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1. Motivation and objectives

Development of essentially non-oscillatory (ENO) discretization schemes began in the
1980s with works including Harten et al. (1987) and Shu & Osher (1988, 1989), and had
a breakthrough in popularity with the development of weighted-ENO (WENO) scheme
(Liu 1994; Jiang & Shu 1996). Recently, the targeted-ENO (TENO) scheme was de-
veloped as an improvement to traditional WENO schemes by producing less numerical
dissipation (Fu et al. 2016). The ability of ENO-type schemes to capture discontinuities
makes them popular for complex multi-physics problems that involve shocks, contact
discontinuities, material interfaces, and even flame fronts. However, ENO-type schemes
have significant shortcomings when they are used for resolving material interfaces: these
schemes will continually diffuse material interfaces throughout time and do not satisfy
the boundedness criteria of the volume fraction of phases. Both of these issues can lead
to large errors when they occur in a multi-physics code. Many works propose interface
regularization terms that prevent continual diffusion, but they are generally written in
non-conservative form (Shukla et al. 2010; Tiwari et al. 2013). Chiu & Lin (2011) devel-
oped interface regularization terms in conservative form—a conservative diffuse-interface
method (CDI)—for incompressible flows. More recently, Jain et al. (2020) extended the
CDI formulation to compressible flows and further improved their accuracy using the ac-
curate CDI (ACDI) formulation (Jain 2022). Additionally, Mirjalili et al. (2020) and Jain
et al. (2020) demonstrated that volume fraction boundedness can be achieved with CDI
[and ACDI (Jain 2022)] regularization terms using second-order centered-differences for
incompressible and compressible flows, respectively. However, unlike ENO-type schemes,
centered-difference schemes are not appropriate for complex problems involving shocks
and other flow discontinuities unless augmented by additional regularization [eg. LAD
schemes (Cook 2007; Kawai & Lele 2008; Mani et al. 2009; Mirjalili et al. 2021; Jain
& Moin 2021)]. The objective of this work is to outline the issues of using ENO-type
schemes in four-equation models for compressible two-phase flow simulations and illus-
trate how coupling ENO-type schemes with the ACDI interface regularization terms leads
to improved two-phase flow simulations.

2. Numerical framework
2.1. Governing equations

This work uses the four-equation model, which is derived from the general seven-equation
model of Baer & Nunziato (1986) by assuming a single equilibrium pressure, tempera-



152 Collis et al.

ture, and velocity field between the two phases (Saurel & Pantano 2018). The system of
equations is shown in Egs. (2.1)—(2.3).
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Here, m; is the mass per unit volume of phase [, p is the mixture density and can be
given by p = >, my, 4 is the velocity, E is the total energy per unit volume, 7' is the
temperature, P is the pressure, A is the thermal conductivity and g is a body force due
to gravity. Furthermore, problems with surface tension include ﬁST (the surface-tension
force). In this work, both the surface tension and thermal conductivity are set to zero.
The viscous stress tensor, 7 is given by,

7= u[Vi + Vil —2(V-@)1/3), (2.4)
where g is the dynamic viscosity. Lastly, this work uses the stiffened-gas equation of state

P(p,e) = (v — 1)pe — 7P, (2.5)

where e is the internal energy per unit volume, - is the polytropic coefficient, and P, is
the reference pressure.

As mentioned above, the four-equation model enforces both mechanical and thermal
equilibrium of phases within the same computational cell. To enforce these conditions this
work uses an iterative procedure developed by Flatten et al. (2011) for the stiffened-gas
equation of state that provides the pressure, temperature, and volume fraction needed
for mechanical and thermal equilibrium.

2.2. ENO-type scheme formulations

ENO-type schemes are designed to sense oscillations in the field variables and at those
locations use a combination of upwinding schemes to give “essentially non-oscillatory” so-
lutions. These schemes have been proven to work well for many flows with discontinuities
(Pirozzoli 2011; San & Kara 2014; Fu 2019; Di Renzo et al. 2020). In Egs. (2.1)—(2.3),
the Euler fluxes are nonlinear and responsible for the formation of discontinuities. So,
ENO-like discretization is generally applied only to the Euler fluxes, and the viscous flux
terms are discretized using centered-differences. This is the methodology that is followed
in this work as well.

