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Continuum numerical modeling of rarefied flows
with slip-wall boundary conditions

By S. S. Jain, E. Song7, H. Hwang AND P. Moin

1. Motivation and objectives

Rarefied gas flows are encountered in low-pressure environments such as in high-flying
aircraft, re-entry of space vehicles, and dynamics of Earth satellites, and also at standard
pressure conditions in microfluidics and microelectromechanical systems. One such appli-
cation is the manufacturing process of layers of organic light-emitting diodes (OLEDs).
In the production process, organic molecules pass through a series of pipes between the
chambers as well as nozzles, which causes a severe pressure drop due to an abrupt change
in the cross-section of the flow, before they are deposited on to a substrate. Maintaining
the uniformity of the thickness of the OLED layers is crucial for the production process,
and this requires an accurate control of the system.

The pressure of the OLED production process ranges from 0.1 Pa down to 10~° Pa.
At such low pressures, the flow becomes rarefied and can no longer be considered a
continuum. The classical continuum methods break down for rarefied gas flows and non-
equilibrium effects need to be included, which pose severe challenges in both experiments
and numerical simulations of these flows. The traditional Navier—Stokes equations with
a no-slip boundary condition becomes inaccurate and underpredicts the mass flow rate
(Maurer et al. 2003; Ewart et al. 2007). The behavior of a rarefied gas flow is accurately
described by the Boltzmann equation (Sone 2002). However, solving the Boltzmann equa-
tion is computationally challenging due to the cost and the complicated structure of the
molecular collision term (Dongari & Agrawal 2012). Therefore, the objectives of this
study are to perform numerical simulations of rarefied flow using the traditional Navier-
Stokes equations and to assess the accuracy of slip boundary conditions in accounting
for the non-equilibrium effects in the rarefied regime.

2. Methods
2.1. Regimes of rarefied flow

Rarefied gas flows are characterized by high Knudsen numbers (Kn). Kn is defined
as the ratio of the mean free path, A\, to the characteristic length scale of the flow
system, [, which serves as a parameter distinguishing different flow regimes: the slip
regime 1072 < Kn < 10~1, the transition regime 10~! < Kn < 10 and the free-molecular
regime Kn > 10 (Chambre & Schaaf 2017). The theories of the free-molecular regime and
the transition regime are relatively well-developed, while the transition regime requires
better understanding and is, therefore, the focus of this study.

The conventional no—slip boundary condition at the solid—fluid interface is applied to
flows in the continuum limit (Kn < 1). For high-Kn flows, however, the velocity slip
is proportional to the mean free path. Thus, for rarefied gas flows, it is questionable to
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apply no-slip boundary condition at the wall. A variety of models exist in the literature
to address this problem.

Maxwell (1879) derived the first-order slip model. This model in the most general form
(assuming isothermal conditions) can be written as

" 2—a\ .
Uslip = (W) ATy, (2-1)

where 7; is the tangential shear stress and « is the tangential momentum accommodation
coefficient. For fully developed flows with planar walls, when used with the Navier-Stokes
equations with a linear stress-strain constitutive relationship, this model reduces to the
form

. ou
Uslip = AIAFya (22)
where A; = 2 — a/a. However, the first-order model is valid only for infinitesimally

small Mach and Reynolds numbers and up to Kn ~ 1. This first-order model also fails
to predict the Knudsen minimum-—a minimum in the normalized mass flow rate around
Kn ~ 1—that is observed in experiments (Cercignani & Daneri 1963).

To overcome the shortcomings of the first-order model, many higher-order models
have been proposed in the literature (Cercignani & Daneri 1963; Hsia & Domoto 1983;
Hadjiconstantinou 2003). The general form of the second-order slip model can be written
as

2
Qu g2l
9y dy?
where A, is the empirical coefficient for the second-order term. In wall-dominated flows,
typical of microfluidic applications, the accuracy of the overall solution is greatly depen-
dent on the accuracy of the boundary condition. This is used as a justification for using
a higher-order boundary condition while still using a first-order stress-strain relation
(Navier-Stokes equations) for the bulk of the flow (Lockerby et al. 2004).

The discrete system of Navier-Stokes equations when used along with the second-
order slip model results in an ill-posed system. Lockerby et al. (2004) showed that the
second-order model can be considered a simplification of the Maxwell slip model when
the tangential stress is written in terms of higher-order stress terms. Therefore, it is
advisable to use the second-order slip models along with the Burnett equations that
have higher-order stress terms. But the Burnett equations are numerically challenging
and expensive to solve. This has motivated researchers to use higher-order slip boundary
conditions with Navier-Stokes equations, assuming that the improvement in the accuracy
of the boundary condition is sufficient to capture the overall accuracy of the solution.

Alternatively, Dufresne (1996) suggested that the pressure gradient in the Knudsen
layer is important to capture the characteristics of the flow. Therefore, the first-order
slip model can be modified to include pressure gradient effects, to improve the accuracy
of the solution. In this study, we refer to this model as the first-order model with pressure
compensation. The first-order slip boundary condition along with the pressure gradient
term can be written as

Tatip = AL\ (2.3)

ou A Op
Ustip = AN — — Ag—— —, 2.4
Uslip 1 dy ape Oz (2.4)
where Az is the empirical coefficient for the pressure gradient term and c is the speed of
sound.

Beskok & Karniadakis (1999) developed an empirical model and illustrated that it
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FIGURE 1. Microchannel geometry.
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FIGURE 2. Pictorial representation of the system of equations being solved.

works for a wide range of Kn. Nonetheless, this model has constants that needs to be
determined by experimental observations or molecular simulation data. The performance
of the models on complex geometries also needs to be validated with special care. Thus,
this model is not used in this work.

