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1. Motivation and objectives

Prediction of bubble dynamics in turbulent seawater is of practical importance for the
engineering analysis of naval systems. In ships, the air bubbles entrained by boundary lay-
ers and stern waves form an elongated wake that lasts for several kilometers downstream
(Trevorrow et al. 1994; Fu et al. 2007; Stanic et al. 2009). Though the bubbles are tiny,
with diameters of order 1 mm or less, they exhibit strong acoustic responses and hence
the bubbly wake can be detected acoustically, which reveals the presence and position of
the ship (Figure 1). The predictive modeling of bubble distributions in wakes, along with
their acoustic response, has remained elusive and mostly confined to Reynolds-averaged
Navier-Stokes (RANS) analyses because of the multiscale nature of the problem and
the computational challenges associated with scalability and performance (Carrica et al.
1999; Culver & Trujillo 2007). Hence, the focus of the current study is to develop a conser-
vative numerical method that enables accurate treatment of the interaction of acoustics
with gas-liquid interfaces (single and multiple bubbles) in compressible turbulent flow
environments. This aids in investigating the current limitations and in developments of
subgrid-scale models based on the Rayleigh-Plesset or Keller-Miksis equations used in
RANS and large eddy simulations (LES).

Apart from bubble acoustics, applications of compressible two-phase flows also include
supercritical flow regimes in high-pressure environments and liquid fuel injection systems.
In compressible flows, thermodynamics plays an important role and adds one more level
of difficulty to an already complex problem of two-phase flows, by imposing an addi-
tional requirement that the model should maintain thermodynamic consistency at the
interface. Moreover, the numerical study of turbulent flows and acoustics requires stable,
non-dissipative, and conservative numerical methods. To the best of our knowledge, the
state-of-the-art techniques to simulate compressible two-phase flows lack many of these
features. With this motivation, we have developed a diffuse-interface five-equation model
for the simulation of two immiscible compressible fluids that (a) can be solved using
non-dissipative numerical methods (low- and high-order central-difference schemes), (b)
discretely conserves mass of each phase, total momentum, and total energy in the sys-
tem, (c) maintains mechanical equilibrium and thermodynamic equilibrium across the
interface, and (d) maintains a steady interface thickness throughout the simulation.

2. Literature review

Compressible two-phase flows have been extensively studied for the last two decades
(Saurel & Pantano 2018). Different diffuse-interface models present in the literature can
be broadly classified into four major types: (a) The five-equation model (Kapila et al.
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FIGURE 1. Schematics of the generation of bubbly wakes from the stern of a ship, in-
cluding the associated interactions between bubbles and acoustic waves, the latter being
generated from an underwater sonar.

2001) solves two mass balance equations—one for each of the phases —a momentum
equation, a total energy equation, and a volume fraction advection equation. This is
the model that is most suitable for the simulation of two-phase non-reacting flows with
immiscible fluids. This model is discussed further in Section 3. (b) The six-equation model
is similar to the five-equation model but solves two energy equations, one for each of the
phases. (c) The seven-equation model (Baer & Nunziato 1986) solves two momentum
equations and two energy equations and has two separate velocity fields for each of the
phases. This is the most general of all the models since it includes non-equilibrium effects
such as phase change and mass transfer. (d) The four-equation model (Abgrall 1996) has
no separate mass balance equations for each of the phases; instead, it solves a continuity
equation, hence conserving only the total mass and not the individual mass of each
phase. The volume fraction advection equation has also been replaced by a transport
equation for the polytropic coefficient in this model. Further, many improvements have
been proposed for all these models in the literature. A detailed review is beyond the
scope of this article and will be included in future work.

Attempts to simulate compressible two-phase flows have also been made using sharp-
interface methods; see Jemison et al. (2014) for the moment-of-fluid approach, Herrmann
(2016) for a geometric volume-of-fluid approach, Huber et al. (2015) and Fu et al. (2017)
for a level-set method, and He et al. (2017) for an algebraic volume-of-fluid approach.
Although, sharp-interface methods are more accurate than diffuse-interface methods,
they are also more expensive. Moreover, the expensive function evaluation of the sharp-
interface methods is localized at the interface, which results in load-balancing and parallel
scalability issues. When it comes to compressible flows, diffuse-interface methods have an
obvious advantage over sharp-interface methods. The volume of each phase is inherently
not conserved in compressible flows; hence, the expensive interface reconstruction and the
geometric advection step in sharp-interface methods to achieve discrete volume conserva-
tion are less useful. Moreover, one cannot achieve mass conservation of each phase using
a sharp-interface method —with the exception of the moment-of-fluid method (Jemison
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et al. 2014) —whereas, depending on the choice of the model, a mass balance equation in
each phase can be solved in a diffuse-interface method to discretely conserve the mass of
each phase. For these reasons, in the current study, we choose to use a diffuse-interface
method over a sharp-interface method. For a more detailed comparison between sharp-
interface and diffuse-interface methods, see Mirjalili et al. (2017).

