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applications challenges

@ bubble acoustics @ Need to maintain thermodynamic consistency at

: .. the interface.
@ high pressure liquid fuel

injection @ Numerical study of turbulence and acoustics require
e a stable method for long-time integrations
e a non-dissipative method

e a conservative method
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Five-equation model c"‘

0P1
i Vb =0,
5 "YU VL=

Op1d1
ot

0p2¢2
ot
Opu
ot
Op(e + k)
ot

+V - (priign) = 0,

+V - (p2iigp2) = 0,
+ V- (pi®d+pl) =0,

+ V- (pH@) = 0,
Closure:

p = f(p1¢1, p292, pe, P1)

[Allaire et al., JCP, 2002]
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diffuse-interface (DI) vs sharp-interface methods (SI)

sharp-interface methods
e Hermann, CTR Summer Proc., 2016 - geometric volume of fluid (VoF)
e Huber et al., JCP, 2015 - level set
e He et al., JCP, 2015 - algebraic VoF

advantages of DI methods over SI methods
@ less expensive
@ easy load balancing and parallel scalability

@ conserves mass of each phase discretely

[Mirjalili, Jain & Dodd, CTR Annual Research Briefs, 2017]
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State-of-the-art methods

five-equation model
@ Perigaud & Saurel, JCP, 2005 — capillary and viscous effects
e Shukla et al., JCP, 2010 & Tiwari et al., JCP, 2013 — interface regularization
e Chiapolino et al., JCP, 2017 — unstructured grids

Other models
e Abgrall, JCP, 1996 — four-equation model
e Saurel & Abgrall, JCP, 1999 — seven-equation model

Summary
e five-equation model is the most preferred choice
@ no previous implementation using non-dissipative schemes
e all interface regularization (sharpening) terms are in non-conservative form

@ no previous study of bubble acoustics in turbulent environment

[Jain, Urzay, Mani & Moin, CTR Annual Research Briefs, 2018]
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[Jain, Urzay, Mani & Moin, CTR Annual Research Briefs, 2018]
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Improvements over the state-of-the-art methods

@ conservative form of regularization terms.

e mass of each phase, momentum and energy is
discretely conserved.

regularization

[Jain, Urzay, Mani & Moin, CTR Annual Research Briefs, 2018]
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Improvements over the state-of-the-art methods

@ conservative form of regularization terms.

e mass of each phase, momentum and energy is
discretely conserved.

@ satisfies interface equilibrium condition.

regularization

nterface equilibrium condition

If uf = ug and pf — po then, uf"’l

(Abgrall, JCP, 1996)

= up and pf"‘l = po should be satisfied.

[Jain, Urzay, Mani & Moin, CTR Annual Research Briefs, 2018]
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Improvements over the state-of-the-art methods

@ conservative form of regularization terms.

e mass of each phase, momentum and energy is
discretely conserved.

©

satisfies interface equilibrium condition.

©

central-difference scheme (non-dissipative).

@ volume fraction equation = bounded ¢. regularization

volume fraction advection equation

P 49 (@61) = p1( - 4) + [Vna

[Jain, Urzay, Mani & Moin, CTR Annual Research Briefs, 2018]
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mass balance equation =- consistent with ¢.

mass balance equation

Op1¢1
ot

+V - (i) = V- Ry l1=1,2

[Jain, Urzay, Mani & Moin, CTR Annual Research Briefs, 2018]
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momentum equation = kinetic energy
conservation.

momentum equation

8_’ = = = g —
§+v-(pﬁ®a+pﬂ)=v§+ V- (f® 1)

[Jain, Urzay, Mani & Moin, CTR Annual Research Briefs, 2018]
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volume fraction equation = bounded ¢. regularization

mass balance equation =- consistent with ¢.

