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1. Motivation and objectives

Two-phase flows are prevalent in nature and industrial applications, for example, sur-
face cooling (Liu et al. 2019), wind-wave interaction (Buckley & Veron 2016), Rayleigh–
Taylor (Sharp 1984; Hwang et al. 2021) and Richtmyer–Meshkov (Holmes et al. 1999)
instabilities and atomization of liquid jets (Gorokhovski & Herrmann 2008; Prakash et al.
2019; Hwang et al. 2022) and drops (Jain et al. 2019), and flows with phase change (Tryg-
gvason et al. 2005) and a moving contact line (Sui et al. 2014). In such flows, computa-
tional modeling of interfaces separating two immiscible fluids is numerically challenging
due to the discontinuity in quantities such as density and viscosity across the interface. To
tackle this challenge, a variety of interface-capturing and interface-tracking methods have
been developed. These include volume-of-fluid (VOF), level-set (LS), phase-field (PF),
and front-tracking methods, as well as hybrid methods such as coupled LS and VOF and
coupled PF and VOF methods (Mirjalili et al. 2017). Each of the methods has its own
strengths in two-phase flow simulations. However, researchers are actively investigating
how to minimize the artificial diffusion of interfaces, to prevent under/overshoot of volume
fractions, and to conserve mass while maintaining the efficiency of the methods. Most im-
portantly, the implementation and applicability of these methods on unstructured grids
are imperative for more complex and practical two-phase engineering applications.

The VOF method has been widely used for computational simulations of interfaces
since it is known to conserve mass and have advantages in handling complex interface
morphology changes. The VOF method can be classified into geometric and algebraic
types. Geometric VOF reconstructs the interface based on geometric representation (e.g.,
plane or quadratic surface), and the reconstructed segments are advected in a Lagrangian
fashion (Youngs 1982; Rider & Kothe 1998). Accordingly, geometric VOF keeps sharp
interfaces; however, its geometric manipulations become inherently complicated on un-
structured grids. Moreover, operations related to interfaces are localized in interface cells,
leading to high computational cost and parallel load imbalance (Jofre et al. 2015). Never-
theless, this method has been successfully extended to unstructured grids (Ivey & Moin
2015, 2017; Xie & Xiao 2017). On the other hand, the algebraic VOF method computes
the face fluxes algebraically using compressive difference schemes, avoiding reconstruc-
tion of the interface and related issues (Lafaurie et al. 1994). Nonetheless, an issue related
to the smearing of the interface persists, especially, in the region of high shear and high
local Courant–Friedrichs–Lewy (CFL) number. To overcome the numerical issues of the
geometric and algebraic VOF methods, the THINC (tangent of hyperbolic interface cap-
turing) method, a hybrid geometric/algebraic approach, was proposed (Xiao et al. 2005;
Xie & Xiao 2017). However, its application to unstructured grid adds another level of
complexity (Xie & Xiao 2017). Additionally, it is reported that the phase indicator vari-
able is not bounded (Kim et al. 2021; Kumar et al. 2021) without the use of flux limiters.

Recently, the PF method has been gaining popularity as an alternative interface-
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capturing method with many attractive features. The PF method or a diffuse-interface
method models the interface as a diffused layer over several cells, as the name indicates,
rather than in a sharp discontinuous representation. Thus, numerical operations, such
as derivatives, can be applied even across the interface, as is done in a single-phase
problem, leading to high scalability of the method. Moreover, the sharpness of the inter-
face is easily controlled by the use of an interface-regularization term. There are various
PF methods in the literature, which can be classified into Cahn-Hilliard-based methods
(Cahn & Hilliard 1958) and Allen-Cahn-based methods (Allen & Cahn 1979). A Cahn-
Hilliard PF model is conservative but involves a fourth-order spatial derivative in the
equation, which requires careful construction of the numerical methods. In contrast, an
Allen-Cahn PF model does not involve fourth-order derivatives in the equation and is not
conservative. A conservative version of the Allen-Cahn based model has been proposed
by Chiu & Lin (2011). This model has been extended to unstructured grids in the context
of a finite-element formulation by Joshi & Jaiman (2018). A flux-limiter-based diffuse-
interface approach for compressible flows has been developed by Chiapolino et al. (2017).
More recently, Jain (2022) proposed an accurate conservative diffuse-interface/phase-field
(ACDI/ACPF) model and showed that this method is robust, conservative, and signif-
icantly more accurate than other PF models in the literature. Jain (2022) showed that
this PF model can maintain boundedness of the volume fraction while maintaining the
interface thickness on the order of only one or two grid points. The capability of this
PF model to maintain such sharp interfaces without the need for any special geomet-
ric treatment, unlike the VOF method, makes it a highly attractive interface-capturing
method for accurate simulation of two-phase flows at an affordable cost.