In summary, a five-equation model appears to be the preferred choice of diffuse-
interface model for the simulation of compressible two-phase flows with immiscible fluids.
Some of the limitations in the current state-of-the-art methods are as follows: (a) The
study of acoustics and turbulent flows requires non-dissipative methods, but to the best
of our knowledge, there is no previous implementation of compressible two-phase flows
that is non-dissipative (central-difference schemes). (b) All the sharpening terms (in-
terface regularization) used along with the five-equation model are in non-conservative
form (Shukla et al. 2010; Tiwari et al. 2013), and the conservative form of the sharpening
terms is currently considered to be unstable (Shukla et al. 2010). (c) None of the previous
studies explore compressible two-phase flows in a turbulent environment.

3. Conservation equations

We start with the well-known inviscid five-equation model of Allaire et al. (2002). This
form of the model has a volume fraction advection equation [Eq. (3.1)], a mass balance
equation for each of the phases l [Eq. (3.2)], a momentum equation [Eq. (3.3)], and a
total energy equation [Eq. (3.4)].

∂φ1

∂t
+ ~u · ~∇φ1 = 0, (3.1)

∂ρlφl
∂t

+ ~∇ · (ρl~uφl) = 0, l = 1, 2, (3.2)

∂ρ~u

∂t
+ ~∇ · (ρ~u⊗ ~u+ p1) = 0, (3.3)

and
∂ρ(e+ k)

∂t
+ ~∇ · (ρH~u) = 0, (3.4)

where φl is the volume fraction of phase l that satisfies the condition
∑2
l=1 φl = 1, ρl is

the density of phase l, ρ is the total density defined as ρ =
∑2
l=1 ρlφl, ~u is the velocity,

p is the pressure, e is the specific mixture internal energy, which can be related to the
specific internal energy of phase l el as e =

∑2
l=1 ρlel, k = 1

2uiui is the specific kinetic
energy, and H = e+ k + p/ρ is the specific total enthalpy of the mixture.

Allaire et al. (2002) showed that when this system is solved along with an isobaric
closure law at the interface, one can achieve mechanical and thermodynamic equilibrium
(Postulate 3.1) at the interface that results in stable numerical solutions and eliminates
spurious oscillations at the interface.

Postulate 3.1. If uki = u0 and pki = p0 across the interface, any model or a numerical
scheme that satisfies uk+1

i = u0 and pk+1
i = p0, ∀i, is said to satisfy the interface

equilibrium condition (IEC), where k is the timestep index and i is the grid index (see
Abgrall 1996).

It is generally known that the interface thickness increases with simulation time in

49



Jain, Mani & Moin

a classical diffuse-interface method, reducing the accuracy of the solution for long-time
integrations. Hence, Shukla et al. (2010) and Tiwari et al. (2013) proposed interface-
sharpening terms to counter this thickening of the interface. However, the sharpening
terms are in non-conservative form, and they argued that the conservative form of the
interface-sharpening (regularization) terms results in tangential fluxes, which leads to
unphysical interface deformations.

In the current work, we propose a new set of sharpening terms that are in conser-
vative form and show that the numerical solution is stable for long-time integrations.
We propose a model of the form given in Eqs. (3.5)–(3.8) along with the viscous terms,
where the highlighted terms are the newly introduced sharpening (regularization) terms.
Equation (3.5) represents the modified volume fraction advection equation, Eq. (3.6) rep-
resents the modified mass balance equation for phase l, Eq. (3.7) represents the modified
momentum equation, and Eq. (3.8) represents the modified total energy equation. If a
general equation of state (EOS) for phase l is written as pl = αlρlel + βl, where αl and
βl are constants, then by invoking the isobaric closure law for pressure in the mixture
region (p = p1 = p2), the generalized mixture EOS can be written as in Eq. (3.9).

∂φ1

∂t
+ ~∇ · (~uφ1) = φ1(~∇ · ~u) + ~∇ · ~a1 , (3.5)

∂ml

∂t
+ ~∇ · (~uml) = ~∇ ·Rl , l = 1, 2, (3.6)

∂ρ~u

∂t
+ ~∇ · (ρ~u⊗ ~u+ p1) = ~∇ · τ + ~∇ · (~f ⊗ ~u) , (3.7)

∂E

∂t
+ ~∇ · (~uE) + ~∇ · (p~u) = ~∇ · (~fk) + ~∇ · (τ · ~u) +

2∑

l=1

~∇ · (ρlhl~al) , (3.8)

and

p =
ρe+

(
φβ1

α1
+ (1−φ)β2

α2

)

(
φ
α1

+ 1−φ
α2

) . (3.9)

In Eqs. (3.5)–(3.8), ~a1 = Γ{ε~∇φ1−φ1(1−φ1)~n} is the flux of the interface regularization

term for phase 1, and it satisfies the condition ~a1 = −~a2, ~n = ~∇φ/|~∇φ| is the outward
normal of the interface, and Γ and ε are the interface parameters (see Section 4 for a
discussion of the choice of these parameters). Rl = ρ0l~al is the flux of the regularization
term in the mass equation for phase l, where ρ0l is the characteristic density representing
phase l (see Section 5), ~f =

