Introduction to Optimization Theory

Lecture #3 - 9/22/20
MS&E 213 / CS 2690

Aaron Sidford
sidford@stanford.edu
Lecture Plan

Recap
- Oracles, minimization, efficiency, and iterative methods
- Continuity, smoothness, and critical points

Material
- Continuity, ϵ-nets, and lower bounds

Thursday
- Smoothness revisited
- Convexity
Recap

Goal
- Objective function \(f: \mathbb{R}^n \rightarrow \mathbb{R} \)
- Constraint set \(S \subseteq \mathbb{R}^n \)
 (Next few lectures, unconstrained \(S = \mathbb{R}^n \))
- Optimize

\[
\min_{x \in S \subseteq \mathbb{R}^n} f(x)
\]

provably efficiently with few assumptions

Access to f?
- Through an “oracle”

query
e.g. \(x \in \mathbb{R}^n \)

↓

oracle

↓

output
e.g. \(f(x) \in \mathbb{R} \) [value]
e.g. \(\nabla f(x) \) [gradient]
Recap

Minimize? Progress Measure?

ε-(sub)optimal point or a point with **ε-additive function error**:

- \(x \in S \text{ s.t. } f(x) \leq f_* + \epsilon \text{ where } f_* = \min_{x \in S} f(x) \)

ε-critical point:

- \(x \in S \text{ s.t. } \| \nabla f(x) \|_2 \leq \epsilon \text{ where } \| y \|_2 = \sqrt{\sum_{i \in [n]} y_i^2} \)

Efficency?

- Oracle complexity = # calls to oracle
- Runtime = # oracle calls \(\times \) (average computational cost per call)
Recap

Iterative Method Approach
• Start at initial point x_0
• For $t = 0, \ldots, T - 1$
 • Query oracle
 • Take “local step” to obtain x_{t+1}
 • Repeat
• Output aggregation of the x_t

e.g.
• Last iterate: x_{T-1}
• Average iteration: $\frac{1}{T} \sum_{k \in [T-1]} x_k$

Analysis
• Oracle complexity = # iterations
• Runtime = # iterations * cost per iteration (iteration complexity)
Recap: setting #0: impossible

- \(f : \mathbb{R} \to \mathbb{R} \) (one dimensional)
- Have evaluation oracle (can compute \(f(x) \) with 1 query)
- Promised \(\exists x* \in [0,1] \) such that \(f(x) = f_* = \inf_{y \in \mathbb{R}} f(y) \)
- Promised \(f(x) \in [0,1] \) for all \(x \in \mathbb{R} \)
- Goal: compute 1/2-optimal point
 - i.e. compute \(x \) with \(f(x) \leq f(x*) + 1/2 \)

Question: what oracle complexity achievable?

Answer: \(\infty \) is optimal

We will discuss this lower bound more formally today.
Recap

Problem: oracle gives only pointwise information, no local information.

Solution:
- This is a class on *continuous* optimization
- **Today**: assume more structure and analyze a working method

Last class discussed how continuity is not enough and will prove today.
Recap: assuming more structure

\[f \text{ is } L_1\text{-Lipschitz w.r.t. } \| \cdot \| \]
\[
|f(x) - f(y)| \leq \|x - y\|
\]
for all \(x, y \in \mathbb{R}^n \)

\[f \text{ is } L_2\text{-Lipschitz} \]
\[
\|\nabla f(x) - \nabla f(y)\|_2 \leq L_2 \|x - y\|_2
\]
for all \(x, y \in \mathbb{R}^n \)

(bounded slope)

(bounded 1st derivatives)

(bounded curvature)

(bounded 2nd derivative)
Recap: Gradient Descent Method for Critical Points

Algorithm / Method (for L-smooth f)

- Initial point: $x_0 \in \mathbb{R}^n$
- For $k = 0, 1, 2, \ldots$
 - $x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$
 - If $\|\nabla f(x_k)\|_2 \leq \epsilon$ then output x_k