When formulating ENO-type schemes in a finite-difference setting, single-phase multi-
component simulations have improved efficiency and accuracy using the conservative
variables for the ENO-like flux reconstruction (Fu et al. 2016; Di Renzo et al. 2020).
However, unlike other discontinuities, material interfaces require that the velocity and
pressure through the interface stay constant. This property is called the interface equi-
librium condition (IEC) and to avoid numerically induced oscillations around interfaces,
the IEC must be discretely satisfied. Five-equation models can be carefully discretized to
satisfy the IEC for both centered-difference schemes and ENO-like formulations (Johnsen
& Colonius 2006; Jain & Moin 2022). For ENO-type schemes, the IEC is satisfied only if
the ENO-like reconstruction is done using primitive variables (Johnsen & Colonius 2006;
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Johnsen & Ham 2012; Movahed & Johnsen 2013; Coralic & Colonius 2014). However,
since the four-equation model uses an iterative procedure to find the pressure, it is prac-
tically impossible to discretely satisfy the IEC. Thus, motivated by the benefits seen in
single-phase multicomponent flows, this work uses the conservative variables in the flux
reconstruction for WENO and TENO.

To avoid oscillations across other discontinuities, the flux reconstruction for the ENO-
type schemes is performed in characteristic space. Details of this formulation, including
examples of the eigenvalues and eigenvectors, are included in Di Renzo et al. (2020). The
main differences in this work, compared to Di Renzo et al. (2020), are the definitions of
the pressure derivatives needed for the characteristic projection. Particularly, the pressure
derivatives must be derived to incorporate the assumptions of the four-equation model
(thermal and mechanical equilibrium) along with the stiffened-gas equation of state.
These assumptions can be enforced by solving a linear system of equations, but for
brevity, the derivation is not included here. The pressure derivatives and the equation
for the speed of sound are shown in Egs. (2.6)—(2.10). The speed of sound is given by
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where H = (E 4 P)/p is the total enthalpy and Y; = m;/(3_, m) are the mass fractions
of phase i. Equation (2.7) shows the form of the exact differential found by solving the
system of equations described above.

dP = A(Bde + Cdmy + Ddms) (2.7)

With the pressure differential, the pressure derivatives can be found using
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The definition for these variables assuming the stiffened-gas equation of state is given by
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The summation of pressure derivatives in Eq. (2.6) is always positive (for positive mass
fraction), which guarantees a positive speed of sound. After the pressure derivatives
have been found, the reconstruction can be completed using the algorithm illustrated
by Di Renzo et al. (2020). In this work, the ENO-type schemes used are the original
WENO5-JS (Jiang & Shu 1996) and TENOG6 (Fu et al. 2016).

2.3. Interface regularization

Another methodology for simulating two-phase flows with diffuse interfaces is adding
specifically designed interface regularization terms to the governing equations. Many in-
terface regularization terms have been developed for this purpose (Cook 2007; Shukla
et al. 2010; Tiwari et al. 2013; Subramaniam et al. 2018; Jain et al. 2020). This work has
chosen to use the ACDI terms developed by Jain (2022), which are written in fully con-
servative form to achieve discrete conservation. Using the ACDI formulation has been



154 Collis et al.

shown to guarantee creation of material interfaces with a thickness that remains fi-
nite, resolvable, and numerically constant (Jain et al. 2020; Jain 2022). Furthermore,
the ACDI terms provide strictly bounded volume fractions (when using second-order
centered-differences). The new governing equations (assuming no surface tension or heat
transfer) with the ACDI terms added are shown below.

6’]’)’” — —

-5;+V-wm0=ﬁ-&,l=12 (2.11)
%%+V (pi @i+ Pl)=V -1+ pj+ V- (f®1iQ) (2.12)

OF -
a—+v (@E)+V - (P@) =V - (r-@) + pg- i@ + )+ Y V- (phudy)  (2.13)

l

In Eqs. (2.11)-(2.13), h; = e; + P/p; is the enthalpy of phase I, k = 3? u2/2 is the
kinetic energy, and the highlighted terms are defined using
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with 1 being set to a small value (7 = 107190 is used in this work). The system is closed
by noting that aj = —a3 and taking I' = max |@| and € > 0.5Az.

