
MS&E 213 / CS 269O : Chapter 9 - Structured Optimization -

Linear Programming, Interior Point Methods, and Newton's

Method∗

By Aaron Sidford (sidford@stanford.edu)

June 9, 2017

1 Goal

The goal in this chapter is to show that we can get even faster algorithms for convex optimization when
we are given further structure on the problem. As we have seen when we wish to solve minx∈Rn f(x) for
convex f if we wish to obtain a linearly convergent algorithm that is, an algorithm such that to obtain an
ε-approximate the number of queries needed scales with O(log ε−1), if all we have is a subgradient oracle
then O(d · log ε−1) queries su�ce (and are necessary for the feasibility problem). The question we address
in this chapter is, when and how can we improve this result?

The main result of this chapter is that when our convex programs have further structure, e.g. we can de-
compose the convex function into pieces, then in principal we can get faster algorithms. The main class of
algorithms we consider here are interior point methods and our main motivating examples is linear program-

ming.

There is another theme which permeates this chapter. In a fairly broad sense, iterative methods in continuous
optimization reduce solving one hard problem, e.g. convex programming, to a sequence of simpler problems,
e.g. compute subgradient, project onto simple convex set, add evectors, etc. While the sub-problems we
have seen before are fairly simple, here we consider more complicated sub-problems which we assume we can
solve.

2 Motivating Example - Linear Programming

One of the key motivating instances of structured convex programs we will consider is the following:

De�nition 1 (Linear Programming (Dual Form)). We are given constraint matrix A ∈ Rm×n, constraint
vector b ∈ Rn, and cost vector c ∈ Rn and we wish to solve

min
Ax≥b

c>x .

The value of c>x is called the cost of x and P = {x : Ax ≥ b} is known as the feasible region. We typically
use a1, ..., an to denote the rows of a so P = ∩i∈[n]{x : a>i x ≥ bi}.

∗These notes are a work in progress. They are not necessarily a subset or superset of the in-class material and there may

also be occasional TODO comments which demarcate material I am thinking of adding in the future. These notes will converge

to a superset of the class material that is TODO-free. Your feedback is welcome and highly encouraged. If anything is unclear,

you �nd a bug or typo, or if you would �nd it particularly helpful for anything to be expanded upon, please do not hesitate to

post a question on the discussion board or contact me directly at sidford@stanford.edu.

1

This is one of the most fundamental problems in continuous optimization and algorithm design. In the
remainder of this section we explore the structure of this problem a little more deeply and give some examples.

2.1 Polytopes and Convex Programming

Note that the feasible region P = {x : Ax ≥ b} is simply the interesection of a �nite number of halfspaces.
Such a region is known as a polytope. As we know, P , is always convex and if we allow the number of rows
of A to be in�nite then P would simply be an arbitrary cloed convex set.

By the above reasoning, linear programming is essentially a �nite constraint version of convex programming.
Suppose we wished to solve minx∈Rn f(x) where f is convex. Equivalently we could solve minf(x)≤t t. Note
that f(x) ≤ t is a convex set and thus we could write it as an intersection of an in�nite number of halfspaces.
Consequently, as we let m grow in an instance of linear programming we are better approximating an
arbitrary convex program.

The methods we will build for linear programming will ultimately extend to minx∈S c
>x where S is a convex

set we have some sort of explicit access to. Consequently, our results are even more general but considering
linear programming �rst will convey the bulk of the di�culty of the problem and the techniques we use to
solve it.

2.2 Feasibility v.s. Optimization

Note that we wrote linear programming as a constrained optimization problem. We wish to minimize the
cost of a vector x subject to the constrainst Ax ≥ b, i.e. being a member of an explicitly given polytope.

Note that in general, even the problem of checking whether or not a polytope is empty is as hard as computing
the value of a linear program. Indeed given a linear programming instance minAx≥b c

>x we could let A′ be
the matrix A where we added a row for −c and we could let b′ be the vector b where we added a entry −t
so that

{x : A′x ≥ b′} = {x : Ax ≥ b} ∩ {−c>x ≥ −t} = {x : Ax ≥ b} ∩ {c>x ≤ t} .

Consequently, checking emptiness of a polytope lets us compute upper bounds on values for linear programs
and �nd points in these polytopes gives us points of comparable value. Thus, by binary searching on t above
we could obtain arbitrarily good estimates on the value of a linear program.

Despite this issue, our algorithms for linear programming will ultimately work by maintaining a feasible
point in the polytope. In fact, we will always assume that we can compute a point inside the feasible region
easy. At �rst, this seems like a contradiction, however we do this by performing simple transformations to
our linear program. For example, if we wish to solve minAx≥b c

>x and we do not have an x0 such that
Ax0 ≥ b then we can solve the equivalent problem

min
Ax+α~1≥b,α≥0

c>x+ β · α

where we choose β to be su�ciently large. Note the choice here of ~1 as what αcontributes is fairly arbitrary.
For many linear programs there is often a more canonical or natural way to do this reduction as we will see.