The ACDI method introduces a signed-distance-like function replacing the PF variable
in the sharpening term of the interface-regularization term. Thus, the sharp gradient in
the PF variable across interfaces is eliminated, yielding a more accurate computation
of the sharpening flux. As a result, the ACDI method demonstrates enhanced accuracy
compared to the previously reported conservative PF methods. Moreover, it improves
the computation of the surface tension force, significantly reduces spurious velocity fields
near interfaces, and achieves a less restrictive CFL condition. Altogether, this PF method
has great potential as an accurate, cost-efficient, and highly scalable interface-capturing
method for the simulation of complex interfacial flows.

The objective of the present work is to adopt the ACDI method on unstructured
grids that will allow for simulations of two-phase flows in complex geometries and for
large-scale practical applications in engineering. We propose an implementation of this
PF model on unstructured Voronoi grids and evaluate its performance using various
interface advection test cases and hydrodynamic-coupled simulations. We also design and
propose new standardized test cases for the evaluation of interface-capturing methods on
unstructured grids.

2. Methods

2.1. Accurate conservative phase-field model

We consider incompressible two-fluid flows. The volume fraction of one of the fluids is
indicated by the phase-field variable ϕ = ϕ1, which satisfies the relation

∑
l=1,2 ϕl=1 by
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definition. Then, the ACDI model for ϕ (Jain 2022) is written as

∂ϕ

∂t
+ ∇⃗ · (u⃗ϕ) = ∇⃗ ·

{
Γ

{
ϵ∇⃗ϕ− 1

4

[
1− tanh2

(
ψ

2ϵ

)] ∇⃗ψ
|∇⃗ψ|

}}
, (2.1)

where u⃗ is the velocity, Γ denotes the velocity-scale parameter, and ϵ is the interface thick-
ness scale parameter. ψ represents the signed-distance-like function from the interface,
which is defined as

ψ = ϵ ln

(
ϕ+ ε

1− ϕ+ ε

)
. (2.2)

Note that a small number ε is added to both the numerator and denominator to en-
sure the boundedness of ϕ, and ε is chosen as ε = 10−100. The right-hand-side term of
Eq. (2.1) is the interface-regularization term, which is an artificial term that is added to
maintain the constant thickness of interface. The interface-regularization term contains
the diffusion and sharpening terms, which balance each other to maintain a constant
interface thickness on the order of ϵ.

2.2. Navier–Stokes equations

Addition of the regularization term in Eq. (2.1) modifies the way the volume fraction is
transported. This modified transport of volume fraction should be consistently accounted
for in the transport of mass, momentum, and energy (Jain 2022). If we represent the
artificial regularization volume flux as a⃗,

a⃗ = Γ

{
ϵ∇⃗ϕ− 1

4

[
1− tanh2

(
ψ

2ϵ

)] ∇⃗ψ
|∇⃗ψ|

}
, (2.3)

then the implied artificial mass flux f⃗ can be written as

f⃗ =

2∑

l=1

ρla⃗l =

{
(ρ1 − ρ2)Γ

{
ϵ∇⃗ϕ− 1

4

[
1− tanh2

(
ψ

2ϵ

)] ∇⃗ψ
|∇⃗ψ|

}}
, (2.4)

where ρl is the density of phase l. As a result, the mass transport equation has an
additional term due to the artificial mass flux, which is written as

