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Modeling interface-confined scalars and insoluble
surfactants in two-phase flows

By S. S. Jain AND A. Mani

1. Motivation and objectives

The transport of scalars on evolving interfaces in fluids is a ubiquitous phenomenon
across a broad range of processes in nature and in engineering, and is worthy of modeling.
We, here, refer to an interface-confined scalar as any passive or active scalar quantity
that is transported along an evolving/deforming interface. These scalars could repre-
sent charged species (Chu & Bazant 2007), surfactants (Hargreaves 2007), or any other
conserved scalar quantity.

Surfactants lower the surface tension properties and generate Marangoni forces, which
are useful in controlling the dynamics of multiphase flows. They are transported with
the interface due to convection, diffuse along the interface when there is a concentration
gradient, and can also be exchanged (adsorbed/desorbed) between the bulk and the
interface (Defay et al. 1966). Surfactants have applications in industry in emulsification
and mixing, drug delivery, droplet manipulation in microfluidics (Eggleton et al. 2001;
Booty & Siegel 2005; Baret 2012; Pit et al. 2015), drag reduction (Manfield et al. 1999),
and are important for the functioning of lungs (Yap & Gaver III 1998).

Research on modeling surfactants dates back to Stone (1990) and Wong et al. (1996).
They derived a transport equation for the conservation of surfactants on evolving inter-
faces, given by
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where ¢ is the interfacial scalar concentration (amount of scalar per unit area of the
interface) and V, = (I — 7 ® @)V is the surface gradient. The effects of surfactants on
drop/bubble deformation and breakup have been studied theoretically or semi-analytically
by Stone & Leal (1990); Milliken et al. (1993); Milliken & Leal (1994); Pawar & Stebe
(1996); Siegel (1999). One of the first coupled numerical simulations studying the effect
of surfactants on the flow around bubbles was done by Cuenot et al. (1997). Since then,
various methods have been proposed in the past for modeling insoluble surfactants. Using
a boundary integral method, Li & Pozrikidis (1997); Yon & Pozrikidis (1998); Eggleton
et al. (1999) studied the effect of insoluble surfactants on drops in Stokes flow, and
Eggleton et al. (2001) simulated the tip streaming breakup of drops. A coupled grid-
based particle method with an implicit boundary integral method was also proposed by
Hsu et al. (2019).

In continuum approaches, and in the context of sharp-interface methods, insoluble
surfactants have been modeled using a volume-of-fluid method by Renardy et al. (2002);
Drumright-Clarke & Renardy (2004); James & Lowengrub (2004), using a Lagrangian-
based finite-element formulation by Pozrikidis (2004); Ganesan & Tobiska (2009); Venkate-
san et al. (2019); Frachon & Zahedi (2023), using a segment projection method by Khatri
& Tornberg (2011), using a level-set method by Xu & Zhao (2003); Xu et al. (2006, 2012),
using a front-tracking method with adaptive mesh refinement by de Jesus et al. (2015),
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using an immersed-boundary method by Lai et al. (2008), and using hybrid methods by
Ceniceros (2003); Cui (2011).

In the context of diffuse-interface methods, a free energy functional-based model has
been used to model surfactants by Van der Sman & Van der Graaf (2006); Yun et al.
(2014), and the well-posedness of the system has been studied by Engblom et al. (2013);
Abels et al. (2019); Di Primio et al. (2022). All the methods use a Cahn-Hilliard-based
diffuse-interface framework for modeling surfactants (Teigen et al. 2009, 2011; Garcke
et al. 2014; Ray et al. 2021). More recently, the effects of surfactants on breakup and
coalescence of droplets in a turbulent flow, was studied by Soligo et al. (2019), along
with their feedback effect on the flow by Soligo et al. (2020). However, to the best of our
knowledge, there is no model for transport of surfactants or interface-confined scalars for
second-order phase-field methods.

We recently developed a model for transport of scalars in the bulk in Jain & Mani
(2023), given by
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where ¢ is the scalar concentration (amount of scalar per unit volume), and showed that
the model results in the consistent transport of scalar with the phase-field variable and
will not result in artificial leakage of scalar across the interface. This model was also
extended to include transfer across the interface by Mirjalili et al. (2022).