2.3 Example: L1 Regression

One natural example of linear programming is `1 regression. We have a1, ..., am ∈ Rn as well as b1, ..., bm ∈ R
and wish to solve

min
x∈Rn

∑
i∈[m]

|a>i x− bi| .

2

Thus, we wish to be able to predict the bi from x where we care about the total di�erence. Letting A ∈ Rm×n
be the matrix where row i of A is ai we can write this equivalently as

min
x∈Rn

‖Ax− b‖1 = min
x∈Rn,t∈Rm :−t·~1≤Ax−b≤t·~1

∑
i∈[n]

ti .

2.4 Example: Minimum Cost Flow

Here we see a more combinatorial example I believe is particularly interesting. We have some large graph
G = (V,E). Now there is some stu� we wish to send between the vertices. Each vertex v ∈ V requires bv
units of stu� on net where bi negative means it is sending the stu�. Nowever, every edge (a, b) ∈ E can
a�ord to carry between 0 and u(a,b) units of stu�. Our goal is to �gure out how to send the stu� so that
every vertex v receives bv units of stu� we don't send more stu� then the edges can carry and we minimize
some cost on the stu� (we assume that every edge (a, b) ∈ E has some cost c(a,b)). If we let f ∈ RE denote
how much stu� we put on the edges then we see we wish to minimize∑

(a,b)∈E

c(a,b) · f(a,b) = c>f .

We wish to have 0 ≤ f ≤ u to ensure the capacity constraints are met and we wish to have that for all v ∈ V∑
(a,b)∈E

f(a, v)−
∑

(v,a)∈E

f(v, a) = bv .

We can write the constraints more compactly as Mf = b for some matrix M and thus we have that this
problem is equivalent to

min
Mf=b,0≤f≤u

c>f

which we can write as a linear program (note that Mf = b is equivalent to Mf ≥ b and Mf ≤ b).
This problem encapsulates multiple graph optimization problems including maximum �ow and minimum
cut as we may see in the homework or later in the notes.

3 Approach - Newton's Method

So how do we want to build a faster algorithm for linear programming? Note, that we can compute separation
oracles for Ax ≥ b and thus we can use algorithms for the feasibility problem to solve this in O(n log ε−1)
iterations. The question we address here is, can we do better. We start by taking a closer look at the only
other linearly convergent algorithms we have seen so far, gradient descent for smooth convex functions. We
will use this as a stepping stone for motivating Newton's method and the interior point methods we will
build for linear programming (and more broadly, convex programming).

3.0.1 Gradient Descent Again

Let's take a closer look at gradient descent to both motivate our algorithms and introduce some notation and
analysis tricks that will be useful throughout. Suppose we have a L-smooth µ-strongly convex f : Rn → R

that is twice di�erentiable. We saw that the method

xk+1 = xk −
1

L
5 f(xk)

yields an ε-suboptimal point with O(Lµ log(f(x0)−f∗
ε)) iterations.

3

What does the geometry of this problem look like? Recall that since f is twice di�erentiable we have that
it is L-smooth and µ-strongly convex if and only if for all x ∈ Rn and z ∈ Rn we have

µ · ‖z‖22 � z> 52 f(x)z ≤ L · ‖z‖22 .

Another way to write this is that for all x ∈ Rn ad z ∈ Rn we have

µ · z>Iz � z> 52 f(x)z ≤ L · z>Iz .

How should we interpret this? Note that 52f(x) is always symmetric and that for any symmetric matrix
A ∈ Rn×n there is an orthonormal basis of eigenvectors v1(A), ..., vn(A) ∈ Rn with corresponding eigenvalue
λ1(A), ..., λn(A), i.e. vi(A) ∈ Rn with the following holding for all i, j ∈ [n]

vi(A)>vj(A) =

{
1 if i = j

0 otherwise
and Avi(A) = λ · vi(A) .

Now, letting V(A) be the matrix such that column i of V(A) is vi(A) we see that V(A)>V(A) = I and
consequently V(A)V(A)> = I . From this we have that we can write any x ∈ Rn by

x = V(A)V(A)>x =
∑
i∈[n]

vi(A)vi(A)>x =
∑
i∈[n]

vi(A) ·
(
vi(A)>x

)
and we have that

Ax = A

∑
i∈[n]

vi(A) ·
(
vi(A)>x

) =
∑
i∈[n]

λi(A) ·
[
vi(A)>x

]
· vi(A)

and therefore for Λ(A) = diag(λ(A)) we have

A = V(A)Λ(A)V(A)> =
∑
i∈[n]

λi(A) · vi(A)vi(A)> .