∂ρ

∂t
+
∂ρuj
∂xj

=
∂fj
∂xj

. (2.5)

Here the density ρ is computed as ρ = ρ1ϕ+ ρ2(1− ϕ).
Furthermore, the effect of the regularization term is considered in the momentum

equation as

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+
∂uifj
∂xj

+ σκ
∂ϕ1
∂xi

, (2.6)

where τij is a shear stress, τij = 2µSij = µ(∂ui/∂xj + ∂uj/∂xi), and p is the pres-
sure. Surface tension force is introduced using the continuum-surface force formulation
(Brackbill et al. 1992), σ is the surface tension coefficient, and κ is the surface curvature,

whose definition follows κ = −∇⃗ · n⃗ = −∇⃗ · (∇⃗ψ/|∇⃗ψ|). The use of ψ to compute cur-
vature in the surface tension force was shown in Jain (2022) to improve modeling of the
surface tension force and reduce spurious currents.
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2.3. Voronoi grids and discretization of ACDI model

In this work, a Voronoi mesh-based unstructured grid is adopted. The Voronoi grid
divides a volume of space into regions, where each location in the region is closer to the
associated seed point than to any other seed points, based on Euclidean distance. The
grid is generated using the stitch tool, a fast Voronoi meshing package developed at
Cascade Technologies (Brès et al. 2018), which is now part of Cadence Design Systems.
This package generates a hexagonal close-packed (HCP) array of points, and the resulting
mesh has a uniform 14-sided polyhedral in the regions of the domain away from the
boundaries and grid transitions. Figure 1 shows a schematic of an unstructured Voronoi
grid.

Some of the advantages of the Voronoi grids, compared to other unstructured grids,
are as follows.

(a) In Voronoi grids, vertex locations uniquely define the geometric information (cell
volume, face area, and normals) and the connectivity of the Voronoi mesh (neighbors of
a cell). This deterministic connection between the points simplifies mesh generation and
manipulation and improves mesh quality using Lloyd iteration in a robust and stable
way (Ambo et al. 2020).

(b) The face normals and cell displacement vectors are orthogonal to one another by
construction. This orthogonality enables computational efficiencies for both the mesh
generator and the fluid solver (see Figure 1).

(c) Cell faces are located at the center of the cell displacement vectors (see Figure 1),
which will make the Voronoi grid suitable for implementation of low-dissipative central
schemes.

(d) Voronoi mesh generation is highly parallelizable due to its local nature, and it
avoids the issue of degenerate point sets with the Delaunay triangulation (Brès et al.
2018).

In this work, we use a collocated grid arrangement; in other words, all the variables
being solved (ϕ, ψ, ρ, ui, and p) are stored at the Voronoi seed points. This is done
to avoid the need to develop of complicated operators (Perot 2000) in an unstructured
staggered grid setting.

In this study, the governing equations, Eqs. (2.1)–(2.6), are spatially discretized using
a skew-symmetric-type second-order flux-split central difference scheme (Jain & Moin
2022), and a fourth-order Runge-Kutta (RK4) method is chosen as the time-integration
scheme.

The right-hand-side of Eq. (2.1) is a divergence of the artificial regularization volume
flux a⃗ in Eq. (2.3); thus, it is computed in a finite-volume formulation as

∑

fk

(⃗afk · n⃗fk)Afk , (2.7)

where fk indicates the cell face between the cell centroid p and that of the neighboring
cell nbrk. n⃗fk and Afk are the unit face normal and the cell face area of fk, respectively,
as shown in Figure 1. Because the dot product in Eq. (2.7) is calculated at the cell faces,
the volume flux a⃗ must be evaluated at the cell faces.

