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In the last chapter we proved the following result about gradient descent for minimizing L-smooth µ-strongly
convex functions.

Theorem 1. Let f : Rn → R be a L-smooth µ-strongly convex function for µ ≥ 0. Let x0 ∈ Rn and

x∗ ∈ X∗(f) be arbitrary and let xk+1 = xk − 1
L 5 f(xk) for all k ≥ 0. Then

f(xk)− f∗ ≤ min

{(
1− µ

L

)k
[f(x0)− f∗] ,

L · ‖x0 − x∗‖22
k + 4

}
.

Consequently we can compute an ε-suboptimal point with O(dmin{Lµ log( f(x0)−f∗
ε ),

L‖x0−x∗‖22
ε }e) oracle calls.

A natural question to ask, is is this optimal? If all we have is a gradient oracle, can we do better? Here
we address this question, showing how better running times can be achieved through a technique typically
referred to as acceleration.

1 Acceleration

So how should we accelerate? The idea here we use is pretty simple. If f is L-smooth µ-strongly convex we
know that for all x the functions

Lx(y) = f(x) +5f(x)>(y − x) + µ

2
‖y − x‖22 and Ux(y) = f(x) +5f(x)>(y − x) + L

2
‖y − x‖22

Lower and upper bound f , i.e.
Lx(y) ≤ f(y) ≤ Ux(y)

for all y ∈ Rn. Now before our algorithm worked simply by greedily decreasing our function value using the
upper bound. Here we try to do better by using the lower bound as well. Whereas the gradient descent
algorithm we analyzed before used a �xed step size that only depended upon the smoothness of the function
here we use strong convexity in designing our steps as well.

2 Acceleration Approach

The algorithm we use for our analysis is fairly straightforward. In every iteration k we maintain some
xk ∈ Rn and some lower bound function Lk : Rn → R such that for all x ∈ Rn we have Lk(x) ≤ f(x). We
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store Lk(x) = ψk +
µ
2 ‖x− vk‖

2
2 for some ψk ∈ R and some vk ∈ Rn. Now, the idea is that minx Lk(x) = ψk

and thus
f(xk)− ψk ≥ f(xk)−min

x
f(x) = f(xk)− f∗ .

Consequently, it su�ces to show we can decrease f(xk)− ψk at a fast rate.

The way we do this is simple. We let

yk = α · xk + (1− α) · vk

and use this point yk to improve both our lower bound and upper bound. We let xk+1 = yk − 1
L 5 f(xk)

and we let
Lk+1 = β · Lk + (1− β) · Uyk(y)

That is it, that is the entire algorithm. We pick our lower bounds Lk(x) = ψk +
µ
2 ‖x − vk‖

2
2 as the above

update rule keeps the Lk of this form and we can store these Lk compactly.

What is tricky about this algorithm and the analysis of it is reasoning about exactly what happens when we
combine lower bounds. In the next section we analyze this through a self contained helper lemma.

3 Quadratics and Combining Lower Bounds

Here we give a self contained lemma about the e�ect of taking convex combinations of quadratics. Proving
these will be done in homework.

Lemma 2. Let f : Rn → R be a twice di�erentiable function where 52f(x) = A ∈ Rn×n for all x ∈ Rn then

for all x, y we have that

f(x) = f(y) +5f(x)>(y − x) + 1

2
(y − x)>A(y − x) .

Proof. Homework.

This lemma shows that we can re-write our lower bounds as quadratics centered around a particular point.

Corollary 3. If f : Rn → R is a di�erentiable µ-strongly convex function then for all x, y ∈ Rn we have

f(y) ≥ f(x)− 1

2µ
‖ 5 f(x)‖22 +

µ

2

∥∥∥∥y − [x− 1

µ
5 f(x)

]∥∥∥∥2
2

.

Proof. We have already seen that

f(y) ≥ Lx(y)
def
= f(x) +5f(x)>(y − x) + µ

2
‖y − x‖22 .