Consequently we have that
z>Az = λi · (vi(A)>z)2

and

RA(z) =
z>Az

z>z
=

∑
i∈[n] λi · (vi(A)>z)2∑
i∈[n](vi(A)>z)2

.

Thus z ·RA(z) for all z with ‖z‖2 ≤ 1, i.e. EA = {x ∈ Rn : x = z ·RA(z), ‖z‖2 ≤ 1}, is an ellipse where the
axis are the vi(A) and the radii are the λi. Furthermore, we see that the condition

µ · z>Iz � z> 52 f(x)z ≤ L · z>Iz

is equivalent to EA ⊆ L · EI = EL·I and µ · EI = Eµ·I ⊆ EA.

This gives us a nice ordering on symmetric matrices. We say A � B if and only if x>Ax � x>Bx for
all x and de�ne ≺,�, and � analogously. As we have seen these correspond to the ellipsoid containment
inequalities we have given above. This is known the Lowener order on symmetric matrices. It behaves a
lot like standard inequalities on scalars, e.g. if A � B and B � C then A � C. Furthermore, if A � B
and B � A then A = B. Also if A � B then A + C � B + C. Furthermore we have that µI � A � LI
if and only if λi(A) ∈ [µ,L] for all i ∈ [n]. Note that our interpretation of EA as an ellipse gets a little
muddle if the eigenvalues of A are negative and thus when this does not hold, i.e. the eigenvalues of A are
non-negative we give such matrices a special name and call that positive semide�ninite (PSD), i.e. A � 0.
Furthermore, we call A positive de�nite (PD) if all its eigenvalues are positive, i.e A � 0.

With this interpretation we see that twice di�erentiable f is convex if and only if its Hessian is everywhere
PSD and we see that is is µ-strongly convex and L-smooth if and only if the ellipse corresponding to the
Hessian is contained in a ball of radius L and contains a ball of radius µ, i.e. the countours of f are
approximated by balls up to a factor of L/µ.

4

3.1 Towards Newton's Method

With this analysis of gradient descent in mind, what is the problem with applying it to linear program-
ming? In short, we do not hope that in general linear programs should look like balls. We can easily make
them squeeze into an arbitrary subsace. Furthermore, simply solving Ax = b is a special case of linear
programming. Consequently, any reasonable approximation to the structure of a linear programming could
be arbitrarily badly approximated by a ball. We have no hope of bounding L/µ for linear programming
while obtaining a linearly convergent algorithm.

Instead, perhaps we can approximate a linear program by an ellipse in various contexts. In some sense this is
what the ellipsoid method does. This is a natural thing to do. Suppose that we don't have µ · I � 52f(x) �
L · I and instead have that µ ·H � 52f(x) � L ·H for some symmetric PD matrix H. This would suggest
that the contours of f looking like the H ellipsoid. How would we get a fast algorithm in this case?

A natural idea would simply be to perform a change of basis. We could simply pick some invertible M ∈ Rn×n
and minimize g(y)

def
= f(My). It is not too hard to see by chain rule that 5g(y) = M> 5 f(My) and

52g(y) = M> 52 f(My)M.

What M should we pick? Note that for every symmetric PSD matrix H the matrix

H1/2 =
∑
i∈[n]

√
λi(H) · vi(H)vi(H)>

is the unique symmetric PSD matrix such that H1/2H1/2 = H. We call this the square root of H. Further-
more we see that

H−1/2 =
∑
i∈[n]

1√
λi(H)

· vi(H)vi(H)> =
[
H1/2

]−1
is both the square root of the inverse and the inverse of the square root of H. Thus a natural choice would
be to pick M = H−1/2. Note that this would yield that

µ · I � 52g(y) � L · I

and thus gradient descent

yk+1 = yk −
1

L
5 g(yk)

achieves g(yk+1)− g∗ ≤ ε in O(Lµ log((g(y0)− g∗)/ε) iterations. However, what does this give for f? It gives

f(H−1/2yk)− f∗ ≤ ε

however

H−1/2yk+1 = H−1/2yk −
1

L
H−1 5 f(H−1/2yk)

and consequently we have just proven that letting

xk+1 = xk −
1

L
H−1 5 f(xk)

yields an ε-suboptimal xk in the same amount of time. Cosnequently, we get fast convergence rate and the
cost of the iteration is the cost of one gradient computation and solving one lienar system in H. In general
this is O(n3) by Guassian elimination or O(nω) by fast matrix multiplication, where currently ω < 2.373.