Note that ϕ and ψ are located at the seed points. To compute the diffusion flux at the
cell face, the gradient of ϕ dotted with the face normal is computed, following Eq. (2.7),
as ∑

fk

(
∇⃗ϕfk · n⃗fk

)
Afk =

∑

fk

{(ϕnbrk − ϕp)/|xp − xnbrk |}Afk , (2.8)

140



A phase-field method on unstructured grids

𝑝

𝑛𝑏𝑟!

𝑛𝑏𝑟"

𝑛𝑏𝑟#

𝑛𝑏𝑟$

𝑛𝑏𝑟%
𝑓!

𝜙"#$! 𝜙%, ∇𝜓%

∇𝜓"#$"

∇𝜙&!

∇𝜓 %→&"

Figure 1. A schematic of an unstructured Voronoi grid. The black dots denote the seed points
of cell p and those of its neighboring cells. The cell face and the cell displacement vector between
the cell p and one of its neighbor nbrk are indicated as fk and xp − xnbrk , respectively.

where xp and xnbr denote the displacement vectors of cell centroids p and nbr, respec-
tively.

Next, we compute ∇⃗ψ at the seed points using the least-square gradient operator (Ma-
hesh et al. 2004). The sharpening flux is computed at the cell face by cell-to-face interpo-
lation ⟨·⟩p→fk , which is the midpoint value, of the gradient of ψ for the interface normal.
The tanh function is computed at the cell face using cell-to-face interpolated ψ. Following
the form of Eq. (2.7), the sharpening term is calculated as

∑

fk

{
1− tanh

( ⟨ψp⟩p→fk

2ϵ

)}(
⟨∇⃗ψp⟩p→fk · n⃗fk

)
Afk . (2.9)

2.4. Projection method algorithm

In this section, the projection method algorithm used in this work is presented in full
detail. Although all the results shown in this work are computed using RK4, a single full
time-step iteration from time step n to n+1 is explained in the explicit Euler framework
for the sake of simplicity and clarity. In addition, we omit the viscous term for the same
reason.

2.4.1. PF variable and density update

First, we update ϕ by solving

ϕn+1
p − ϕnp

∆t
Vcv = −


∑

fk

⟨ϕp⟩p→fkUfk −
∑

fk

(⃗afk · n⃗fk)



n

Afk , (2.10)

where the superscripts n and n+ 1 represent time-step indices, Un
fk

= (RU)nfk/⟨ρnp ⟩p→fk

is the face velocity, and RU is the mass flux computed using Eq. (2.11) at the previous
timestep/substep, which satisfies the divergence-free condition. Vcv and Afk are cell vol-
ume and face area, respectively. Then, the density in the next time step is updated using
ρn+1 = ρ1ϕ+ ρ2(1− ϕ).
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2.4.2. Momentum equation update

We advance the momentum equation to compute the intermediate ρn+1u∗i using the
previous time-step value, as

(ρn+1u∗i )p − (ρnuni )p
∆t

Vcv = −


∑

fk

⟨ui,p⟩p→fk(RU)fk −
∑

fk

⟨ui,p⟩p→fk(f⃗ · n⃗)f



n

Afk .

(2.11)

2.4.3. Face flux update

It is well known that a collocated formulation leads to the velocity/pressure decoupling,
which results in a pressure checkerboard issue. To avoid this issue in the pressure field,
we perform Rhie-Chow-like interpolation with a balanced-force approach when updating
the face flux as

(RU)∗∗fk = ⟨(ρn+1u∗i )p⟩p→fkni,f +∆t

[
−
(
∂p

∂n

)n

f

+
(
F⃗f · n⃗fk

)n+1
]
, (2.12)

where the variables with a superscript ∗∗ indicate another set of intermediate variables.