However, we know that

Lx

(
x− 1

µ
5 f(x)

)
= f(x)− 1

2µ
‖ 5 f(x)‖22

and

5Lx
(
x− 1

µ
5 f(x)

)
= 5f(x)− µ

µ
5 f(x) = ~0 .

Since 52Lx(y) = I for all y the result follows from Lemma 2.

Next, using Lemma 2 we show how to combine quadratic lower bounds.
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Lemma 4. Let f1, f2 : Rn → R be de�ned for all x ∈ Rn by

f1(x)
def
= ψ1 +

µ

2
‖x− v1‖22 and f2(x) = ψ2 +

µ

2
‖x− v2‖22

For ψ1, ψ2 ∈ R, v1, v2 ∈ Rn, and µ ≥ 0. Then for all α ∈ [0, 1]we have

α · f1(x) + (1− α) · f2(x) = ψα +
µ

2
‖x− vα‖22

where

vα = αv1 + (1− α)v2 and ψα = αψ1 + (1− α)ψ2 +
µ

2
α(1− α)‖v1 − v2‖22 .

Proof. Homework.

Intuitively, the above equation says that the farther away the centers are, the more that combining them
increases the lower bound.

4 Building An Accelerated Gradient Step

Using the analysis in the previous section yields the following bound for improving our lower bounds.

Lemma 5. Let f : Rn → R be di�erentiable µ-strongly convex function and let Lk(x) = ψk +
µ
2 ‖x− vk‖

2
2 by

such that f(x) ≥ Lk(x) for all x. Then for all β ∈ [0, 1] and yk ∈ Rn we have that

Lk+1(x) = β · Lk(x) + (1− β) · Lyk(x)

where Ly(x) = f(yk) +5f(yk)>(x− yk) + µ
2 ‖x− yk‖

2
2 satis�es f(x) ≥ Lk+1(x) for all x ∈ Rn and

Lk+1(x) = ψk+1 +
µ

2
‖x− vk+1‖22

where

vk+1 = β · vk + (1− β) ·
[
yk −

1

µ
5 f(yk)

]
and

ψk+1 = β · ψk + (1− β) ·
[
f(yk)−

1

2µ
‖ 5 f(yk)‖22

]
+
µ

2
β(1− β) ·

∥∥∥∥vk − [yk − 1

µ
5 f(yk)

]∥∥∥∥2
2

.

Proof. First, note that 5Uy(yk − 1
µ 5 f(yk)) = ~0 and f(yk − 1

µ 5 f(yk)) = f(yk) − 1
2µ‖ 5 f(yk)‖22 and

consequently, by Lemma 2 we have that

Lyk(x) = f(yk)−
1

2µ
‖ 5 f(yk)‖22 +

µ

2
‖x− (yk −

1

µ
5 f(yk))‖22

The result then follows by applying Lemma .4.

Using this we can analyze a gradient descent step.

Lemma 6. Under the same assumptions of Lemma 5 if yk = α · xk + (1 − α) · vk for some α ∈ (0, 1) and

xk+1 = yk − 1
L 5 f(yk) then we have

f(xk+1)− ψk+1 ≤ β [f(xk)− ψk] + β ·
[
1− α · 1− β

1− α

]
(f(yk)− f(xk)) +

[
(1− β)2

2µ
− 1

2L

]
‖ 5 f(yk)‖22 .
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Consequently if κ = L
µ , β = 1−

√
1
κ , and α =

√
κ

1+
√
κ
then

f(xk+1)− ψk+1 ≤
(
1− 1√

κ

)
[f(xk)− ψk]

Proof. Now by our assumption on yk we have

vk − yk =
1

1− α
[yk − α · xk]− yk =

α

1− α
[yk − xk] .