However, if we believe it is the case that the Hessian doesn't change too much. Rather than using such a H
we could also just use the Hessian at xk, i.e.

xk+1 = xk − η52 f(xk)−1 5 f(xk) .

5

This is known as damped Newton iteration. In the case when η = 1 this is known as Newton's method and
corresponds to picking the next point to be the minimizer of the second order Taylor approximation of f ,
i.e.

xk+1 = argminx∈Rnf(xk) +5f(xk)>(x− xk) +
1

2
(x− xk)> 52 f(xk)(x− xk) .

Now, achieving fast convergnece of iterative methods given a second order oracle, i.e. access to f(x), 5f(x),
and 52f(x) is an interesting active area of research. However, we will only need to use a fairly basic set of
results (all of which could have been recovered from facts about �rst order minimization under a change of
basis.

4 Interior Point Methods

Our main idea for solving linear programming is to attempt to repeatedly use Newton's method, or (since it
will su�ce) �rst order methods in a su�ciently chosen change of basis. The idea is that we will try to reduce
linear programming to a sequence of unconstrained optimization problems, for each of which the Hessian is
fairly constant. We will then try to show that such a method converges quickly to optimum.

The framework we use is interior point methods. Now there are numerous variants of this method, and
we won't discuss all. However, to reduce the di�cult non-smooth problem of linear programming to nicer,
smooth minimization problems these methods all use either implicitly or explicictly a barrier function. This
is simply a function

p : Rn → R

that is twice di�erentiable, such that limx→∂(Ax≥b) p(x) → ∞. We only need p de�ned on P0
def
= int(P) =

{x ∈ Rn : Ax > b}.
In these notes we will analyze a particular variant of interior point methods known as path following methods

which trade o� how much we care about minimizing cost versus staying away from the constraints of the
linear program. In other words they solve the following

min
x∈Rn

ft(x)
def
= t · c>x+ p(x) .

For well behaved p and large enough t this converges to x∗. We let x(t)
def
= argminx∈Rnft(x) and note that

limt→0 x
(t) = x∗, in other words the minimizers of this form a path to the solution of the linear program

(known as the central path). Consequently, while this optimization problem is as hard as linear programming
for large values of t, we will ultimately show that we can transform the program so that it is easy to compute
xt for some value of t and then show that we can use this point to compute xt′ for t

′ within a range of t and
then repeat.

The most common choice of p for this problem is known as the logarithmic barrier function,

pl(x) = −
∑
i∈[n]

ln(a>i xi − bi)

We call a>i x− bi = s(x)i the slack of constraint i as it is how far away a point is from this constraint being
tight and call s(x) the slack vector.

Now our approach for linear programming is more clear, we will simply start with some x0 ≈ x(t0) and then
let tk+1 = tk · (1 + α) and xk+1 = xk − 52ft′(xk)−1 5 ft′(xk). So long as we can show that the Hessian
doesn't change too quickly for a su�ciently large value of α and we can bound how large a value of t we
need, we will achieve an e�ecient algorithm. However, to analyze this we �rst need to parameterize how
exactly we measure the Hessian changing and anlyze a single step of Newton's method.

6

5 Newton's Method Analysis

To analyze this method, we will �nd it easier to provide some new proof of gradient descent and thereby,
Newton's method.

To start, recall our �rst analysis of gradient descent where we show that for a L-smooth, µ-strongly convex
function a step of gradient descent decreased the function error by a multiplicative factor depending only on
smoothness and strong convexity.

Theorem 2 (Gradient Descent (Function Progress)). If f is a L-smooth and µ-strongly convex function and

we let y = x− 1
L 5 f(x) then f(y)− f∗ ≤

(
1− µ

L

)
[f(x)− f∗].

Using the analysis of mirror descent we can alsos show that the squared distance to the optimum also
decreases at the same rate.

Theorem 3 (Gradient Descent (Function Progress)). If f is a L-smooth and µ-strongly convex function and

we let y = x− 1
L 5 f(x) then ‖y − x∗‖22 ≤

(
1− µ

L

)
‖x− x∗‖22.

Proof. Expanding the de�nition of ‖ · ‖22 yields that

‖y − x∗‖22 = ‖x− x∗ −
1

L
5 f(x)‖22 = ‖x− x∗‖22 −

2

L
5 f(x)>(x− x∗) +

1

L2
‖ 5 f(x)‖22

However,

f(x∗) ≥ f(x) +5f(x)>(x∗ − x) +
µ

2
‖x− x∗‖22

and by smoothness ‖ 5 f(x)‖22 ≤ 2L · [f(x)− f∗]and therefore

‖y − x∗‖22 ≤ ‖x− x∗‖22 −
2

L
[f(x)− f∗]−

µ

L
‖x− x∗‖22 +

2

L
[f(x)− f∗] .