2.4.4. Pressure Poisson solve

After solving Eq. (2.11) and Eq. (2.12), the intermediate mass flux at the cell faces
contains the contributions from convection terms, the pressure gradient at time step
n, and other body forces, such as surface tension and gravity force. At this point, the
intermediate velocity U∗∗

fk
from the face flux (RU)∗∗fk does not necessarily satisfy the

divergence-free condition. To update the velocity (Eqs. (2.15)–(2.16)), we first solve the
pressure Poisson equation to compute the correction pressure δp (see Eq. (2.14) for the
definition of δp). The pressure Poisson equation is given as

∑

fk

U∗∗
fk
Afk = −∆t

∑

fk

1

⟨ρn+1
p ⟩p→fk

(
∂δp

∂n

)n+1

f

Afk , (2.13)

where U∗∗
fk

= (RU)∗∗fk/⟨ρn+1
p ⟩p→f . Solving Eq. (2.13), we obtain the correction pressure

at the cell center δpp.

2.4.5. Pressure update

Next, the pressure is updated using the correction pressure to obtain the cell center
pressure at time step n+ 1, as

pn+1
p = pnp + δpn+1

p . (2.14)

2.4.6. Cell velocity update

The pressure gradient and body force at time step n+1 are added to the cell velocity
to obtain an approximately divergence-free velocity field at the cell center, as velocity at
the cell center ui,p is updated with the updated pressure pn+1 as

un+1
i,p = u∗i,p +

∆t

ρn+1
p

[
−
(
∂p

∂xi

)n+1

p

+ F⃗n+1
p

]
. (2.15)

Note that ui,p is approximately divergence-free condition since the pressure Poisson equa-
tion is solved at cell faces with U∗∗

fk
. We emphasize that the pressure gradient and the
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additional forces here are computed at the cell center using the least-square gradient
operator that uses the values at cell faces. This is done to enforce a discrete balance
between the pressure gradient and other forces even at the cell center.

2.4.7. Face velocity/flux update

Finally, the face flux is updated such that the velocity at the face exactly satisfies the
divergence-free condition, as

(RU)n+1
fk

= (RU)∗∗fk +∆t

[
−
(
∂δp

∂n

)n+1

f

]
. (2.16)

The updated face flux is saved to be used in the next substep/timestep in Eqs. (2.10)–
(2.11).

3. Results

In this section, we present the simulation results of the ACDI method on the Voronoi
unstructured grid. We use canonical test cases in addition to new test cases that we
designed to systematically evaluate interface-capturing methods on unstructured grids.
Advection of a single drop with initially uniform velocity fields, a drop in a vortex,
and homogeneous isotropic turbulence (HIT) are used as the test cases. We investigate
the accuracy of the method, boundedness of the PF variable ϕ, total volume (mass)
conservation, and robustness of the method using kinetic energy change. As a metric for
an accurate interface advection, we define the shape error as

E =
∑

cv

|ϕcv − ϕ0,cv|dV
2
3
cv , (3.1)

where ϕ0 denotes the initial PF field at t = 0.
For all the simulations, Γ and ϵ are chosen as Γ = 1.0× |umax| and ϵ = 0.6×∆xmax,

where |umax| is the maximum velocity in the flow field and ∆xmax is the maximum grid
size in the domain. The time-step size is fixed as ∆t = 0.001.

3.1. Drop advection

For the advection test case, we consider a two-dimensional unit square domain [0.0, 1.0]×
[0.0, 1.0] with a drop of radius r = 0.15 initially located at the center (x, y) = (0.5, 0.5).
Simulations are initialized with a uniform velocity field (u, v) = (1.0, 0.0) and run until
t = 4, which is 4 periods of drop advection. The ACDI model in Eq. (2.1) is coupled
with the consistent momentum equation in Eq. (2.6). We consider four different grids as
described below to fully evaluate the accuracy of the method in various situations, such
as interface advection through and along grid transitions and domains with partially
refined regions. These test cases are important because the accuracy of a phase-field
method is dependent on the truncation error in the numerical scheme used, which is
locally a function of the grid topology.

