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Introduction Proposed model Results

Introduction and Motivation

(courtesy: Dr. J. Urzay)

applications

bubble acoustics

high pressure liquid fuel
injection

challenges

Need to maintain thermodynamic consistency at
the interface.

Numerical study of turbulence and acoustics require

a stable method for long-time integrations

a non-dissipative method

a conservative method
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Five-equation model

@�1

@t
+ ~u · ~r�1 = 0,

@⇢1�1

@t
+ ~r · (⇢1~u�1) = 0,

@⇢2�2

@t
+ ~r · (⇢2~u�2) = 0,

@⇢~u

@t
+ ~r · (⇢~u⌦ ~u+ p1) = 0,

@⇢(e+ k)

@t
+ ~r · (⇢H~u) = 0,

Closure:

p = f(⇢1�1, ⇢2�2, ⇢e,�1)

[Allaire et al., JCP, 2002]
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di↵use-interface (DI) vs sharp-interface methods (SI)

sharp-interface methods

Hermann, CTR Summer Proc., 2016 - geometric volume of fluid (VoF)

Huber et al., JCP, 2015 - level set

He et al., JCP, 2015 - algebraic VoF

advantages of DI methods over SI methods

less expensive

easy load balancing and parallel scalability

conserves mass of each phase discretely

[Mirjalili, Jain & Dodd, CTR Annual Research Briefs, 2017]
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State-of-the-art methods

five-equation model

Perigaud & Saurel, JCP, 2005 ! capillary and viscous e↵ects

Shukla et al., JCP, 2010 & Tiwari et al., JCP, 2013 ! interface regularization

Chiapolino et al., JCP, 2017 ! unstructured grids

Other models

Abgrall, JCP, 1996 ! four-equation model

Saurel & Abgrall, JCP, 1999 ! seven-equation model

Summary

five-equation model is the most preferred choice

no previous implementation using non-dissipative schemes

all interface regularization (sharpening) terms are in non-conservative form

no previous study of bubble acoustics in turbulent environment

[Jain , Urzay, Mani & Moin, CTR Annual Research Briefs, 2018]
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Proposed model
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[Jain , Urzay, Mani & Moin, CTR Annual Research Briefs, 2018]
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Improvements over the state-of-the-art methods

1 conservative form of regularization terms.

mass of each phase, momentum and energy is

discretely conserved.

2 satisfies interface equilibrium condition.

3 central-di↵erence scheme (non-dissipative).

4 volume fraction equation ) bounded �.

5 mass balance equation ) consistent with �.

6 momentum equation ) kinetic energy
conservation.

7 energy equation ) approximate entropy
conservation.

regularization

volume fraction advection equation

@�1

@t
+ ~r · (~u�1) = �1(~r · ~u) + ~r · ~a

[Jain , Urzay, Mani & Moin, CTR Annual Research Briefs, 2018]
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Verification cases

Fluid properties:

Sti↵ened gas equation of state: p = (� � 1)⇢e� ⇡

air water

⇢ (kg/m3) 1.225 997
µ (N/m2) 0.0000181 0.00089
� 1.4 4.4
⇡ (MPa) 0 600

Analytical solution:

Rayleigh-Plesset equation in 2D bounded domain

P
B

(t)� P
S

(t)

⇢
L

= ln
⇣ S

R

⌘n

RR̈+ (Ṙ)2
o

+
⇣R2 � S2

2S2

⌘

+
2⌫

L

Ṙ

R
+

�

⇢
L

R
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Pressure driven bubble oscillation

Physical parameters:

Fluids: air, water

Domain: 10µm⇥ 10µm

Bubble diameter: 4µm

Simulation parameters:

Grid: 50⇥ 50, 100⇥ 100, 200⇥ 200
and 600⇥ 600

Total time: 50µs

Interface: � = 1, ✏ = �x

Pressure pulse boundary condition:

Pressure: Dirichlet :
105{1 + 0.1sin(10!

c

t)}
Velocity: Neumann

bubble

pressure pulse

pressure pulse

pr
es

su
re

 p
ul

se

pressure pulse
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Reflection and transmission at the flat interface

R =
Z
a

� Z
w

Z
a

+ Z
w

= �0.999516 T =
2Z

a

Z
a

+ Z
w

= 4.8⇥ 10�3
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Conclusion

summary

A conservative di↵use-interface method for simulation of compressible
two-phase flows with acoustics.

Improvements to the state-of-the-art methods:

discrete mass, momentum and energy conservation

central-di↵erence scheme (non-dissipative)

stable method for long-time integrations

thermodynamic consistency at the interface

kinetic energy and entropy conservation

future work

extension to acoustics in turbulent environments
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Model derivation

volume fraction advection equation

@�

@t
+ ~r · (~u�) = �(~r · ~u) + ~r ·

h

�
n

✏~r�� �(1� �)~n
oi

,

boundedness theorem

If 0  �k

i

 1 is satisfied for k = 0, then 0  �k

i

 1 holds 8k > 0 provided

✏

�x
�

(
|u|

max

�
+ 1)

2
,

and

�t 
1

( 2�✏

�x

2

)� (
u

k

i+1

�u

k

i�1

2�x

)

,

are satisfied on a uniform one-dimensional grid, where k is the time step index and
i is the grid index.
(motivated from Mirjalili et al., JCP, 2018)

[Jain , Urzay, Mani & Moin, CTR Annual Research Briefs, 2018]
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Continued

mass balance equation

@⇢1�

@t
+ ~r · (⇢1~u�) = ~r ·

h

⇢01�
n

✏~r�� �(1� �)~n
oi

In the incompressible limit, it reduces to the volume fraction advection equation.

Modified momentum equation ) conservative kinetic energy.
Modified energy equation ) approximate conservation of entropy.

entropy conservation lemma

Let s
l

be the physical entropy and T
l

be the temperature of phase l, then the form
of internal energy equation that satisfies

2
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⇢
l

�
l

T
l

Ds
l

Dt

i

= 0 (1)

in the inviscid limit is

@⇢e
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