Now, we will �nd it convenient to perform our analysis not in terms of either of these potential functions,
but rather in terms of the the norm of the gradient, i.e. how much a gradient descent step moves in ‖ · ‖2.
As we know, function error, norm of gradient, and squared distance to optimum are all relatable to each
other up to constant and thus we can do our analysis with any of these up to logarithmic factors. However,
we will �nd the norm of the gradient the cleanest to reason about.

To perform this analysis we will �nd it convenient to work with the operator norm of a matrix.

De�nition 4 (Matrix Operator Norm). For any matrix A and any norm ‖ · ‖ we let ‖A‖ = maxx 6=0
‖Ax‖
‖x‖ .

This de�nition is convenient as trivially we have that for all x ∈ Rn, ‖Ax‖ ≤ ‖A‖ · ‖x‖ (just consider the
x = 0 case separately). We will also use the following lemma which lets us characterize the operator norm
of a symmetric matrix.

Lemma 5. If A ∈ Rn×n is symmetric then ‖A‖2 = maxi∈[n] |λi(A)|.

Proof. We have that

‖A‖22 =

(
max
x 6=0

‖Ax‖2
‖x‖2

)2

= max
x 6=0

x>A>Ax

x>x

However, since A is symmetric the eigenvalues of A>A are the eigenvalues of A squared, i.e. λi(A)2. Thus
‖A‖2 = maxi∈[n]

√
λi(A)2 = maxi∈[n] |λi(A)|.

7

Using this we analyze how a step of gradient descent a�ects the norm of the gradient.

Theorem 6. If f is a L-smooth and µ-strongly twice di�erentiable convex function and we let y = x−η5f(x)
then

‖ 5 f(y)‖2 ≤ max {1− ηL, 1− ηµ} ‖ 5 f(x)‖2 .

and thus when η = 1
L we have that ‖ 5 f(y)‖2 ≤ (1− µ

L)‖ 5 f(x)‖2

Proof. For all t ∈ [0, 1] let xt = x+ t(y − x). Integrating yields that

5f(x1)−5f(x0) =

∫ 1

0

52f(xt) · (y − x)dt =

∫ 1

0

−η52 f(xt)5 f(x)dt .

Consequently,

5f(x1) =

∫ 1

0

[
I− η52 f(xt)

]
5 f(x)dt

and therefore

‖ 5 f(y)‖2 = ‖
∫ 1

0

[
I− η52 f(xt)

]
5 f(x)dt‖2 ≤

∫ 1

0

‖
[
I− η52 f(xt)

]
5 f(x)‖2dt

However, we have that since λi(52f(xt)) ∈ [µ,L] we have that λi(I− η52 f(xt)) ∈ [1− ηL, 1− ηµ] and the
result follows.

So how do we extend this to Newton's method? If we perform the step y = x −52f(x)−1 5 f(x) then we
likely want to look at the norm of the gradient in the norm induced by the Hessian, i.e. ‖y − x‖52f(x) =

‖ 5 f(x)‖52f(x)−1 where for symmetric PD A we let ‖x‖A
def
=
√
x>Ax (note that this is always a norm

when A is PD). We call this Newton decrement, it is simply the norm of the gradient in the change of basis
induced by the hessian.

De�nition 7 (Newton Decrement). For twice di�erentiable f : Rn → R and x ∈ R
n we let δf (x)

def
=

‖ 5 f(x)‖52f(x)−1 denote the Newton decrement.

Note that in our analysis of gradient descent, we really only required that the Hessian be bounded by the
identity along the line between x and y. Similarly, we only require Hessian be bounded by the Hessian at x
along the line between y and x. Below we provide our main Theorem for Newton's method. Note that it is
essentiall the same as our last proof regarding gradient descent and we could prove it by simply applying it
under a change of basis, however for completeness and concreteness we prove it directly.

Theorem 8. Let f be a twice di�erentiable function and let y = x− η52 f(x)−15 f(x). Now suppose that

52f(y) � α52 f(x) and that for t ∈ [0, 1] and xt = x+ t · (y − x) we have

µ · 52f(x) �
∫ 1

0

52f(xt)dt � L · 52f(x)

then δf (y) ≤
√

(1/α) ·max {1− ηL, 1− ηµ} δf (x).

Proof. For notational convenience let H
def
= 52f(x). Integrating yields that

5f(x1)−5f(x0) =

∫ 1

0

52f(xt) · (y − x)dt =

∫ 1

0

−η52 f(xt)H
−1 5 f(x)dt .