In past works Eqs. (2.11)—(2.13) have been solved using low-dissipation schemes [cen-
tered/compact differences (Jain et al. 2020, 2021; Jain 2022)]. In these works the ACDI
terms properly regulate material interfaces including for high density ratios and under
large deformations. But, since these terms are designed just for material interfaces, they
will not capture shocks or regularize contact discontinuities. This requires the user to
add additional treatments, [eg. LAD methods of shocks (Cook & Cabot 2005; Kawai &
Lele 2008; Mani et al. 2009; Jain & Moin 2021; Mirjalili et al. 2021)] which can require
parameter tuning for acceptable results.

where 1 is defined as

2.4. Combining ENO-type schemes with ACDI terms

There are trade-offs to both diffuse interface methodologies described above. The ENO-
type schemes provide robustness for handling many discontinuities that occur in multi-
physics problems, but they do not satisfy essential requirements for material interfaces.
Combining interface regularization terms with ENO-type schemes can provide a sim-
ulation framework that satisfies three vital properties for simulations of compressible
multiphase flows: 1) volume fractions boundedness, 2) discrete conservation, and 3) cap-
turing of discontinuities.

2.4.1. Volume fraction boundedness

To be physically consistent, the volume fraction of both phases must sum to 1. If the
volume fraction of a phase is over 1, or below 0, this is equivalent to filling/draining
of those phases, respectively. To avoid this, some works will clip the volume fraction
to strictly enforce that it stays bounded, but clipping is equivalent to removing mass.
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Breaking boundedness is an important issue for all two-phase codes, but especially so for
codes that also include complex multi-physics like chemical reactions and combustion.
Current ENO-like formulations ignore this requirement and focus only on satisfaction
of the TEC. As described in Section 2.3 the regularization terms have been designed to
provide bounded volume fraction if the discretization scheme is second-order centered-
difference. In this work, the ACDI terms are combined with WENO and TENO schemes
to help satisfy the boundedness requirement.

2.4.2. Conservation of mass, momentum, and enerqy

In addition to keeping the volume fraction bounded, another vital requirement for
discrete conservation is writing the governing equations in conservative form. Most past
works using ENO-type schemes for compressible flows write at least one conservation
equation in non-conservative form (Johnsen & Colonius 2006; Movahed & Johnsen 2013;
Coralic & Colonius 2014; Wong et al. 2021). In this work, all terms in the governing
equations, including the interface regularization terms, have been written in conservative
form to ensure discrete conservation.

2.4.3. Capturing discontinuities

ENO-type schemes are excellent at capturing shocks, but they will continually diffuse
material interfaces. Combining ENO-type schemes with the ACDI terms that sharpen
material interfaces provides resolvable interface boundaries between immiscible phases.

2.4.4. Numerical implementation

In Egs. (2.11)—(2.13), only the Euler fluxes are discretized using the high-order ENO-
type schemes and all other terms (viscous and ACDI) are discretized using second-order
centered-difference schemes. A third-order Runge-Kutta method is used for time inte-
gration for all test cases. The implementation was completed within the highly parallel
hydrodynamics task-based research code: HTR (Di Renzo et al. 2020).

3. Results

Several computational experiments are used to assess the performance of ENO-type
schemes with and without the ACDI terms. First, two shock tube test cases are pre-
sented to show that the schemes perform well with and without ACDI terms. Second,
simulations of a Rayleigh—Taylor instability performed at low resolutions is used to assess
the robustness of the ENO-type schemes for predicting interface deformations. Lastly,
a shock-bubble interaction is presented to test the ability of the ENO-type schemes to
handle simulations with both interface deformation and shock discontinuities. We note
that all parameters and numbers in this section are dimensionless.