∑2
l=1Rl is the net mass regularization flux, ml = ρlφl

is the mass per unit total volume for phase l, and ρ =
∑2
l=1ml is the total density

of the mixture. In Eq. (3.6), ml is written instead of ρlφl only to show that ml is the
variable being solved and not ρl (see Section 5). The Cauchy stress tensor is written as

τ = 2µD−2µ(~∇·~u)1/3, where µ is the dynamic viscosity of the mixture evaluated using

the one-fluid mixture rule as µ =
∑2
l=1 φlµl, D = {(~∇~u) + (~∇~u)T }/2 is the strain-rate

tensor, and E = ρ(e + k) is the total energy per unit volume. If each of the phases is
assumed to follow a stiffened gas EOS, then the constants in the EOS can be written
as α = γ − 1 and β = −γπ, where γ is the polytropic coefficient and π is the reference
pressure. Values of γ and π are experimentally determined, and the values used in this
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work are listed in Table 1. Then, the speed of sound cl for phase l can be written as

cl =

√
γl

(p+ πl
ρl

)
. (3.10)

In Eq. (3.8), hl = el + p/ρl represents the specific enthalpy of the phase l and can be
expressed in terms of ρl and p using the EOS as

hl =
(p+ πl)γl
ρl(γl − 1)

. (3.11)

All the newly added terms are in conservative form, and hence the mass of each phase,
momentum, and total energy are discretely conserved in the simulation irrespective of
the choice of the numerical scheme. Moreover, we choose to use a second-order central-
difference scheme for all the discretizations in this study since low-order central-difference
schemes are known to have some advantages for the simulation of turbulent flows (Moin
& Verzicco 2016) due to their (a) non-dissipative nature, (b) low aliasing error, (c) easy
boundary treatment, (d) low cost, and (e) improved stability. The non-dissipative nature
of these schemes is also crucial for the resolved simulation of acoustics.

Further, a systematic derivation of the newly introduced regularization terms, along
with the proof of boundedness of φl and the proof of the IEC, is described in Sections
4–8.

4. Volume fraction advection equation: Proof of boundedness of φ

If we denote the volume fraction of phase 1 φ1 as φ, then the the volume fraction
advection equation in Eq. (3.5) can be written as

∂φ

∂t
+ ~∇ · (~uφ) = φ(~∇ · ~u) + ~∇ ·

[
Γ
{
ε~∇φ− φ(1− φ)~n

}]
. (4.1)

This equation is obtained by combining Eq. (3.1) and the reinitialization step of the
conservative level-set method by Olsson & Kreiss (2005) and Olsson et al. (2007), and
is also an extension of the incompressible version of the conservative diffuse-interface
method introduced by Mirjalili et al. (2018). One can show that Eq. (4.1) also governs
the advection of the volume fraction for phase 2; i.e., φ2 = 1− φ also satisfies Eq. (4.1).
Hence, both phases 1 and 2 are consistently advected.

Since we choose to use a central-difference scheme to discretize all the system of equa-
tions in our model because of the well-known desirable properties, as already described in
Section 3, this choice of the scheme could potentially create overshoots and undershoots
in the φ field due to the dispersion errors. Hence, one needs to pick the values of the free
parameters Γ and ε such that φ is maintained between 0 and 1.

Mirjalili et al. (2018) showed that there exists a crossover line in the ε-Γ parameter
space above which the boundedness of φ is guaranteed for an incompressible flow. We
extend this analysis to show that the same criterion (Figure 2) is sufficient to maintain
the boundedness of the φ field in a compressible flow setting, provided that the timestep
restriction given in Eq. (4.3) for a one-dimensional setting and Eq. (4.9) for a three-
dimensional setting is satisfied (Theorem 4.1).

Theorem 4.1. On a uniform one-dimensional grid, if 0 ≤ φki ≤ 1 is satisfied for
k = 0, then 0 ≤ φki ≤ 1 holds ∀k ∈ Z+, where k is the time-step index and i is the grid
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FIGURE 2. Region of boundedness as given by Eq. (4.2).

index, provided

ε

∆x
≥ 1

2

( |u|max
Γ

+ 1

)
(4.2)

and

∆t ≤ min
i





[(
2Γε

∆x2

)
−
(
uki+1 − uki−1

2∆x

)]−1


 , (4.3)

are satisfied.

Proof. Consider the discretization of Eq. (4.1) on a one-dimensional uniform grid

φk+1
i = φki + ∆t

[
−
(uki+1φ

k
i+1 − uki−1φ

k
i−1

2∆x

)
+ φki

(uki+1 − uki−1

2∆x

)]

+∆t
[
Γε
(φki+1 − 2φki + φki−1

∆x2

)
− Γ

{ (1− φki+1)nki+1φ
k
i+1 − (1− φki−1)nki−1φ

k
i−1

2∆x

}]
,

(4.4)

where k represents the time index and i the grid index. This can be rearranged as

φk+1
i = C̃ki−1φ

k
i−1 + C̃ki φ

k
i + C̃ki+1φ

k
i+1, (4.5)

where C̃’s are coefficients given by

C̃ki−1 =
∆tuki−1

2∆x
+

∆tΓε

∆x2
+

∆tΓ

2∆x
(1− φki−1)nki−1, (4.6)

C̃ki+1 = −∆tuki+1

2∆x
+

∆tΓε

∆x2
− ∆tΓ

2∆x
(1 + φki+1)nki+1 (4.7)

and

C̃ki = 1 +
∆t

2∆x
(uki+1 − uki−1)− 2∆tΓε

∆x2
. (4.8)

Lemma 4.1.1. A scheme is said to be bounded if C̃’s are all positive (see Section 5.4.2
of Versteeg & Malalasekera 2007).