Theorem

ϵ-critical point in $\leq 2L[f(x_0) - f_*]/\epsilon^2$

steps / queries for $f_* = \inf_{x \in \mathbb{R}^n} f(x)$

Today: ϵ-(sub)optimal points
Lecture Plan

Recap
- Oracles, minimization, efficiency, and iterative methods
- Continuity, smoothness, and critical points

Material
- Continuity, ϵ-nets, and lower bounds

Thursday
- Smoothness revisited
- Convexity
Setting #1: 1d-Lipschitz Function Minimization

- \(f : \mathbb{R} \to \mathbb{R} \) (one dimensional)
- Have evaluation oracle (can compute \(f(x) \) with 1 query)
- \(\exists x_* \in [0,1] \) such that \(f(x) = f_* = \inf_{y \in \mathbb{R}} f(y) \)
- \(f(x) \in [0,1] \) for all \(x \in \mathbb{R} \)
- \(f \) is \(L \)-Lipschitz with respect to \(\ell_\infty \)
- **Goal**: compute \(\epsilon \)-optimal point for \(\epsilon \in (0,1) \)

- **Question #1**: what oracle complexity achievable?
- **Question #0**: what does \(L \)-Lipschitz mean? Imply?
L-Lipschitz Function

f is L-Lipschitz w.r.t. $\| \cdot \|$ if $|f(x) - f(y)| \leq L\|x - y\|$ for all $x, y \in \mathbb{R}^n$

- $\Leftrightarrow -L\|x - y\| \leq f(y) - f(x) \leq L\|x - y\|$ for all $x, y \in \mathbb{R}^n$
- $\Leftrightarrow f(x) - L\|x - y\| \leq f(y) \leq f(x) + L\|x - y\|$ for all $x, y \in \mathbb{R}^n$
- If $n = 1$ and $\| \cdot \| = \| \cdot \|_p$ (i.e. $\|x\| = \|x\|_p = (|x|^p)^{1/p} = |x|$) then
 $\Leftrightarrow f(x) - L|d| \leq f(x + d) \leq f(x) + L|d|$ (slope at most L)

Value of f lies in this range
Setting #1: 1d-Lipschitz Function Minimization

- $f : \mathbb{R} \to \mathbb{R}$ (one dimensional)
- Have evaluation oracle (can compute $f(x)$ with 1 query)
- $\exists x^* \in [0,1]$ such that $f(x) = f^* = \inf_{y \in \mathbb{R}} f(y)$
- $f(x) \in [0,1]$ for all $x \in \mathbb{R}$
- f is L-Lipschitz with respect to ℓ_∞
- Goal: compute ϵ-optimal point for $\epsilon \in (0,1)$

- Question #1: what oracle complexity achievable?
- Question #0: what does L-Lipschitz mean? Imply?
Setting #1:

Algorithm
• Pick $k \in \mathbb{Z}_{\geq 0}$
• For $i \in [k] = \{1, \ldots, k\}$
 • Let $x_i = \frac{i}{k}$
 • Query $f(x_i)$ for all $i \in [k]$
• Return $x_{\text{out}} = \arg\min_{x_i} f(x_i)$

Theorem: there is method with query complexity $\lceil L/\epsilon \rceil$ for setting #1
Setting #1:

Algorithm

- Pick $k \in \mathbb{Z}_{\geq 0}$
- For $i \in [k] = \{1, \ldots, k\}$
 - Let $x_i = \frac{1}{k}$
 - Query $f(x_i)$ for all $i \in [k]$
- Return $x_{\text{out}} = \arg \min_{x_i} f(x_i)$

Theorem: there is method with query complexity $[L/\epsilon]$ for setting #1

Analysis

- $x_\star \in \left[\frac{i-1}{k}, \frac{i}{k}\right]$ for some $i \in [k]$
- $\exists i_\star \in [k]$ s.t. $\left|x_\star - \frac{i_\star}{k}\right| \leq \frac{1}{k}$
- $|f(x_{i_\star}) - f(x_\star)| \leq L \left\|x_\star - \frac{i_\star}{k}\right\|_\infty \leq \frac{L}{k}$
- $f(x_{i_\star}) \leq f_\star + \frac{L}{k}$
- $f(x_{\text{out}}) \leq f(x_{i_\star})$
- $k \geq L/\epsilon \Rightarrow f(x_{\text{out}})$ is ϵ-optimal