3.1. Shock tube
3.1.1. Helium—air shock tube

This problem involves a Mach 8.96 shock wave in Helium that travels into a material
interface with air. Originally this problem was posed by Liu et al. (2003); later modified
by Johnsen & Colonius (2009) and has been studied extensively. As reported by Coralic
& Colonius (2014) it is a difficult problem for diffuse interface methods that sharpen
the interface (like ACDI). It is also a verification test for discrete conservation, since if
conservation is lost the position and speed of the shock-waves will be miscalculated. The
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FIGURE 1. Plots of density, pressure, velocity, and volume fraction for the helium-air shock tube
problem at t = 0.07. The material interface location is marked in other flow fields with a black
line.
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FIGURE 2. Relative error for volume fraction, velocity, density, and pressure fields for each
discretization scheme used to solve the helium—air shock tube problem.

simulation setup is identical to that used by Coralic & Colonius (2014) with 200 grid
points, Dirichlet boundary conditions, and an initial condition given by

(0.386,0.0,26.59,100.0, 1.0) if —1<z<-038,
(mqy,ma,u, P,¢1) = < (0.1,0.0,—0.50,1.0,1.0) if —08<z<-02, and (3.1)
(0.0,1.0, —0.50, 1.0, 0.0) if —02<a<1.0.

In Figure 1, the exact profile is given as a reference for both ENO-type schemes with and
without the ACDI terms. All schemes visually match the exact solution with accurate
shock locations and no visual oscillations.

To quantitatively compare the performance of the different schemes, the relative error is
plotted in Figure 2. WENOS has the most error in the volume fraction field, but this error
is reduced by more than a factor of two if the ACDI terms are active. Coralic & Colonius
(2014) noted that adding a sharpening term to the phase field variable generally destroys
conservation and causes improper final shock locations. However, since ACDI is in fully
conservative form, all shock locations are accurate even though an active sharpening
term is present. The sharpening term allows ACDI to keep the material interface thinner
than WENO5 (the most dissipative scheme shown). Figure 2 also shows that adding the
ACDI terms generally decreases the error in the other flow field variables as well — likely
due to the sharper material interface. Overall, adding the ACDI terms to the ENO-type
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FI1GURE 3. Plots of volume fraction, phase densities, velocity, pressure, and temperature for the
gas—liquid Riemann problem at ¢t = 0.2. The material interface location is marked in other flow
fields with a black line.
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FIGURE 4. Relative error for the volume fraction, velocity, density, and pressure fields for each
discretization scheme used to solve the gas-liquid Riemann problem.

schemes properly captures the shock discontinuity, provides a sharper material interface,
and generally improves the accuracy of other flow variables.

3.1.2. Gas-liquid shock tube

Another shock tube test case is a gas-liquid problem first analyzed by Cocchi et al.
(1996). The left state is highly compressed air, and the right state is water at atmospheric
pressure. This one-dimensional case is a difficult numerical test and was formulated as
a model problem for an underwater explosion. The same initial setup used in Coralic
& Colonius (2014) is repeated here. The simulation uses 200 grid points with Dirichlet
boundary conditions and an initial condition given by

(1.241,0.0,0.0,2.753,1.0) if —1<z<0.0,

3.2
(0.0,0.991,0.0,0.0003059, 1.0) if —0.8<z<1.0. (3:2)

(ml?m27u7p7¢1> = {

In Figure 3 the exact solution is plotted against both ENO-schemes with and without
ACDI terms for the gas-liquid shock tube. All schemes match the shock locations, but
also create visual oscillations around the material interface. This is a difficult test case
for the four-equation model since the IEC is not discretely satisfied and is likely the cause
of these oscillations. Even so, the results can be quantitatively compared to the exact
solution.

Figure 4 shows the relative error for all schemes after solving the gas-liquid shock
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tube problem. Adding ACDI to WENOb5 sharpens the material interface (seen through
the decrease in volume fraction error), but this is no longer true for TENOG6. Given the
initial condition of a coincident shock and material interface, the material interface is
“self-sharpening” for some time. This allows TENOG6 without the ACDI terms to have
a sharper volume fraction profile. Though the interface is thicker for TENO6 + ACDI,
the extra dissipation from the ACDI terms decreases the oscillations observed, which
decreases the overall error for the other flow field variables. Overall, adding the ACDI
terms improves the solution by lowering the error for most flow variables and still provides
a relatively sharp material interface.