The four grids we consider are as follows.
(a) A uniform grid of 128× 128.
(b) A base grid of 64× 64 with refinement in the region of y ∈ [0.3, 0.7] by a factor of

4. The drop is fully inside the refined region in this case.
(c) A base grid of 64× 64 with refinement in the region of x ∈ [0.48, 0.52] by a factor

of 4. The drop advection direction is parallel to the gradient of grid transition, so the
drop passes through the grid transition region once for each period of advection.
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(a) (b)

(d)(c)
Figure 2. Snapshots of ϕ field for the advection test cases at the final time of t = 4. The orange
solid line shows the initial drop. Blue and white indicate ϕ values of unity and zero, respectively.
Black solid lines represent the mesh.

(d) A base grid of 64× 64 with refinement in the region of y ∈ [0.48, 0.52] by a factor
of 4. The drop advection direction is perpendicular to the gradient of grid transition, so
the drop is always in the grid transition region.

The results from the droplet advection case are shown in Figure 2 at the final time
of t = 4. The shape error (Eq. (3.1)) for each case is (a) E = 8.326 × 10−4, (b) E =
4.563 × 10−4, (c) E = 2.374 × 10−3, and (d) E = 5.015 × 10−3. We confirm that the
conservation of the total volume and the boundedness of ϕ for all cases. For cases (c) and
(d), the shape error accumulates faster compared to other cases as the droplet encounters
regions of grid transition. The shape error for case (c) is better than case (d) because
the drop encounters the grid transition only once per period of advection, as opposed to
advection always being along the grid transition. This suggests that the present method
results in accurate simulations of two-phase flows in realistic simulations of engineering
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(a) (b)
Figure 3. Snapshots of ϕ field of vortex-in-a-box test case. The orange solid line shows the
initial drop. Blue and white indicate ϕ values of unity and zero, respectively, at time (a) t = 2
and (b) t = 4. The black solid line represents the mesh.

interest, where one would typically use complex meshes with grid transitions. For cases
(a) and (b), where the drop does not encounter grid transition regions, the shape error
is sufficiently low and the initial drop shape is maintained.

3.2. Drop in a vortex

In this section, we evaluate the method using a drop-in-a-vortex case where the drop
undergoes shearing deformation. We consider a two-dimensional unit square domain
[0.0, 1.0] × [0.0, 1.0] with a uniform HCP mesh of size 128 × 128. Initially, a drop of
radius r = 0.15 is placed at (x, y) = (0.5, 0.75). Here, the ACDI method [Eq. (2.1)] is
decoupled from the momentum equation (Eq. (2.6)), and instead a velocity field of

u = − sin2(πx) sin(2πy) cos

(
πt

T

)
, (3.2)

v = sin(2πx) sin2(πy) cos

(
πt

T

)
, (3.3)

is prescribed at every time step. Here, the period T is set as T = 4.
Results from this simulation (Figure 3) show the droplet shapes at a half-time of t = 2

and a final time of t = 4. The drop undergoes deformation until t = 2, and the flow field
is reversed to recover the initial drop shape at t = 4. Figure 3 shows that the method
accurately recovers the final circular shape of the drop on an HCP mesh. The total volume
is discretely conserved throughout the simulation, and we confirm the boundedness of ϕ.
The shape error at the final time is E = 1.903× 10−3.

3.3. Drop in HIT field

In this section, we perform an infinite Reynolds number simulation of a drop in isotropic
turbulence. This test case is useful to evaluate the robustness of the method. For a stable
method, the kinetic energy either remains constant or decays with time. A triply periodic
cubic box of size [0, 2π] × [0, 2π] × [0, 2π] is considered as the simulation domain. The
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(a) (b)

Figure 4. Snapshots of the drop-laden HIT simulations at (a) t = 0 and (b) t = 8. The
iso-surface indicates the contour of PF variable with ϕ = 0.5.

initial velocity field is set following the model energy spectrum from Passot & Pouquet
(1987) as

E(k) ∝ k4 exp

[
−2

(
k

k0

)2
]
, (3.4)

where k is the wavenumber and k0 = 4 is the most energetic wavenumber. A spherical
drop of radius r = 1.0 is initially placed at the center of the domain. The dynamic
viscosity of the two fluids is chosen to be zero for the infinite Reynolds number case, and
the surface tension is set to zero. The simulation is repeated with different density ratios
ρ1/ρ2 = 1, 10, 100, and 1000.