8

and therefore re-arranging yields that

H−1/2 5 f(x1) =

∫ 1

0

[
I− ηH−1/2 52 f(xt)H

−1/2
]

H−1/2 5 f(x)dt

and therefore

‖ 5 f(y)‖H−1 = ‖
[
I− ηH−1/2

∫ 1

0

52f(xt)dtH
−1/2

]
H−1/2 5 f(x)‖2

≤ ‖I− ηH−1/2
∫ 1

0

52f(xt)dtH
−1/2‖2 · δf (x) .

However, since µ · H �
∫ 1

0
52f(xt)dt � L · H we have that µ · I � H−1/2

∫ 1

0
52f(xt)dtH

−1/2 � L · I
we have that λi(H

−1/2 ∫ 1

0
52f(xt)dtH

−1/2) ∈ [µ,L] and therefore ‖I − ηH−1/2
∫ 1

0
52f(xt)dtH

−1/2‖2 ∈
[1− ηL, 1− ηµ]. The result then follows from the fact that (αH)−1 � 52f(x)−1.

In the next section we show how to use that to get closer to the central path for our barrier function

6 Centering to the Central Path

Let's see how to use the analysis we just did of Newton's method to compute central path points (given
crude approximations to them).

Again we have a barrier function p(x) where in our particular case

pl(x)
def
= −

∑
i∈[n]

si(x) where s(x) = Ax− b .

We also have 5pl(x) = −A>S−1x ~1 and 52pl(x) = A>S−2x A where Sx = diag(s(x)) and our goal is to
comptue

x(t) = argminx∈Rnft(x) where ft(x)
def
= t · c>x− p(x) .

Now, clearly 52ft(x) = 52p(x) and thus if we want to understand the performance of Newton's method we
need to understand how 52p(x) changes as we change x. We analyze this in the following.

Lemma 9 (Change in Barrier Hessian). For x ∈ P0 if ‖x− y‖52p(x) ≤ α < 1 then y ∈ P0 and

(1− α)2 52 p(y) � 52p(x) � (1 + α)2 52 p(y) .

Proof. Note that A(x− y) = Ax− b− [Ay − b] = s(x)− s(y). Consequently

‖x− y‖252f(x) = (x− y)>A>S−2x A(x− y) = (s(x)− s(y)>S−2x (s(x)− s(y)

=
∑
i∈[n]

(s(x)− s(y))2

s(x)2
=
∑
∈[n]

(
1− s(y)

s(x)

)2

.

Therefore, if ‖x− y‖52f(x) ≤ α we have that for all i ∈ [n] it is the case that∣∣∣∣1− s(y)i
s(x)i

∣∣∣∣ ≤ α
and therefore −αs(x)i ≤ s(y)i − s(x)i ≤ αs(x)i yielding that (1− α)Sx � Sy � (1 + α)Sx and since α < 1.
Since α < 1 and x ∈ P0 if and only if Sx � 0 we have that y ∈ P0. Furthermore, we see that since Sy is a
diagonal matrix we have that (1−α)2S2

x � S2
y � (1+α)S2

x
1 Consequently, (1−α)−2S−2x � S−2y � (1+α)−2S−2x

yielding the result.

1Note that for symmetric PSD matrices A � B does not necessarily imply A2 � B2.

9

Using this lemma we can analyze the e�ect of a newton step on ft(x). For notational convenience we let

δt(x)
def
= δft(x).

Lemma 10. For x ∈ P0 and let y = x−52ft(x)−1 5 ft(x) for δt(x) < 1. Then y ∈ P0 and

δt(y) ≤
(

1 + δt(x)

1− δt(x)

)
· δt(x)2

and if δt(x) ≤ 1
3 we have that δt(y) ≤ 2δt(x)2.

Proof. For all v ∈ [0, 1] and xv = x+ v(y−x). Note that ‖xv−x‖52ft(x) = v · ‖y−x‖52ft(x) = v · δft(x) < 1
by choice of η. Consequently by Lemma 9 we have that y ∈ P0 and

(1 + v · δt(x))
−2 52 ft(x) � 52ft(xv) � (1− v · δt(x))

−2 52 ft(x)

Since ∫ 1

0

(1− v · δt(x))−2dv =
1

δt(x)
·
[

1

1− δt(x)
− 1

1

]
=

1

1− δt(x)

and ∫ 1

0

(1 + v · δft(x))−2dv =
1

δft(x)
·
[

−1

1 + δft(x)
− −1

1

]
=

1

1 + δft(x)

we have that (
1

1 + δft(x)

)
· 52ft(x) �

∫ 1

0

52ft(xv)dv �
(

1

1− δft(x)

)
· 52ft(x) .