3.2. Rayleigh—Taylor instability

To illustrate the robustness of the ENO-type schemes, Rayleigh—Taylor instability sim-
ulations are carried out at low resolutions with We = oo, At = 0.667, pu1/p2 = 10, and
a range of Reynolds numbers from Re = 1.56 x 102 to Re = 1.56 x 10°. The domain
is defined with an x-length of 1, a y-length of 3, and a uniform grid-size (A) of 1/64 in
both directions. Periodic conditions are used for the x-boundaries and adiabatic walls for
the y-boundaries. The perturbation in the solution was initialized using a profile for the
volume fraction given by,

y —1.86 — 0.03 cos(27rfc))} _ (3.3)

¢ =1/2 {1+tanh( A

The solution was run until ¢ = 1.277 with a CFL = 0.6. This simulation is repeated
for a range of Reynolds numbers at the same grid resolution to show the weaknesses of
WENO and TENO schemes for coarse grids. First, the interface shape and thickness with
and without the ACDI terms are analyzed. Second, the ability of the ACDI terms improve
the boundedness properties of ENO-type schemes bounded is shown. As a reference for
how the ACDI terms resolve the solution without the ENO-like discretization, a sixth-
order kinetic energy and entropy preserving (KEEP) skew-symmetric scheme is included.
This is a high-order extension of the second-order formulation presented by Jain & Moin
(2022).

3.2.1. Interface shape and thickness

Figure 5 shows how the different schemes compare for different Reynolds numbers. An
important observation is that the symmetry of the solution is not captured by TENO6
unless ample resolution is provided in proportion to the Reynolds number. The lack of
symmetry for TENO is generally caused by uncontrolled round-off errors and has been
described in other works (Fleischmann et al. 2019). The effect of the ACDI terms on
controlling the diffusion of the interface is apparent for both WENO5 and TENOG6 at
relatively low Reynolds number (~ 10%) and becomes dramatic at the largest Reynolds
number (~ 10°). Visually, the diffusion of the material interface is manifested through
the wispy structures and can be seen in all WENO5 and TENOG6 solutions. These wispy
structures represent mixing of the two phases, which is unphysical in an immiscible two-
phase system. Often, for diffuse interface simulations, the volume fraction of 0.5 is used
to represent the “sharp” cutoff between phases. For both WENO5 and TENOG6 without
ACDI, this is no longer applicable in the wispy regions. Overall, the mixing of immiscible
phases is inevitable if WENObS or TENOG are used without interface regularization.

By contrast, adding the ACDI terms did an adequate job of keeping immiscible fluids
immiscible and provided an interface with a finite and resolvable thickness. In all cases in
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FIGURE 5. An array of Rayleigh-Taylor simulations for varying Re between 1.56 x 10? and
1.56 x 10° that highlight the differences in interface shape and thickness for each numerical

scheme.
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FIGURE 6. An array of Rayleigh-Taylor simulations for varying Re between 1.56 x 10? and
1.56 x 10° that highlight the computational cells that break the volume fraction boundedness
requirement.



Assessment of coupling ENO-type schemes with regularization terms 161

Figure 5, the phases stay immiscible and the phase field variable is able to visually indicate
the current phase of the simulation cell. However, in order to keep the interface thickness
finite in an under-resolved simulation, the ACDI terms cause a numerical breakup of the
interface.

3.2.2. Volume fraction boundedness

Figure 6 shows the same Rayleigh—Taylor simulations as Figure 5, but highlights every
cell that violates boundedness (volume fraction goes above 1.0 or below 0.0). Without
adding the ACDI terms to the ENO-type schemes, many cells do not satisfy the bound-
edness requirement. The max boundedness error increases with Reynolds number and
in some cases can cause simulations to crash due to highly unphysical (negative) mass
fractions and densities polluting the speed of sound calculation and making it imagi-
nary. In contrast, adding the ACDI terms provides results that are perfectly bounded
for all snapshots shown, even up to the largest Reynolds number tested. This is a large
improvement granted by adding the ACDI terms.

