurations in self collision in a
pre-processing step, thereby requiring us to only evaluate
environmental collisions at runtime. We utilize the same set
of default model parameters for each run of POMP - the joint
angle resolution is 0.04 radians, the k for k-NN lookup is 15,
the prior belief is 0.5, and ↵ increases in steps of 0.1.

1) Benefit of model for first feasible path: We evaluate the
planning time and the number of collision checks required
to obtain a feasible solution. We compare against the widely
used LazyPRM [3] and RRT-Connect [17]. For RRTCon-
nect, we use the standard OMPL [26] implementation. For
LazyPRM, we use the search of POMP with ↵ “ 1 on the
same roadmaps as POMP. We also compare against a variant
of POMP that does not use a belief model - it assigns the
same probability of collision to all unknown configurations
and only sets them to 0 or 1 when they are evaluated. This is
to demonstrate the advantage of the model-based heuristic.
We name these variants ‘With Model’ and ‘Without Model’.

Figure 8 shows the average collision checks and planning
time to compute the first feasible solution for the various
algorithms. This is for those roadmaps that have at least
one feasible solution for the problem. A second perspective
is shown in Figure 9, which shows the success rate of the
methods with time and checks. This plot considers all of the
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Fig. 8: A comparison of our algorithm POMP with LazyPRM and RRTConnect, in terms of the average planning time and collision checks required for
computing the first feasible path. POMP requires far fewer checks than RRTConnect, but spends additional time searching and updating the large roadmap.
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(f) P3

Fig. 9: These plots shows how the collision checks and planning time required varies with the percentage of successful runs for each algorithm. Note that
With Model, Without Model and LazyPRM all run on the same roadmap, and would all report a feasible solution if one existed on the roadmap. In each
case, the x-axis is cut off after all runs of With Model, on roadmaps with feasible solutions, have concluded. RRTConnect would of course keep searching
till it found a solution, and asymptotically its success rate would be 1.

50 roadmaps, whether they have a feasible solution or not,
and so the success rate of the methods using them (With
Model, Without Model, LazyPRM) all have the same upper
bound. The figures show that over all problems, POMP with
a belief model shows superior average-case performance.
Furthermore, the length of the first feasible path returned by
POMP is better than RRTConnect. For the three problems,
the average length of feasible paths computed by POMP is
approximately 60% that of paths computed by RRTConnect.
Additionally, for cases where the roadmap has no feasible
solution, POMP using a model reports failure more quickly
than the variant without a model and LazyPRM (Figure 10).

An interesting observation from Figure 8 is that though
RRTConnect has an order of magnitude more collision
checks than POMP, the planning time is still comparable. A
qualitative breakdown of the timing shows that POMP spends
far less time than RRT-Connect actually doing collision
checking. However, it also has far greater overhead for
searching the roadmap for candidate paths and updating the
collision measure of edges after collision tests.

2) Anytime behaviour: We also evaluate the anytime per-
formance of finding shorter feasible paths over time, up to
the optimal path in the roamdap. We compare against BIT*
[10] (OMPL implementation), which has demonstrated an
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Fig. 10: POMP with a model reports failure faster than without a model, and
LazyPRM, for the same roadmaps and problem instances. This is aggregated
over all failure cases from P1 through P3.

anytime performance superior to others. We run tests for 3
different problems P4, P5 and P6, and demonstrate the results
in Figure 11. Note that POMP works with only the roadmap
provided, without any incremental sampling or rewiring, so
the path length does not improve once the shortest feasible
path has been obtained. BIT* adds more samples, however,
and can continue to obtain improved paths with time.

VIII. DISCUSSION

Given a roadmap constructed apriori, and a black-box
configuration space model, POMP efficiently searches for
shorter feasible paths in an anytime fashion. We thoroughly
evaluated POMP for a set of roadmaps and model parameters
and observed consistently good results in comparison to
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Fig. 11: A comparison of the anytime performance of POMP with that of BIT*. This is done on 3 separate problems that better demonstrate anytime
behaviour than the ones used earlier. The dotted line begins after 50% of the runs have found a solution. The solid line begins after all runs have found a
solution. The flattening of the lines for POMP happens after the final roadmap finds the shortest path, as there is no further scope of improvement.

the state of the art. We have shown results for single-
query problems, but POMP is also well-suited to multi-query
problem instances that enable model re-use.

Like other PRM-based methods, POMP encounters the
issue of there not being any feasible path on the roadmap
for a particular environment and planning problem. The fast
reporting of failure favours beginning with sparse roadmaps
and incrementally densifying when no feasible path is found.
Given that some approximate model of the world would
already be available, techniques like utility-guided sampling
[6] could be used to efficiently sample new points in areas
where they are likely to be beneficial.

For our implementation of POMP, the C-space belief
model uses a simple but effective k-nearest neighbour lookup.
We have previously referred to similar models in the litera-
ture. Other interesting approaches would be reasoning about
the manifolds of the sample points [24] and using persistent
homology for occupancy maps [2].
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