For k = 0, it is given that 0 ≤ φki ≤ 1 holds, which implies that (1− φki−1)nki−1 ≥ −1.

Then C̃1
i−1 ≥ ∆tu0

i−1/(2∆x) + ∆tΓε/∆x2 − ∆tΓ/(2∆x) ≥ −∆t/2∆x(|u|0max + Γ) +
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∆tΓε/∆x2. Now, invoking the condition in Eq. (4.2), we can show that C̃1
i−1 ≥ 0 holds.

Using similar arguments, we can show that C̃1
i+1 ≥ 0 holds. Invoking the condition in Eq.

(4.3), we can also show that C̃1
i ≥ 0 holds. Thus, Lemma 4.1.1 proves that 0 ≤ φ1

i ≤ 1 is
satisfied. Now, by repeating the same procedure above, we can show that 0 ≤ φk+1

i ≤ 1
is satisfied, provided that 0 ≤ φki ≤ 1 is satisfied. Hence, using mathematical induction,
0 ≤ φki ≤ 1 is satisfied ∀k ∈ Z+, which concludes the proof.

If φ is bounded, then 1−φ is also bounded. Hence, the volume fractions of both phases
1 and 2 are bounded. Now, generalizing Theorem (4.1) for three dimensions, the timestep
restriction required for the boundedness of φ can be written as

∆t ≤ min
i

{
1

( 6Γε
∆x2 )− ( δui

δxi
)

}
, (4.9)

where δ/δx is the discrete derivative operator. The first term (6Γε/∆x2) represents the
diffusive Courant–Friedrichs–Lewy (CFL) condition of the interface, with Γε representing
the diffusivity of the interface regularization and the second term (δui/δxi) representing
the time constraint associated with the local dilation of the flow. Hence, if the flow is
expanding, the timestep constraint is less restrictive, and if the flow is compressing, then
the timestep constraint is more restrictive. However, the timestep restriction due to the
acoustic CFL condition in the flow is usually more restrictive than the condition in Eq.
(4.9).

5. Mass balance equation

We employ a phenomenological approach to derive the mass balance equation for phase
l [Eq. (3.6)]. Similar to Section 4, let φ = φ1. Then, the mass per unit total volume of
phase 1, is given by m1 = ρ1φ. Now, starting with the mass balance equation of the form

∂ρ1φ

∂t
+ ~∇ · (ρ1~uφ) = ~∇ ·

[
ρ1Γ

{
ε~∇φ− φ(1− φ)~n

}]
, (5.1)

one can see that in the incompressible limit (ρ1 → ρ01, ~∇ · ~u = 0), it is consistent with
the volume fraction advection equation (Eq. (4.1)), where the characteristic density of
phase 1 ρ01 is indeed the density of phase 1 in the incompressible limit. But one main
disadvantage of this formulation is that it requires explicit computation of ρ1. Typically,
m1 = ρ1φ are solved together, and to obtain ρ1, one should use ρ1 = m1/φ, which results
in inaccurate values of ρ1 at the interface due to round-off errors (that stem from division
by a small number). To overcome this, we use a form of the equation

∂ρ1φ

∂t
+ ~∇ · (ρ1~uφ) = ~∇ ·

[
ρ01Γ

{
ε~∇φ− φ(1− φ)~n

}]
. (5.2)

This form of the equation also satisfies the same consistency condition in the limit of
incompressibility and is similar to the one proposed in Eq. (5.1). Hence, we use this form
of the mass equation since it does not require explicit computation of ρ1. Now, writing
Eq. (5.2) in terms of m, we get Eq. (3.6).

Further, summing up Eq. (3.6) for phases 1 and 2, we can derive the modified version
of the continuity equation given by

∂ρ

∂t
+ ~∇ · (ρ~u) = ~∇ · ~f, (5.3)
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regularization

FIGURE 3. Schematic of effect of regularization terms on all quantities. Solid lines rep-
resent quantities before regularization and the dashed line represent the quantity after
regularization.

where ~f =
∑2
l=1Rl =

∑2
l=1 ρ0l~al is the net mass regularization flux. The mass regu-

larization flux for phase l, Rl = ρ0l~al in Eq. (3.7), can be intuitively thought to be a
weighted version of the interface regularization flux ~al for phase l, where the weight is
the characteristic density of the phase ρ0l. This scaling of the flux is employed such that
the timescales of regularization of the φ and ρl fields are similar.

The regularization terms are crucial in maintaining consistency between the mass
and volume fraction fields. Figure 3 shows the effect of regularization terms on all the
quantities being solved. Hence, if the volume fraction field is modified, reorganization
of the mass is required to maintain consistency between the ρ and φ fields, which is
essentially achieved with the use of the regularization terms.