Improvements? Lower bound?
Theorem: there is method with query complexity $1 + \lceil L/2\epsilon \rceil$ for setting #1

Setting #1:

Algorithm
- Pick $k \in \mathbb{Z}_{\geq 0}$
- For $i \in \{0, 1, \ldots, k\}$
 - Let $x_i = \frac{i}{k}$
 - Query $f(x_i)$ for all $i \in [k]$
- Return $x_{\text{out}} = \arg\min f(x_i)$

Analysis
- $x_* \in \left[\frac{i-1}{k}, \frac{i}{k}\right]$ for some $i \in [k]$
- $\exists i_* \in \{0, \ldots, k\}$ s.t. $\left|x_* - \frac{i_*}{k}\right| \leq \frac{1}{2k}$
- $|f(x_{i_*}) - f(x_*)| \leq L \left\| x_* - \frac{i_*}{k} \right\|_\infty \leq \frac{1}{2k}$
- $f(x_{i_*}) \leq f_* + \frac{L}{2k}$
- $f(x_{\text{out}}) \leq f(x_{i_*})$
- $k \geq \frac{L}{2\epsilon} \Rightarrow f(x_{\text{out}})$ is ϵ-optimal

Improvements? Lower bound?
Lower bound proof strategy

Arbitrary Algorithm
- For \(k = 1, \ldots, K \)
 - Compute point \(x_k \) based on previous oracle output (and randomness)
 - Query oracle at \(x_k \)
 - Output a point \(x_{\text{out}} \) based on previous points, oracle

Lower Bound Strategy
- From oracle output at \(x_1, \ldots, x_{k-1} \)
 - Specify oracle output at \(x_k \).
- Show that there are two valid functions \(f_1 \) and \(f_2 \) consistent with oracle output on \(x_1, \ldots, x_{k-1} \) with no common valid output point.

Any algorithm must take at least \(K \) steps.

Why?

Algorithm outputs incorrect answer on either \(f \) or \(g \).
Setting #0

Arbitrary Algorithm

- For $k = 1, \ldots, K$
 - Compute point x_k based on previous oracle output (and randomness)
 - Query oracle at x_k
 - Output a point x_{out} based on previous points, oracle

Any algorithm must take at least K steps.

Candidate f_i

- For all $z \in [0,1]$ let
 \[
 f_z(x) = \begin{cases}
 1 & x \neq z \\
 0 & x = z
 \end{cases}
 \]

- Note: f_{z_1} and f_{z_2} have disjoint $\frac{1}{2}$-optimal points for $z_1 \neq z_2$

Lower Bound Strategy

- From oracle output at x_1, \ldots, x_{K-1} specify oracle output at x_k.
 - Output $= 1$

- Show that there are two valid functions f_1 and f_2 consistent with oracle output on x_1, \ldots, x_{K-1} with no common valid output point.

- f_{z_1} and f_{z_2} for any $z_1 \neq z_2$ with $z_1, z_2 \notin \{x_1, \ldots, x_k\}$

Since holds for all K, an infinite number of steps are needed.
Setting #1:

• $f : \mathbb{R} \to \mathbb{R}$ via evaluation oracle
• $\exists x_* \in [0,1]$ such that $f(x) = f_*$
• $f(x) \in [0,1]$ for all $x \in \mathbb{R}$
• f is L-Lipschitz w.r.t $\| \cdot \|_\infty$
• Goal: compute ϵ-optimal point

$f_{z,\alpha}(x) = \min\{1, -\alpha + L|x - z|\}$

Claims
• x' is ϵ-optimal for $f_{z,\alpha}$ for $\alpha > \epsilon$ if and only if $|x' - z| \leq L/\epsilon$
• $f_{z,\alpha}$ is L-Lipschitz w.r.t $\| \cdot \|_\infty$