Consequently, since f(xk) ≥ f(yk) +5f(yk)>(xk − yk) by convexity we have

µ

2

∥∥∥∥vk − [yk − 1

µ
5 f(y)

]∥∥∥∥2
2

=
µ

2

[
‖vk − yk‖22 +

2

µ
5 f(yk)

>(vk − yk) +
1

µ2
‖ 5 f(yk)‖22

]
≥ α

1− α
· 5f(yk)>(yk − xk) +

1

2µ
‖ 5 f(yk)‖22

≥ α

1− α
· [f(yk)− f(xk)] +

1

2µ
‖ 5 f(yk)‖22 .

Consequently, by Lemma 5 we have

ψk+1 ≥ β · ψk + (1− β) ·
[
f(yk)−

1

2µ
‖ 5 f(yk)‖22

]
+ β(1− β) ·

[
α

1− α
· [f(yk)− f(xk)] +

1

2µ
‖ 5 f(yk)‖22

]
Combining this with the fact that f(xk+1) ≤ f(yk)− 1

2L‖ 5 f(yk)‖22 yields

f(xk+1)− ψk+1 ≤ βα ·
1− β
1− α

· f(xk)− βψk +
[
1− (1− β)− αβ · 1− β

1− α

]
f(yk)

+

[
1− β
2µ

− β · (1− β) · 1

2µ
− 1

2L

]
‖ 5 f(yk)‖2

This yields the �rst formula. The values for β and α were chosen by solving for (1 − β)2 = µ
L = 1√

κ

yielding the �rst formula and then solving for α · 1−β1−α = 1 which yields that α√
κ
= 1 − α which then yields

α = 1
1+ 1√

κ

=
√
κ

1+
√
κ
.

5 Accelerated Gradient Descent Guarantees

In the last section we showed how to construct a step that decreased an upper bound on f(xk) − f∗ by a
multiplicative 1−

√
µ
L in every iteration. To turn this into a full algorithm, all that remains is to show how

to bound the initial error, i.e. how to get an initial quadratic lower bound on our function. However, by
Lemma 3 we already know that how to get a lower bound, so all that remains is to analyze the initial error
with this lower bound.

Lemma 7. Let f : Rn → R be a L-smooth µ-strongly convex function then for any x0 we have that for

ψ0 = f(x0)−
1

2µ
‖ 5 f(x0)‖22 and v0 = x0 −

1

µ
5 f(x0)

it is the case that f(x) ≥ L0(x)
def
= ψ0 +

µ
2 ‖x− v0‖

2
2 and f(x0)− ψ0 ≤ L

µ · [f(x0)− f∗].

Proof. The fact that f(x) ≥ L0(x) is immediate from Lemma 3. Since ‖ 5 f(x0)‖22 ≤ 2L · [f(x0) − f∗] we
obtain the desired upper bound on f(x0)− ψ0.
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Putting this all together yields the following.

Theorem 8 (Accelerated Gradient Descent). Let f : Rn → R be a L-smooth µ-strongly convex function and

let κ = L
µ . For arbitrary x0 ∈ Rn cmpute v0 = x0 − 1

µ 5 f(x0) and for all k ≥ 0 let

• yk+1 = α · xk + (1− α) · vk for α =
√
κ

1+
√
κ

• vk+1 = β · vk + (1− β) ·
[
yk − 1

µ 5 f(yk)
]
for β = 1− 1√

κ

• xk+1 = yk − 1
L 5 f(yk)

Then we have that f(xk)−f∗ ≤
(
1− 1√

κ

)k
·κ · [f(x0)−f∗] and consequently we can compute an ε-suboptimal

point for f with 1 + d
√
κ log(κ · [f(x0)− f∗])e queries to a gradient oracle.

Proof. For all k if we let Lk(x) = ψk +
µ
2 ‖x− v0‖

2
2 then we have by previous lemmas that there is a way to

chose the ψk such that f(x) ≥ Lk(x) for all x and therefore f(xk)− f∗ ≤ f(xk)− ψk. We have also proven

that this can be done so that f(xk+1) − ψk+1 ≤
(
1− 1√

κ

)
[f(xk) − ψk] and f(x0) − ψ0 ≤ κ · [f(x0)− f∗]

yielding the result.