6. Momentum equation

Since the momentum of each of the phases is not individually conserved due to exchange
of momentum at the interface, it is most efficient to write a single momentum equation
for both phases. One can start with the momentum equation of the form

∂ρ~u

∂t
+ ~∇ · [(ρ~u)⊗ ~u+ p1] = 0, (6.1)

in the inviscid limit. Taking the dot product of this equation with ~u, and utilizing the
modified continuity equation (Eq. (5.3)), results in the kinetic energy transport equation
of the form

∂ρk

∂t
+ ~∇ · (ρ~uk) + k(~∇ · ~f) + ~∇ · (~up)− p(~∇ · ~u) = 0, (6.2)

where, the non-conservative term k(~∇ · ~f) represents the spurious contribution to the
kinetic energy, which stems from the regularization of the interface. Having a spurious
non-conservative term in the kinetic energy equation, even in the continuous form, is a
sign that the solutions of this model could potentially be spurious. This allusion is correct
since the form of the momentum equation in Eq. (6.1) does not satisfy the IEC.

Now, let’s consider the modified version of momentum equation (Eq. (3.7)) in the
inviscid limit

∂ρ~u

∂t
+ ~∇ · [(ρ~u− ~f)⊗ ~u+ p1] = 0. (6.3)

Taking the dot product of this equation with ~u and utilizing the modified continuity
equation (Eq. (5.3)), results in the kinetic energy transport equation of the form

∂ρk

∂t
+ ~∇ · [(ρ~u− ~f)k] + ~∇ · (~up)− p(~∇ · ~u) = 0, (6.4)
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where there are no non-conservative terms that spuriously contribute to the kinetic en-
ergy. Additionally, the form of momentum equation in Eq. (3.7) also satisfies IEC (see
Section 8), thus reinforcing the fact that the solution is not spuriously affected by reg-
ularization of the interface. This consistency correction to the momentum is crucial for
compressible flows, without which the spurious momentum (or velocity) contribution to
kinetic energy naturally leads to blow-up of the solver for any pair of fluids. However, this
consistency requirement is not as severe for incompressible flows. This method has been
shown to be stable for low-density ratio flows at low Re without this correction (Mirjalili
et al. 2018). This could be due to the enforcement of the divergence-free condition for
the velocity, which stabilizes the solver. However, for high-density ratio flows and at high
Re, the consistency correction is also required for incompressible flows to stabilize the
solver (Mirjalili et al. 2019). The discrete analogue of all the mathematical operations
performed in this section will be presented in future work.

7. Energy equation: entropy conservation form

Entropy is not conserved in a diffuse-interface method even in the inviscid limit due to
the regularization of the interface (irreversible process), which leads to the reorganization
of mass, momentum, and potentially also energy, as illustrated in Figure 3. Entropy
should only be conserved if the interface is already perfectly regular and the effects of
all the regularization terms are identically zero. Thus, we seek to achieve approximate
entropy conservation instead of exact conservation and derive the conservative form of
the regularization terms in the energy equation with the constraint that it should satisfy
he IEC. We first look at the case of exact entropy conservation and show that it doesn’t
satisfy the IEC, and then look at the case where the IEC is satisfied and then state that
entropy is not conserved.

Lemma 7.1. Let sl be the physical entropy and Tl be the temperature of phase l. Then
the form of the internal energy equation that satisfies (entropy conservation)

2∑

l=1

[
ρlφlTl

Dsl
Dt

]
= 0 (7.1)

in the inviscid limit is

∂ρe

∂t
+ ~∇ · (ρ~ue) + ~∇ · (p~u)− ~u · ~∇p =

2∑

l=1

{
hl~∇ · (ρl~al)

}
. (7.2)

Proof. Let the internal energy equation be of the form

Dρe

Dt
+ ρh(~∇ · ~u) +X = 0, (7.3)

where X is the unknown term to be determined. Expressing the internal energy in terms
of phase quantities

Dρe

Dt
=

2∑

l=1

D(φlρlel)

Dt
=

2∑

l=1

[
φl
D(ρlel)

Dt
+ ρlel

Dφl
Dt

]
, (7.4)

we then use Gibb’s relation to get

d(ρlel) = ρldel + eldρl = ρlTldsl + hldρl. (7.5)
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Using this in Eq. (7.3) results in

2∑

l=1

[
ρlφlTl

Dsl
Dt

+ φlhl
Dρl
Dt

+ φlhlρl(~∇ · ~u) + ρlel
Dφl
Dt

]
+X = 0. (7.6)

Now, using Eqs. (3.5)–(3.6), one obtains

2∑

l=1

[
ρlφlTl

Dsl
Dt

+ hl~∇ · (ρl~al)− pl(~∇ · ~al)
]

+X = 0. (7.7)

Hence, if X =
∑2
l=1{pl(~∇·~al)−hl~∇· (ρl~al)}, then the condition in Eq. (7.1) is satisfied.

Now, invoking the isobaric closure law (Section 3),
∑2
l=1{pl(~∇ · ~al)} = 0, and the proof

is complete.