© 06 ©6 © ©

momentum equation = kinetic energy
conservation.

e

energy equation = approximate entropy
conservation.

enerqgy equation

OE - Soos . 2
—; +V(@E) + V- (pd) = [V (fk) + V- (z- @)+ > V- (pihdy)
=1

[Jain, Urzay, Mani & Moin, CTR Annual Research Briefs, 2018]

Suhas S Jain, Ali Mani & Parviz Moin

APS DFD 2018 7/ 15



Stanford University

CENTER FOR TURBULENCE RESEARCH

Verification cases c“i

Fluid properties:

Stiffened gas equation of state: p = (v —1)pe — 7

air water
p (kg/m3) 1.225 997
p (N/m?)  0.0000181  0.00089
v 1.4 4.4
7 (MPa) 0 600

Analytical solution:

Rayleigh-Plesset equation in 2D bounded domain

UL (G {mi i)+ (55 + 2R
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Pressure driven bubble oscillation

Physical parameters:

e Fluids: air, water
@ Domain: 10pum X 10pum
e Bubble diameter: 4um

Sitmulation parameters:

e Grid: 50 x 50, 100 x 100, 200 x 200
and 600 x 600

e Total time: 50us

@ Interface: I' =1, ¢ = Ax

Pressure pulse boundary condition:

@ Pressure: Dirichlet:
10°{1 + 0.1sin(10wct) }

@ Velocity: Neumann

Suhas S Jain, Ali Mani & Parviz Moin
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Initial transient bubble response
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Solution converges to the analytical solution
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Bubble response at later times
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Long time solution is very accurate even on a coarse grid!
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CTR

Plane acoustic wave incident on an air-water interface

Physical parameters:

e Fluids: air, water
@ Domain: 10pum X 0.1pym X 0.1pum

e Interface location: 5um
<

Simulation parameters: % y
X

e Grid: 1000 x 10 x 10

e Time step: At = 1ps periodic

e Total time: 1us

o Interface: I' =1, e = Ax pressure

wall pulse

Pressure pulse boundary condition:

@ Pressure: Dirichlet:
105{1 — 0.5sin(c2*t)}

@ Velocity: Neumann
t > 614.5ps: wall BC
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Conclusion

summanry

@ A conservative diffuse-interface method for simulation of compressible
two-phase flows with acoustics.

e Improvements to the state-of-the-art methods:

e discrete mass, momentum and energy conservation
e central-difference scheme (non-dissipative)

e stable method for long-time integrations

e thermodynamic consistency at the interface

e kinetic energy and entropy conservation

future work

@ extension to acoustics in turbulent environments
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Model derivation c"i

volume fraction advection equation

% +V - (@p) =¢(V- @)+ V- [F{eﬁcb— ¢(1 —qﬁ)'ﬁ’}],

boundedness theorem

If0o< qb,’;’ < 1 is satisfied for kK = 0, then 0 < (bf < 1 holds Vk > 0 provided

¢ (Mhpes 41

- > ,
Ax — 2
and
1
At < :
( 2I'e \ (u§+1—u?_1)
Azx? 2Ax

are satisfied on a uniform one-dimensional grid, where k is the time step index and
¢ is the grid index.
(motivated from Mirjalili et al., JCP, 2018)

[Jain, Urzay, Mani & Moin, CTR Annual Research Briefs, 2018]
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Continued c"‘

mass balance equation

82? +V - (priig) =V - [pmr{e%b = d))ﬁ}]

In the incompressible limit, it reduces to the volume fraction advection equation.

e Modified momentum equation = conservative kinetic energy.
e Modified energy equation = approximate conservation of entropy.

entropy conservation lemma

Let s; be the physical entropy and 7} be the temperature of phase [, then the form
of internal energy equation that satisfies

2
DSl
Z [Pl¢l ZE] =0 (1)
=1
in the inviscid limit is
Bpe
5 +V - (piie) + V - (pil) — i - VP—Z{hlV (pedyr) } (2)

=1

[Jain, Urzay, Mani & Moin, CTR Annual Research Briefs, 2018]
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CTR

Plane acoustic wave in water

Physical parameters:

e Fluid: water

@ Domain: 10pum X 0.1pm X 0.1pum

Z
Stmulation parameters:
o Grid: 1000 x 10 x 10 Y
. X
e Time step: At = 1ps

Total time: 1lus periodic

e Interface: I' =1, e = Az

pressure

ulse
Pressure pulse boundary condition: wall p

t < 614.5ps:

@ Pressure: Dirichlet:
105(1 — 0.55in(5112583866t))

@ Velocity: Neumann
t > 614.5ps:

e Wall BC.
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“pressure doubling”
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Plane acoustic wave incident on an air-water interface
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