Lower bound idea
• If oracle outputs 1 and not enough queries, consistent with two $f_{z,\alpha}$

Valid functions with disjoint ϵ-optimal points.
Setting #1

- \(f : \mathbb{R} \rightarrow \mathbb{R} \) via evaluation oracle
- \(\exists x_* \in [0,1] \) such that \(f(x) = f_* \)
- \(f(x) \in [0,1] \) for all \(x \in \mathbb{R} \)
- \(f \) is \(L \)-Lipschitz w.r.t \(\| \cdot \|_\infty \)
- Goal: compute \(\epsilon \)-optimal point

\[f_{z,\alpha}(x) = \min\{1, -\alpha + L|x - z|\} \]

Claims

- \(x' \) is \(\epsilon \)-optimal for \(f_{z,\alpha} \) for \(\alpha > \epsilon \) if and only if \(|x' - z| \leq L/\epsilon \)
- \(f_{z,\alpha} \) is \(L \)-Lipschitz w.r.t \(\| \cdot \|_\infty \)

Lower bound idea

- If oracle outputs 1 and not enough queries, consistent with two \(f_{z,\alpha} \)

Lower bound proof

- Algorithm makes \(K \)-queries
- Can partition \([0,1]\) with \(\leq K + 1 \) intervals so points are on boundary
- At least one interval is length at least \(1/(k + 1) \)
- If length is \(> 4\epsilon/L \) then there are two \(f_{z,\alpha} \) consistent with disjoint \(\epsilon \)-optimal points
- \(\Rightarrow k + 1 > L/4\epsilon \)

Upper bound was \(\frac{L}{2\epsilon} + 1 \). Can we improve?

Lower Bound
At least \(\frac{L}{4\epsilon} - 2 \) queries are needed
Improve

- Algorithm also fails if there are two disjoint intervals of length \(> \frac{2\epsilon}{L} \)
- To succeed the total length of the intervals (1) satisfies
 \[< k \left(\frac{2\epsilon}{L} \right) + \frac{4\epsilon}{L} \]
- \(k \geq \frac{L}{2\epsilon} - 2 \)
- Correct answer up to an additive 3!!!

Lower bound proof

- Algorithm makes \(K \)-queries
- Can partition \([0,1]\) with \(\leq K + 1 \) intervals so points are on boundary
- At least one interval is length at least \(1/(k + 1) \)
- If length is \(> \frac{4\epsilon}{L} \) then there are two \(f_{z,\alpha} \) consistent with disjoint \(\epsilon \)-optimal points
- \(\Rightarrow k + 1 \geq L/4\epsilon \)
Setting #2: Higher Dimensions

Algorithm (\(\epsilon\)-net)

- Pick \(k \in \mathbb{Z}_{\geq 0}\)
- Query \(\left(\frac{i_1}{k}, \frac{i_2}{k}, \ldots, \frac{i_k}{k}\right)^T\) for all possible \(i_j \in [k]\)
- Return point of minimum value

Analysis

- \(\forall i \in [n], \exists j \in [k] \text{ s.t. } \left|x^*_i(i) - \frac{i}{k}\right| \leq \frac{1}{k}\)
- \(\exists q \text{ queried s.t. } ||x^* - q||_{\infty} \leq \frac{1}{k}\)
- \(f(q) \leq f(x^*_i) + \frac{L}{k}\)
- Point output is \(\frac{L}{k}\)-optimal
- \(k^n\) queries are made
- \(\left\lceil\frac{L}{\epsilon}\right\rceil^n\)-queries suffice

How do we avoid this large dependence on dimension?

Optimal up to constants! \(((cL/\epsilon)^n\) queries are needed)
Lecture Plan

Recap
- Oracles, minimization, efficiency, and iterative methods
- Continuity, smoothness, and critical points

Material
- Continuity, ϵ-nets, and lower bounds

Thursday
- Lipschitzness and smoothness elaborated / revisited
- Convexity