Furthermore, since 52ft(y) � (1 + δft(x))
2 52 ft(x) by Theorem 8 we have

δft(y) ≤ (1 + δft(x)) ·max

{∣∣∣∣1− 1

1− δft(x)

∣∣∣∣ , ∣∣∣∣1− 1

1 + δft(x)

∣∣∣∣} · δft(x)

≤ (1 + δft(x)) ·max

{
δft(x)

1− δft(x)
,

δft(x)

1 + δft(x)

}
· δft(x)2

yielding the result.

Note that this is a very good rate of convergence provided δft(x) is a small constant. For example, whenever,
δft(x) ≤ 1

4 one step of Newton's method will halve the size of the Newton decrement. Moreover, we have

that if we repeat this algorithm, i.e. xk+1 = xk−52ft(x)−15ft(x) then δft(xk) ≤ (2δft(x0)2
k

and therefore
we can achieve δft(xk) ≤ ε with k = O(log log(1

ε)). This is known as quadratic convergence as the number
of bits of precision in the answer grows quadratically, i.e. squares, with every iteration.

We conclude by showing how to relate the norm of the gradient to the distance to the optimum point in the
Hessian norm.

Lemma 11. Suppose that for x ∈ P0 we have that δft(x) < 1
4 then ‖x− x(t)‖52f(x) ≤ 4 · δt

Proof. Let x(y) = 52ft(x)−1/2y and let g(y) = ft(x(y)). Note that ‖ 5 g(y)‖2 = ‖ 5 ft(x(y))‖52f(x)−1 by
chain rule. Furthermore, note that for ‖y− z‖2 ≤ α we have that ‖x(y)− x(z)‖52ft(x) ≤ α and therefore by
Lemma 9 we have that in the ball of radius α around x the function g(y) is (1 + α)−2-strongly convex and
(1−α)2 smooth. Furthermore, this implies that restricted to this ball we know that ‖52 f(x)1/2(x−x∗)‖2 ≤[

1
(1+α)−2

]−1
‖5 g(52f(x)1/2x)‖2 = (1 +α)2δt and thus when (1 +α)2δt ≤ α we have that x∗ lies inside the

ball. Consequently ‖x−x∗‖52f(x) ≤ α for the smallest α such that δt ≤ α
(1+α)2 . However, since 4 ≥ (1 + 4

4)2

we have the desired result.

10

7 Moving Along the Central Path

In the last section we showed that if we were su�ciently close to the central path, i.e. have δft(x) ≤ 1
4 , then

we can quickly get arbitrarily close to x(t). What remains to show is how to use a point near the central
path for one value of t to get close to the central path for another value.

We analyze this in a few steps. First we provide the following lemma showing that the contribution of the
barrier to the gradient in the Hessian inverse norm is small.

Lemma 12. For all x ∈ P0 we have ‖ 5 p(x)‖(52p(x))−1 ≤
√
m.

Proof. Recall that 52p(x) = A>S−2x A and 5p(x) = A>S−1x ~1 consequently we have that

‖ 5 p(x)‖52p(x)−1 =
√
~1>P~1 where P = S−1x A

(
A>S−2x A

)−1
A>S−1x .

Now P is a symmetric matrix PSD matrix with P2 = P, i.e. it is a projection matrix, and therefore P � I.

Since
√
~1>I~1 =

√
m we have the desired result.

Using this we bound how much the Newton decrement changes as we change t.

Lemma 13. For all x ∈ P0 and t > 0 and t′ = (1 + α)t we have that

δt′(x) ≤ (1 + α) · δt(x) + α
√
m.

Proof. Recall that ft(x) = t · c>x+ p(x) and 5ft(x) = t · c+5p(x). Consequently

5ft′(x) = (1 + α)t · c+5p(x) = (1 + α)5 ft(x)− α5 p(x) .

Therefore, we have that

δft′ (x) = ‖ 5 ft′(x)‖52ft′ (x)
−1 = ‖(1 + α)5 ft(x)− α5 p(x)‖52ft′ (x)

−1

≤ (1 + α) · δf ′(x) + α‖ 5 p(x)‖52p(x)−1 .

The result follows from Lemma 12

δft′ (x) = ‖ 5 ft′(x)‖52ft′ (x)
−1

From this we see that we can change t′ by a constant factor with O(
√
m) iterations of Newton.

Lemma 14. Suppose we have x0 ∈ P0 and t0 > 0 such that δt0(x0) ≤ 1
32 and the for all k ≥ 0 let

tk+1 = (1 + 1
16
√
m

)tk and xk+1 = xk − 52ftk+1
(x)−1 5 ftk+1

(xk) then for all k we have xk ∈ P0 and

δftk (xk) < 1
32 and tk = (1 + 1

16
√
m

)kt0.

Proof. Note that by Lemma 13 we have that for all k ≥ 0

δtk+1
(xk) ≤

(
1 +

1

16
√
m

)
· δtk(xk) +

1

16
√
m
·
√
m ≤ 2 · 1

32
+

1

16
=

1

8
.