The internal energy equation of the form in Eq. (7.2) does not satisfy the IEC, which
also alludes to the fact that the entropy is not conserved exactly in a diffuse-interface
method with regularization terms. Since we now only seek approximate entropy conser-
vation, we modify the regularization term in Eq. (7.2) such that it satisfies the IEC, and
the conservative form of the regularization term is restored. Thus, we arrive at the final
form of the internal energy equation (taking the hl on the right-hand side of Eq. (7.2)
inside the divergence operator)

∂ρe

∂t
+ ~∇ · (ρ~ue) + ~∇ · (p~u)− ~u · ~∇p =

2∑

l=1

~∇ · (ρlhl~al). (7.8)

In compressible flows, internal energy is not a conserved quantity, but the sum of
internal and kinetic energy is conserved. Hence, summing up the internal energy transport
equation (Eq. (7.8)) and the kinetic energy transport equation (Eq. (6.4)), we obtain

∂E

∂t
+ ~∇ · (~uE) + ~∇ · (p~u) = ~∇ · (~fk) +

2∑

l=1

~∇ · (ρlhl~al). (7.9)

Clearly, all the terms in this equation are in conservative form as desired, and since
this equation was obtained by summing the forms of internal energy and kinetic energy
equations that satisfied the IEC, this form of the total energy equation also satisfies
the IEC. With the inclusion of viscous terms, we get the final form of the total energy
transport equation in Eq. (3.8).

8. Interface equilibrium condition

In incompressible flows, the divergence-free condition constraints the velocity and pres-
sure fields, and hence eliminates the possibility of any spurious solutions at the interface
(in the absence of surface tension forces). However, such a constraint in compressible flows
is absent, and thus care must be taken in the implementation of any numerical scheme in
order to avoid spurious solutions at the interface. The IEC provides a consistency con-
dition to check and eliminate the forms of the model and the numerical discretizations
that contribute spuriously to the solution.

Lemma 8.1. The proposed conservative diffuse-interface model in Eqs. (3.5)-(3.8) sat-
isfies the IEC defined in Postulate (3.1).
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Proof.

Part (a). Mechanical equilibrium: uniform velocity across the interface

Consider a one-dimensional discretization of the mass balance equation (Eq. (3.6)) on a
uniform grid, assuming uki = u0

(ρlφl)
k+1
i − (ρlφl)

k
i = −∆t

[
(ρlφl)i+1 − (ρlφl)i−1

2∆x

]k
u0 + ∆t

[
Rl,i+1 −Rl,i−1

2∆x

]k
, (8.1)

where k is the timestep and i is the grid index. Now, consider a one-dimensional dis-
cretization of the momentum equation (Eq. (3.7)) on a uniform grid, assuming uki = u0

and pki = p0

(ρu)k+1
i − ρki u0 = −∆t

[
ρi+1 − ρi−1

2∆x

]k
u2

0 + ∆t

[∑2
l=1Rl,i+1 −

∑2
l=1R1,i−1

2∆x

]k
u0. (8.2)

Subtracting this from the sum of the discrete mass balance equations for phases 1 and 2
gives uk+1

i = u0.

Part (b). Thermodynamic equilibrium: Uniform pressure across the interface

Consider a one-dimensional discretization of the internal energy equation (Eq. (7.8)) on
a uniform grid, assuming uki = u0 and pki = p0 and using Eq. (3.11)

2∑

l=1

(φlρlel)
k+1
i −

2∑

l=1

(φlρlel)
k
i = −∆t

2∑

l=1

[
(ρlelφl)i+1 − (ρlelφl)i−1

2∆x

]k
u0

+∆t

[
2∑

l=1

{p0(1 + αl)− βl
αl

}{al,i+1 − al,i−1

2∆x

}]k
,

(8.3)

and expressing el in terms of pl using the EOS results in the discretized equation for
pressure

( 2∑

l=1

φl
αl

)k+1

pk+1
i −

( 2∑

l=1

φlβl
αl

)k+1

−
( 2∑

l=1

φl
αl

)k
p0 +

( 2∑

l=1

φlβl
αl

)k

= −∆t

[(∑2
l=1

φl

αl

)
i+1

p0 −
(∑2

l=1
φlβl

αl

)
i+1
−
(∑2

l=1
φl

αl

)
i−1

p0 +
(∑2

l=1 φlβl

αl

)
i−1

2∆x

]k
u0

+∆t

[
2∑

l=1

{p0(1 + αl)− βl
αl

}{al,i+1 − al,i−1

2∆x

}]k
.

(8.4)
Now, let L(φl) be a one-dimensional discretization of the volume fraction advection
equation for phase l (Eq. (3.5)) on a uniform grid. Assuming uki = u0, and subtracting Eq.

(8.4) from the equation
(∑2

l=1 L(φl)/αl

)
p0 −

(∑2
l=1 L(φl)βl/αl

)
, results in pk+1

i = p0.
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FIGURE 4. Strong scaling of the two-dimensional version of the solver on Mira, ANL. (a)
Speedup is plotted against the number of cores for a test problem of size 360, 000 grid
points. (b) The number of grid points per core is plotted against the number of cores for
the same simulation.