The primary objective of the present work is to propose a computational model for
transport of scalars that are confined to material interfaces. In this work, we propose a
consistent method that results in leakage-proof transport of scalars along the convecting
and deforming material interface. We prove and show that the scalar remains positive,
which is a physical-realizability condition, using second-order central-difference schemes.

‘We use a second-order phase-field method, particularly the accurate conservative phase-
field/diffuse-interface (ACDI) method by Jain (2022), for modeling the interface in a
two-phase flow. The proposed model in this work can also be used with a conserva-
tive phase-field/diffuse-interface (CDI) method (Chiu & Lin 2011), a conservative level-
set (CLS) method (Olsson & Kreiss 2005), an accurate conservative level-set (ACLS)
method (Desjardins et al. 2008), including compressible diffuse-interface methods (Jain
et al. 2020, 2021), and any other method that results in a hyperbolic tangent interface
shape in equilibrium, and when the volume fraction ¢ is bounded between 0 and 1. For
coupling with other models, like a Cahn-Hilliard model where the volume fraction takes
values between —1 and 1, the proposed model can be affine transformed with respect to
the order parameter, such that the change in the range from [0, 1] to the range of values
of ¢ that the interface-capturing model admits is accounted for.

We present one-way coupled simulations of transport of scalars confined to the inter-
face to illustrate the accuracy, consistency, and robustness of the proposed method in
localizing the scalar to the interface location and in maintaining the leak-proof condition.
The two-way coupled (coupling back with hydrodynamics) simulations are deferred to a
future work.

2. Phase-field model

In this work, we use the recently developed accurate conservative phase-field/diffuse-
interface model (ACDI) by Jain (2022), which is an Allen-Cahn-based second-order
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phase-field model given by

0 = . = -1 2 (V] Vo

where ¢ is the phase-field variable that represents the volume fraction, u is the velocity,
I" represents the velocity-scale parameter, € is the interface thickness scale parameter,
and ® is an auxiliary signed-distance-like variable given by
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where ¢ = 10719 is a small number. The parameters are chosen to be I' > |4, and € >

0.5Az, along with At satisfying the explicit Courant-Friedrich-Lewy criterion, to main-
tain the boundedness of ¢ (Jain 2022).

The ACDI model is known to be more accurate than other phase-field models because
it maintains a sharper interface (with only one-to-two grid points across the interface)
while being robust and conservative, without the need for any geometric treatment.

3. Proposed model for the transport of scalars/surfactants on evolving
interfaces

The proposed model for the transport of interface-confined scalars and insoluble sur-
factants on an evolving interfaces is

Sea V(@) =9 [p{ve- 2020, (3.1)

where D is the diffusivity of the scalar, and 7 = V¢/|V¢| = Vi)/|V4| is the interface
normal vector. The second term on the right-hand side (RHS) of Eq. (3.1) is an artificial
sharpening term. The effect of this sharpening flux is to prevent the diffusion of the scalar
on both sides of the interface and to confine it to the interface region, which is illustrated
in Figure 1.

Note the similarity of this sharpening flux to the model for transport of scalars in
the bulk in Eq. (1.2), where the scalar is confined to one of the phases. The difference
between the proposed model in Eq. (3.1) and the one in Eq. (1.2) is the sharpening flux.
The sharpening flux in Eq. (1.2) acts along one direction and prevents the leakage of the
scalar from one of the phases into the other phase, whereas in Eq. (3.1), the sharpening
flux acts in both directions, preventing the scalar from diffusing away from the interface
region into either of the phases on both sides of the interface.

3.1. Consistency and equilibrium solution

It is well known that the equilibrium solution (when I' — o0) for the phase-field model
in Eq. (2.1) is a hyperbolic tangent function given by

1 x x
Now, taking a derivative of the equilibrium solution, we obtain
1
¢, (3.3)

ea ™ 4¢ cosh? (%)
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FIGURE 1. Schematic representing the effect of sharpening flux fuparp = D2(0.5 — ¢)iic/e in the
model. Here, ¢ and c are plotted at equilibrium to illustrate their equilibrium solutions: ¢ ~ ¢¢q
and ¢ ~ ¢,.