Furthermore, by Lemma 10 we have that

δtk+1
(xk+1) ≤ 2 · δtk+1

(xk)2 ≤ 2

64
≤ 1

32
.

11

Consequently we see that if t0 is a constant and we have x0 with δt0(x0) ≤ 1
32 then we can compute xk with

δtk(xk) ≤ 1
32 for tk ≥ 2

1
ε with O(

√
m log ε−1) iterations of Newton's method. Thus we can move along the

central path quickly.

To use the results of the previous section to solving a linear programming, all we are missing is analysis of
how far down the central path we need to go to obtain a good cost, how close we need to be to the path,
and how to get an initial point.

We start by bounding the cost of central path points.

Lemma 15. For all t > 0 we have that c>(x(t) − x∗) ≤ m
t .

Proof. We know that
~0 = 5ft(x(t)) = t · c+5p(x(t)) = t · c−AS−1

x(t)
~1

consequently
t · c>(x(t) − x∗) = ~1>S−1

x(t)A(x(t) − x∗) = ~1>S−1
x(t)(s(x

(t))− s(x∗)) ≤ m.

Next, we bound the quality of a point near the central path.

Lemma 16. For all x ∈ P0 and t > 0 such that δft(x) < 1
4 we have

c>(x− x(t)) ≤ 1

t

[
m+ 4δ2t (x)

]
Proof. Since 5ft(x) = t · c−AS−1x ~1 we have that

c>(x− x(t)) =
1

t

(
5ft(x) + AS−1x

)>
(x− xt) =

1

t
5 ft(x)>(x− xt) + S−1x (sx − sxt) .

However, by Lemma 11 then ‖x− xt‖52ft(x) ≤ 4 · δt(x) and

5ft(x)>(x− xt) = 5ft(x)52 ft(x)−1/252 ft(x)1/2(x− xt) ≤ ‖5 ft(x)‖52ft(x)−1 · ‖x− xt‖52ft(x) ≤ 4δ2t (x)

and the result follows.

Putting these lemmas together we see that to get an ε-approximate solution we just need to get t = Ω(mε)
which we have shown we can do with O(

√
m log(ε−1)) iterations of Newton's method.

All that remains is to show how to get an initial point on the central path. Let's suppose we have some
x0 ∈ int(P) so that 5p(x0) is �nite. Note that if we let c′ = 5p(x0) and let f ′t(x) = t · (c′)>x + p(x) then
we have that 5f ′t(x) = t · (c′) +5p(x) and therefore x0 = argminx∈P f

′
1(x). In other words, x0 is on the

central path for a di�erent cost function. Now, careful inspection of our previous analysis shows that we can
decrease t at more or less the same rate as we can increase it. Consequently, we can compute argminxf

′
t(x)

for very small t and then switch the cost function to the true cost function. In other words, we can follow this
new central path to the center of the polytope and then follow the true central path down to the minimizer.
Overall this gives us that we just need to solve O(

√
m log(α/ε)) linear systems where α depends on how close

to the center we need to get and how close to the boundary we start. Note that for many linear programs
this α value can be bounded more directly.

12

8 Generalizing

How can we generalize the results in the previous sections? Suppose more broadly we want to solve

min
x∈S

c>x

for some convex set S and we are given some x0 ∈ S0
def
= int(S). Our approach is essentially the same, we

just need to �nd some barrier function p for S and then we can just minimize

min
x∈S

t · c>x+ p(x) .

However, with some thought and care, we can see that we only really used two properties of p in our
analysis. The �rst is that if x ∈ P0 and ‖x − y‖52p(x) ≤ α < 1 then y ∈ P0 and (1 − α)2 52 p(y) �
52p(x) � (1 +α)252 p(y). The second is that ‖5 p(x)‖52p(x) ≤

√
ν for some value of ν. There is a slightly

more general condition that implies and it is known as ν-self-concordance. There is a broad theory for
construction self-concordant barrier function and our analysis shows that given a ν-self-concordant barrier
we can compute an ε-suboptimal point with roughly O(

√
v log(1/ε)) linear system solve. Furthermore, it can

be shown that every n-dimensional convex set admits a O(n)-self-concordant barrier and thus cutting plane
methods are always improvable in theory.

13

	Goal
	Motivating Example - Linear Programming
	Polytopes and Convex Programming
	Feasibility v.s. Optimization
	Example: L1 Regression
	Example: Minimum Cost Flow

	Approach - Newton's Method
	Gradient Descent Again
	Towards Newton's Method

	Interior Point Methods
	Newton's Method Analysis
	Centering to the Central Path
	Moving Along the Central Path
	Generalizing