9. Results

To verify the proposed model, we have written two versions of this solver in C++
(in two and three dimensions). This solver can also run in parallel using a Message
Passing Interface (MPI) library with arbitrary Cartesian-based domain decomposition.
The parallel-scaling efficiency of the two-dimensional version of this solver has been
computed on the Mira supercomputer at Argonne National Laboratory (ANL), and the
strong-scaling results are shown in Figure 4. For a test problem of size 360, 000 grid points,
good strong scaling was achieved up to about 288 cores, i.e., up to 1250 grid points per
core. Further rigorous scaling analyses on larger problems, the three-dimensional solver,
and also the weak-scaling analyses will be presented in the future. The solver has been
optimized by using contiguous memory allocations for the arrays and the amount of
communication has been minimized by the use of custom-defined MPI datatypes.

In the rest of this section, two verification tests used to assess the newly proposed
model are presented. The verification tests used in this work are (a) pressure-driven
bubble oscillation and (b) the interaction of a plane acoustic wave with a flat air-water
interface. In all the test cases, the fluids used are air and water, and their properties are
listed in Table 1. In all the test cases, the initial profile of φ is analytically specified with
an initial value of ε0 = 2∆x, unless specified otherwise.

9.1. Rayleigh-Plesset equations

For the test case of pressure-driven bubble oscillation, we compare the results against the
analytical solution of the Rayleigh-Plesset equation. In three dimensions, the Rayleigh-
Plesset equation can be written as (Brennen 2013)

PB(t)− P∞(t)

ρ
= RR̈+

3

2
(Ṙ)2 +

4νṘ

R
+

2σ

ρR
, (9.1)
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air water

ρ (kg/m3) 1.225 997
µ (N/m2) 1.81e-5 8.9e-4
γ 1.4 4.4
π (MPa) 0 600

TABLE 1. Properties of the fluids used in this work.

where PB(t) is the uniform pressure inside the bubble, P∞(t) is the liquid pressure at
infinity, R(t) is the radius of the bubble, ρ is the liquid density, ν is the liquid kinematic
viscosity, σ is the surface tension, which is taken to be zero in this work, and each dot
represents the d/dt. A two-dimensional Rayleigh-Plesset equation does not exist and
cannot be derived due to the presence of a logarithmic singularity at infinity. However,
a finite-domain analytical solution can still be derived and can be used to verify the
numerical solution. Hence, we derive a two-dimensional equivalent of the Rayleigh-Plesset
equation for finite-size domains. Typically, the Rayleigh-Plesset equation is derived by
integrating the mass and momentum conservation equations in the liquid region around
the bubble. The liquid is assumed to be incompressible, and the bubble is assumed
to oscillate in only the first volumetric mode, which is axisymmetric in nature. Now,
balancing the mass in the liquid region between the radius of the bubble, R(t), and a
distance r from the center of the bubble, we can write the radial velocity at a radius r as

u(r, t) =
R(t)

r

dR(t)

dt
. (9.2)

Starting with the radial component of the incompressible Navier-Stokes equation in
polar coordinates

∂u

∂t
+ u

∂u

∂r
= −1

ρ

∂p

∂r
+ ν

{
1

r

[
∂

∂r

(
r
∂u

∂r

)]
− u

r2

}
, (9.3)

and substituting for the velocity from Eq. (9.2), we obtain

1

r

{[
dR(t)

dt

]2

+R(t)
d2R(t)

dt2

}
− R2(t)

r3

[
dR(t)

dt

]2

= −1

ρ

∂p

∂r
. (9.4)

This equation is valid in the liquid region, and hence can be integrated from the surface
of the bubble, R(t). If we integrate this to infinity, we encounter a logarithmic singularity
unlike in the three-dimensional Rayleigh-Plesset equation. To avoid this, we integrate Eq.
(9.4) to a finite distance S from the center of the bubble and obtain

PR(t)− PS(t)

ρ
= ln

{
S

R(t)

}{[
dR(t)

dt

]2

+R(t)
d2R(t)

dt2

}
+

[
R2(t)− S2

2S2

](
dR(t)

dt

)2

,

(9.5)
where PR and PS are the liquid pressures at the surface of the bubble (r = R) and
r = S, respectively. Now, balancing the pressure, viscous, and surface tension forces at
the surface of the bubble

0 = −PR(t) + 2µ
∂u

∂r
[R(t), t] + PB(t)− σ

R(t)
, (9.6)
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FIGURE 5. Schematic of the domain used in the case of pressure-driven bubble oscillation.

and substituting in Eq. (9.5), we obtain the two-dimensional equivalent of the Rayleigh-
Plesset equation for the finite-size circular domain

PB(t)− PS(t)

ρ
= ln

(
S

R

){
(Ṙ)2 +RR̈

}
+

(
R2 − S2

2S2

)
(Ṙ)2 +

2νṘ

R
+

σ

ρR
. (9.7)

9.2. Pressure-driven bubble oscillation

In this test case, an air bubble of diameter 4 µm is placed at the center of a square domain
of size 10 µm× 10 µm, as shown in Figure 5. On all four sides of the domain, a Dirichlet
boundary condition of the form 105{1 + 0.1 sin(10ωct)} for the pressure and a Neumann
boundary condition for the velocity are imposed, where ωc = 10208967.75 s−1 is the
characteristic resonance frequency of the bubble (Minnaert 1933). The φ field is initial-
ized with an analytical hyperbolic-tangent function (equilibrium solution of the volume

fraction regularization term in Eq. (3.5)) given by 1−0.5
{

1+tanh
(√

x2 + y2 − r/ε0
)}

,

where r is the radius of the bubble.