6 Improving the Analysis

A natural question to ask is can the accelerated gradient descent algorithm be further improved? It can be
shown that the dependence on κ in the asymptotic rate cannot, in general, be improved if the function can
be accessed only through a gradient oracle.

However, the κ in the logarithmic term can be improved just by slightly improving the analysis. Rather
than tracking f(xk) − ψk there is another natural potential function can be used, the sum of the function
error of f(xk) and the appropriately scaled distance of vk to the optimal point, i.e. µ

2 ‖x∗ − vk‖
2
2 . In the

homework, you will show that the same elements of the above proof yield the following.

Lemma 9. Let f : Rn → R be a L-smooth µ-strongly convex function and let κ = L
κ . Show that if for some

xk and vk we let

• yk+1 = α · xk + (1− α) · vk for α =
√
κ

1−
√
κ

• vk+1 = β · vk + (1− β) ·
[
yk − 1

µ 5 f(yk)
]
for β = 1− 1√

κ

• xk+1 = yk − 1
L 5 f(yk)

Then if x∗ is the unique minimizer of f and we let εk
def
= f(xk)− f∗ and rk

def
= µ

2 ‖vk − x∗‖
2
2 then

εk+1 + rk+1 ≤
(
1− 1√

κ

)
[εk + rk] .

This gives the following improved analysis of accelerated gradient descent

Theorem 10 (Accelerated Gradient Descent (Improved)). Let f : Rn → R be a L-smooth µ-strongly convex

function and let κ = L
µ . For arbitrary x0 ∈ Rn let v0 = x0 and for all k ≥ 0 let

• yk = α · xk + (1− α) · vk for α =
√
κ

1+
√
κ
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• vk+1 = β · vk + (1− β) ·
[
yk − 1

µ 5 f(yk)
]
for β = 1− 1√

κ

• xk+1 = yk − 1
L 5 f(yk)

Then we have that f(xk)−f∗ ≤
(
1− 1√

κ

)k
·2 · [f(x0)−f∗] and consequently we can compute an ε-suboptimal

point for f with d
√
κ log(2 · [f(x0)− f∗])e queries to a gradient oracle.

Proof. By the previous theorem we have that for x∗ ∈ X∗(f) it is the case that

f(xk)− f∗ +
µ

2
‖vk − x∗‖22 ≤

(
1− 1√

κ

)k
·
[
f(x0)− f∗ +

µ

2
‖v0 − x∗‖22

]
.

Since v0 = x0 and by strong convexity we have that µ
2 ‖x0 − x∗‖

2
2 ≤ f(x0)− f∗ the result follows.

7 Momentum

Another popular viewpoint or perspective on acceleration is that it can be viewed as gaining momentum in
some sense, i.e. once you move in the direction of the gradient you keep moving in that direction for some
time afterwards. This view can be con�rmed by a rearranging of the variables in the method we derived.
This gives another popular statement of the accelerated gradient descent algorithm.

Theorem 11. Let f : Rn → R be a L-smooth µ-strongly convex function and let κ = L
µ . For arbitrary

x0 ∈ Rn let x1 = x0 − 1
L 5 f(x0) and for all k ≥ 1 let

• yk = xk +
(√

κ−1√
κ+1

)
(xk − xk−1)

• xk+1 = yk − 1
L 5 f(yk)

Then we have that f(xk)−f∗ ≤
(
1− 1√

κ

)k
·2 · [f(x0)−f∗] and consequently we can compute an ε-suboptimal

point for f with d
√
κ log(2 · [f(x0)− f∗])e queries to a gradient oracle.