3.3. Helium-air shock bubble interaction

The final test case is a 2D shock-bubble interaction problem that combines shocks and
interface deformations in one simulation. This test case has been studied extensively both
computationally and experimentally and can act as a validation of the numerical method.
The problem consists of a Mach 1.22 shock wave traveling from right to left in air at
atmospheric pressure toward a helium bubble. The setup is very similar to that used by
Jain (2021). The domain is defined with a uniform grid-size A = 0.01 with x-length = 6
and y-length = 1. A non-reflective boundary condition is located at x = 6, an adiabatic
wall at x = 0, and periodic boundaries at y = 0 and y = 1. The material properties for
air are 73 = 1.4 and p; = 1.0. The material properties for helium are v = 1.67 and
p2 = 0.138. The initial condition for this problem is a drop of helium with radius 25/89
centered at y=1/2 and x=4 surrounded by air. This is given by

fs = 1erfc<x_ 5),

2 2A
u=u?fo+uM(1-f), v=0 P=PPf+PI(1-f),
1 2 21 — (z —4)2 — (y —1/2)? 3.4
b0 = Lot 625/7921 — ( A) (y—1/2) ], and (3.4)

pe)
p= @i+ (1= on)pa) Sy fo (1 1),

where the post/pre shock conditions are, uM) = 0.39473, u® = 0.0, PV = 1.5698,
P® =1, pM) = 1.3763, and p® = 1.0. The problem was simulated using a constant
At = 0.001.

Figure 7 shows qualitative results similar to those from the Rayleigh—Taylor simulations
in Section 3.2. WENO5 and TENOG6 continually diffuse the material interface throughout
time and result in unphysical mixing of immiscible fluids. If the ACDI terms are active,
the locations where the physical interface is thinner than the grid scale go through
numerically induced breakup to ensure the material interface is resolved by the grid.

Lastly, Figure 8 shows all locations where volume fraction boundedness is no longer
satisfied. As expected, WENO5 and TENOG6 both break the boundedness requirement
in many locations. Adding the ACDI terms to the WENOS5 simulation kept the solution
bounded, but the ACDI terms did not keep the TENOG6 simulation perfectly bounded.
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FIGURE 7. Four snapshots of a shock-bubble interaction that highlight the differences in interface
shape and thickness for each numerical scheme.
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FIGURE 8. Four snapshots of a shock-bubble interaction that highlight the computational cells
that break the volume fraction boundedness requirement.

This should not be entirely surprising because the boundedness criteria is strictly satis-
fied only for second-order centered-difference schemes. To quantitatively compare these
results, the maximum volume fraction error for TENOG6 with and without ACDI is shown
in Table 1. Importantly, the behavior of the boundedness error is completely different
between TENO6 and TENOG6 + ACDI. Adding the ACDI terms to the ENO-type scheme
decreases the boundedness error with time and approaches machine precision. By con-
trast, using TENOG6 without the ACDI terms results in amplified boundedness error
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TENO6 22x107° 81x107% 1.1x1072 12x107!

TENO6 + ACDI 7.5 x 1077 1.1 x 107" 6.8 x 1072 3.5 x 10712

TABLE 1. Shock-bubble boundedness errors for TENO6 and TENO6 + ACDI.

throughout time and approaches becoming an O(1) error for an O(1) quantity, making
the method unusable for longer simulations.

4. Conclusions

In this work, two commonly used ENO-like discretization schemes were evaluated for
their applicability to simulation of compressible two-phase flows using a diffuse interface
method. WENO and TENO have been previously shown to be robust for shocks and
other flow discontinuities. In this work, in the framework of the four-equation two-phase
model in conjunction with the stiffened gas equation of state, the performance of WENO
and TENO schemes for simulations of compressible two-phase flows was evaluated. A
particularly unique aspect of this work is the assessment of the WENO and TENO
schemes coupled with recently developed accurate conservative diffuse interface regular-
ization terms. Using multiple 1D and 2D test cases, it was shown that coupling WENO or
TENO with interface regularization terms provides improvements over using these diffuse
interface methods separately. Using ENO-type schemes with the ACDI terms provides a
simulation framework that creates resolvable but finite thickness material interfaces, has
drastically improved robustness for achieving bounded volume fractions, and captures
different types of discontinuities without parameter tuning.
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