The coefficients that involve tangential momentum accommodation coefficient («) are
nondeterministic; thus, fitting on to the experimental data is unavoidable. Several ex-
periments suggest that various factors affect these coefficients. Agrawal & Prabhu (2008)
review several experimental techniques to determine the value of «, nature of the gas,
pressure of the gas, surface material, surface cleanliness, surface temperature, gas-solid
pair, surface roughness, and curvature. Thus, a procedure to compute deterministic co-
efficients based on these parameters is desired.

2.2. Geometry and simulation setup

In this study, the full implicit solver in the COMSOL software package is used for numer-
ical simulations. The first-order slip, second-order slip, and first-order slip with pressure
compensation boundary conditions are implemented in this software package. For the
purpose of evaluating the models, we use a rectangular channel geometry from Ewart et
al. (2007), shown in Figure 1. The dimensions of the channel are length L = 9.39 mm,
height H = 9.38 pym, and width 492 pym. Because the channel length is much longer than
its height, the end effects of the channel can be neglected. There are reservoirs on both
ends of the channel, which are used in the experiments to maintain a constant pressure
at the ends of the channel and to reduce the end effects. We use the reservoirs in the
simulation to mimic the experimental setup as closely as possible.

Pressures at the entrance, P;,, and exit, P,,;, of the channel are maintained at constant
values, and the mass flow rate at the final steady state is calculated from the simulation.
We use the tabulated pressure values in the paper by Ewart et al. (2007), and these
values approximately correspond to the range of Kn from 0.05 to 50. We then compare
the mass flow rate from the simulations with the experimental values.

2.3. Determination of coefficients

The system of equations along with the boundary conditions can be written in a concise
form as ¢, as shown in Figure 2. Here, P;,, and P,,;, which represent the inlet and outlet
pressures, respectively, are the inputs; 74, which represents the computed mass flow
rate, is the output; a, Ao, and A3 are the parameters of the system.

Each pair of P;, and P,,; results in rig,, and the error in the mass flow rate can
be calculated as E = |rfgim — Meap|, Where my, represents the experimental mass flow
rate for a given P;, and P,,;. Thus, if a second-order slip model is used, we have two
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FIGURE 3. Mass flow rate for various P;, and P,,: values and comparison of the numerical
simulations with no-slip, first-order slip, second-order slip, and first-order slip with pressure
compensation boundary conditions against the experimental data.

unknown coefficients, o and As, that are to be determined, but each pair of P;,, and P,
gives a non-zero error F. Therefore, the system is overdetermined. To solve this problem,
we set up a non-linear least-square problem that minimizes the sum of E from all the
pairs of P;,, and P,;.

3. Results

In this section, we first compute the coefficients in the first-order slip model [Eq.
(2.2)], second-order slip model [Eq. (2.3)], and the first-order slip model with pressure
compensation [Eq. (2.4)], to simulate rarefied flow with the Navier-Stokes equations,
using the procedure described in Section 2.3. We then evaluate the models by comparing
the mass flow rate, computed at various Kn, to experimental observations. Most previous
studies in microfluidic applications that tried to evaluate or determine the coefficients
in the slip models were theoretical. Typically, the mass flow rate is computed in simple
geometries along with various simplifications and assumptions, such as a fully developed
flow which is not always satisfied, and then compared with the experimental results. Our
goal here is to use numerical simulations to solve the Navier-Stokes equations fully when
coupled to the slip models to correctly capture the behavior of the flow and determine
the coefficients that can be used for the simulation of the full crucible geometry.

We use the least-square minimization procedure described in Section 2.3 to separately
compute the coefficients for first-order slip and second-order slip boundary conditions.
The results from this procedure yielded values of o = 0.943 and Ay = 0.195. The com-
puted mass flow rate is plotted for various P;, and P,,; values and compared against
the experiments in Figure 3. There is a clear improvement in the mass flow rate calcula-
tion with first-order boundary condition compared with the no-slip boundary condition.
The use of the second-order boundary condition also results in improvement compared
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FIGURE 4. Normalized mass flow rate for various Kn values and comparison of the numerical
simulations with first-order slip, second-order slip, and first-order slip with pressure compensa-
tion boundary conditions against the experimental data.

with the first-order boundary condition. But because the system is ill-posed with the
second-order boundary condition, we instead choose to include the effect of the pressure
gradient in the first-order slip boundary condition to improve the accuracy of the sim-
ulation, as in Eq. (2.4). Following the same least-square minimization procedure above
for this boundary condition, the coefficient was found to be A3 = 0.1. Results are shown
in Figure 3.

When the normalized mass flow rate is plotted against Kn, a minimum is observed in
the mass flow rate at around Kn =~ 1, which is referred to as the Knudsen minimum. It
is generally known in the literature that the first-order slip model does not capture this
Knudsen minimum, which was the motivation to use higher-order slip models. We observe
the same behavior with the first-order slip model, as shown in Figure 4. However, the
first-order slip model with pressure compensation recovers the Knudsen minimum and,
therefore, seems promising.

4. Conclusions

In this work, we evaluated slip boundary conditions for simulating rarefied flow in
a microchannel with Navier-Stokes equations. The first-order slip boundary condition
improves the mass flow rate compared with the no-slip boundary condition, but does
not predict the Knudsen minimum. The second-order boundary condition captures this
Knudsen minimum, but this boundary condition when coupled to the Navier-Stokes
equations results in an ill-posed system. Therefore, we explore the inclusion of a pressure
gradient in the slip boundary condition and show that this results in an improved mass
flow rate prediction while maintaining the well-posedness of the system. Additionally,
this boundary condition recovers the Knudsen minimum behavior. Work is underway on
a microtube geometry to test the accuracy of the slip models in a different geometry.
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