Proof. We obtain this by massaging the previous algorithm. Note that in Theorem 10 we have that

vk−1 =
1

1− α
[yk−1 − α · xk−1] and 5 f(yk−1) = L(yk−1 − xk)

and therefore

yk = α · xk + (1− α) · vk

= α · xk + (1− α) ·
[
β · vk−1 + (1− β) ·

[
yk−1 −

1

µ
5 f(yk−1)

]]
= α · xk + β · [yk−1 − α · xk−1] + (1− α)(1− β) · [yk−1 − κ · [yk−1 − xk]]
= [α+ κ · (1− α) · (1− β)] · xk − α · β · xk−1 − [β + (1− α)(1− β)(1− κ)] · yk−1

Now since α =
√
κ

1+
√
κ
and β = 1− 1√

κ
we have

(1− α) · (1− β) · (1 + κ) =
1

1 +
√
κ
· 1√

κ
· (1− κ) = 1−

√
κ√

κ
= −β
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and we have that

α− κ · (1− α) · (1− β) =
√
κ

1 +
√
κ
+ κ ·

(
1−

√
κ

1 +
√
κ

)
·
(
1−

(
1− 1√

κ

))
=

√
κ

1 +
√
κ
+
√
κ · 1

1 +
√
κ
=

2
√
κ

1 +
√
κ
= 1 +

√
κ− 1√
κ+ 1

and

α · β =

√
κ

1 +
√
κ
·
√
κ− 1√
κ

=

√
κ− 1√
κ+ 1

and thus the result follows by Theorem 10.

8 Non-strongly Convex Functions

How can we use the above result to minimize non-strongly convex functions? There is a fairly general trick
to reduce non-strongly convex function minimization to strongly convex function minimization and that is
regularization. This is a fairly overloaded term with all sorts of applications and interpretations, particularly
in machine learning. When we use this term in the class though, we will simply use it to refer to the idea of
adding a simple function we understand to improve the behavior of our iterative methods.

The idea we use here is simple. Instead of minimizing f(x) directly, given some point we just minimize
g(x) = f(x) + µ

2 ‖x − x0‖
2
2. Clearly this function is µ strongly convex and thus we can apply accelerated

gradient descent as analyzed above to it. Below we analyze the performance of this scheme.

Lemma 12. If f is a L-smooth convex function then given any x0 ∈ Rn we can compute an ε-suboptimal

point with ⌈√
1 +

L · ‖x0 − x∗‖22
ε

log

(
L · ‖x− x∗‖22

ε

)⌉
queries for any x∗ ∈ X∗(f).

Proof. Given x0 ∈ Rn we run accelerated gradient descent to minimize g(x) = f(x) + µ
2 ‖x − x0‖22 for a

value of µ we pick later. Since f is µ-strongly convex and L + µ smooth we have that we can compute an

ε-sub-optimal point xε for g with
√

L+µ
µ log (2 · [g(x0)− g∗]/ε). Now, since g(x) ≥ f(x) for all x we have

g∗ ≥ f∗ and g(x0)− g∗ ≤ f(x0)− f∗ ≤ L
2 · ‖x0 − x∗‖

2
2. Furthermore, this implies that

f(xε) ≤ ε+ min
x∈Rn

f(x) +
µ

2
‖x− x∗‖22 ≤ ε+ f∗ +

µ

2
‖x0 − x∗‖22 .

Consequently, so long as we compute x 1
2 ε

and µ = ε
‖x0−x∗‖22

then we have the desired result.

There are two natural ways to remove the log factor in the above analysis. The �rst is to change the
accelerated gradient descent algorithm itself to decay the value of µ used, the second is to minimize f(x) +
µ
2 ‖x − x0‖

2
2 in phases changing perhaps what the regularization is with respect to. Both can be used to

remove the logarithmic factors and they are similar in some sense. The �rst has the advantage of perhaps
being a more natural way of running the algorithm, but the second has the virtue of being a fairly general
reduction. We will talk more on this type of reduction in the next chapter.
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