The solution was numerically integrated for a total of 50 µs physical time. Four different
grid sizes were chosen, 50 × 50, 100 × 100, 200 × 200, and 600 × 600, to study the
convergence of the solution. Timesteps were chosen based on the acoustic CFL condition
for the particular grid size. The interface parameters Γ = |u|max and ε = ∆x were used
for all the simulations. Results from the various grid sizes are shown in Figure 6 and
are compared with the semi-analytical solution obtained from numerically integrating
the ordinary differential equation in Eq. (9.7) along with the ideal-gas law, where the
bubble area is computed as

∫
φdV in the simulations. Figure 6 shows the bubble response

at initial times (0 µs to 0.6 µs) and at later times (20 µs to 20.25 µs). The initial
transient response of the bubble shows a clear convergence of the numerical solution
to the analytical solution with the increase in grid size. Moreover, the solution is very
accurate even on the coarsest grid for the bubble response at later times (Figure 6(b)).
This test case also shows that the numerical solution is stable for long-time integrations.
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FIGURE 6. Bubble response at (a) initial and (b) later times.
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FIGURE 7. Schematic of the domain used in the case of interaction of a plane acoustic
wave with a flat air-water interface.

9.3. Interaction of a plane acoustic wave with a flat air-water interface

In this test case, a long three-dimensional domain of size 10 µm×0.1 µm×0.1 µm is used,
with a flat air-water interface located at x = 5 µm, as shown in Figure 7. The domain is
filled with air for x < 5 µm and water for x > 5 µm. Perflectly reflecting wall boundary
conditions are imposed on the domain face at x = 0 µm, and periodic boundary conditions
are imposed for the faces at y = 0 µm, y = 0.1 µm, z = 0 µm, and z = 0.1 µm. For the
wall at x = 10 µm, a Dirichlet boundary condition of the form 105{1− 0.5 sin(c2π/λt)}
for the pressure and a Neumann boundary condition for the velocity are imposed for
t < 614.5 ps, where λ = 1 µm and c is the speed of sound in water. Later, it is switched
to a perfectly reflecting wall boundary conditions for t > 614.5 ps such that a half-wave
is generated at the boundary and its propagation in the domain can be monitored. The

φ field is initialized with the analytical function 1 − 0.5
{

1 + tanh
(
x− x0/ε0

)}
, where

x0 is the location of the interface.
The solution was numerically integrated for a total of 1 µs physical time. A grid of size

1000× 10× 10 was used in this simulation along with the timestep size of ∆t = 1ps. The
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interface parameters Γ = |u|max and ε = ∆x were used for all the simulations. Results
from the simulation are shown in Figure 8. The pressure along x is plotted at various
times for y = z = 0.05 µm. The acoustic wave interacts with the air-water interface and
reflects back, as can be seen from the results at 3ns, 3.5ns and 4ns. Clearly, nothing gets
transmitted across the interface, and the reflected wave amplitude is approximately equal
to the incident wave amplitude but the wave is flipped. This behavior of reflection and
transmission of an acoustic wave across a flat air-water interface can be predicted using
linear acoustic theory. The reflection coefficient is given by R = (Za − Zw)/(Za + Zw) =
−0.999516, and the transmission coefficent is given by T = 2Za/(Za + Zw) = 4.8×10−3,
where Za and Zw are the acoustic impedance for air and water, respectively. R being
roughly equal to−1 indicates that the reflected wave amplitude is the same as the incident
wave amplitude and the wave is flipped. T being roughly equal to 0 indicates that nothing
gets transmitted across the interface. Hence, the numerical solution is in good agreement
with the theoretical prediction. Solutions at 6.5ns and 12.5ns also show the pressure-
doubling behavior at the wall, which is again predicted by the theory (Blackstock 2000).

10. Summary and future work

In this study, we propose a conservative diffuse-interface method for the simulation
of compressible two-phase flows with turbulence and acoustics. The advantages of our
method compared to the state-of-the-art methods are (a) discrete mass, momentum,
and total energy conservation, (b) non-dissipative spatial discretization, (c) stability for
long-time integrations, (d) thermodynamic consistency at the interface, and (e) kinetic
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energy conservation (i.e., no spurious contribution to the solution) and approximate
entropy conservation.

Current study is focused on a shock-free compressible regime (low-Mach number regime),
but shocks in a high-Mach number regime can potentially be handled with the implemen-
tation of the localized artificial bulk viscosity approach (Mani et al. 2009; Kawai et al.
2010). Furthermore, extensions to include surface tension, dispersion-relation preserving
schemes, and skew-symmetic splitting (Honein 2005) are being tested and will also be
discussed in future work.
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