The inviscid simulations are run until t = 8, and we track total kinetic energy, defined
as

K =
∑

cv

ρui,cvui,cvdVcv. (3.5)

The iso-surface of the PF variable at ϕ = 0.5 is illustrated in Figure 4 at t = 0 and
t = 8. Throughout the simulations, the total volume is perfectly conserved, while the
PF variable is bounded. The ratio of the total kinetic energy to its initial value K/K0

is plotted in Figure 5 from t = 0 to t = 3. Since no dissipation mechanisms are present,
the ratio of the total kinetic energy is expected to be conserved as unity. However, we
observe the decay of kinetic energy for all the density ratio cases. As a comparison, we
plot results from two additional cases with a fully compressible single-phase ideal-gas
solver (Lakebrink et al. 2019) and a low-Mach single-phase Helmholtz solver (Ambo et
al. 2020) that use different methods for the projection step. For the low-Mach and fully
compressible flow cases, the Mach number is set toMa < 0.05 to ensure incompressibility
of the flow. As shown in Figure 5, the ideal-gas solver almost preserves the kinetic energy,
but it shows mild decay of the total kinetic energy. On the other hand, the Helmholtz
solver shows behavior similar to that of the present method, with a faster decay of the
total kinetic energy after t ≈ 1.0. But the dissipative nature of the error in total kinetic
energy ensures that all the methods are numerically stable.
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Figure 5. Kinetic energy ratio for the HIT setup in Section 3.3: (a) with different density
ratios and (b) with different solvers. Lines denote the kinetic energy ratio with different density
ratios and different solvers: black solid, ideal-gas solver; black dashed, Helmholtz solver; black
dash-dotted, ρ1/ρ2 = 1; gray solid, ρ1/ρ2 = 10; gray dashed, ρ1/ρ2 = 100; and gray dash-dotted,
ρ1/ρ2 = 1000. The black-dotted line shows a constant unity line for reference.

4. Conclusions

In this work, a phase-field method is presented for the simulation of two-phase flows
on unstructured grids. We adopt the ACDI method recently proposed by Jain (2022) and
present a formulation for the Voronoi-mesh-based unstructured grid. The Voronoi grid
is chosen in this study because of its many attractive features, such as uniquely defined
connectivity, suitability for the use of less-dissipative central schemes, and highly paral-
lelizable mesh generation. Because the ACDI method is significantly more accurate than
other existing phase-field methods, its application to Voronoi-grid-based unstructured
grids has great potential to be an effective interface-capturing method for the simulation
of two-phase flows in realistic engineering applications.

In this work, in addition to the use of canonical test cases, we also designed new test
cases to fully evaluate the performance of interface-capturing methods on unstructured
grids with grid transitions. We used these cases to evaluate the accuracy of the proposed
method and showed that the proposed method is accurate and is suitable to be used
for accurate numerical simulations with unstructured grids on complex domains of en-
gineering interest that will involve grid transitions. In all the simulations, we confirmed
that the volume fraction was bounded without any clipping or the use of flux limiter.
Moreover, the total volume (mass) was discretely conserved.

We also performed droplet-laden HIT simulations at infinite Reynolds number to eval-
uate the robustness of the method for turbulent flow simulations. The proposed method
is found to be stable for all the density ratios considered due to the use of consistent
momentum equations (Eqs. (2.1)–(2.6)). The total kinetic energy was found to decrease
with time for all the density ratio cases, due to the use of a fractional-step projection
method to enforce a divergence-free condition with a collocated-grid formulation.
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