This function is analogous to a Dirac delta function, a derivative of a step function, for the
hyperbolic tangent function. Hence, a consistent transport model for interface-confined
scalars and insoluble surfactants should possess an equilibrium solution of the form in
Eq. (3.3). Both ¢¢, and ¢, are shown in Figure 1.

To verify the equilibrium solution for the proposed model in Eq. (3.1), let’s assume
steady state, and ¥ = 0. In one dimension, the proposed model reduces to the form

0_ % [D {%_ 2(0.5—¢)ﬁc}] | e 1d{205-¢)} _ 5.0
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for 7 = +1. Assuming the interface is at the origin and is in equilibrium, then

¢:¢eq:m:%{l+tanh(£>}. (3.5)

Using Eq. (3.5) and solving for ¢ by integrating the Eq. (3.4) and using the boundary
conditions

and — —0 for z — —o0, (3.6)
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Therefore, the equilibrium kernel function for the proposed model in Eq. (3.1) is ceq ~ ¢,
[Eq. (3.3)]. Hence, the model is consistent with the phase-field model. This results in the

transport of the scalar along the interface without any unphysical numerical leakage into
either of the phases on the two sides of the interface.

(3.7)

3.2. Generalized model
The proposed model in Eq. (3.1) can be generalized as

Se4 90 =9 [p{ge- W02 (39)

where a is a constant. Theoretically, any value for a is valid, provided the positivity is
maintained (see, Section 6.1.2), and a higher value for a results in sharper representation
of the scalar at the interface, which is illustrated in Section 6.1.3. However, note the model
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is only exactly consistent with the phase-field model for a = 2, which is the recommended
value.

3.3. Two-way coupling and soluble surfactants

Some surfactants are also soluble in the bulk phase. Some are soluble in both bulk phases
and some are soluble in only one of the bulk phases, but for either case, the proposed
model in this work can be coupled with the scalar transport model in Jain & Mani (2023),
which will account for the transport of the scalar in the bulk phase. This coupling between
surface and bulk phases can be incorporated using source/sink terms. Furthermore, to
account for two-way coupling with hydrodynamics, a Langmuir equation of state or a
linearized version of this equation of state can be used. Both two-way coupling and soluble
surfactants are deferred to future work.

3.4. Relationship with the sharp-interface surfactant-transport models

The sharp-interface model in Eq. (1.1) can be rewritten in a distribution form (Teigen
et al. 2009) as

0 (gfs) +V (@) =V - (D(sﬁe) , (3.9)

where §, is a surface delta function, defined as

/édyz/éésdw7 (3.10)
y Q

where «y is the interface and Q is the domain. The model in Eq. (3.9) can be solved
directly by assuming a form for the surface delta function, an approach that was taken
by Teigen et al. (2009). They used §; = 3v/2¢%(1 — ¢)?/e and solved Eq. (3.9) with a
Cahn-Hilliard phase-field model. However, this approach requires dividing ¢ds by ds to
compute ¢ in the diffusion term in Eq. (3.9), which could result in robustness issues.

The proposed model in Eq. (3.1) can be derived starting from the transport equation
in Eq. (3.9) by relating ¢ and ¢ as

C
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Using this relation in Eq. (3.9),
oc = - - c =
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invoking equilibrium
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and assuming the form for the surface delta function to be
65 = |Vgl, (3.14)

we arrive at

%+ﬁ(ﬁc)=ﬁ
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which is the proposed model in Eq. (3.1) if 7 = 6¢5/|§¢| Note that it is not required to
perform division by d§, anywhere in the prgposed model, which makes the method robust.
Moreover, the surface gradient operator V is not used in the proposed model. Modeling
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such gradients accurately and efficiently requires infrastructure that is not needed with
the proposed model, making it robust and easy to implement.

4. Positivity

Following the proof of positivity in Jain & Mani (2023), the interfacial scalar or surfac-
tant concentration ¢ in Eq. (3.1) can be shown to remain positive, i.e., ¥ > 0 Vk € Z¥,
where k is the time-step index and ¢ is the grid index, provided the constraints

2D
Ar<|—2F ), (4.1)
<u|max + gg)
and
A 2
At < 2ij (4.2)

are satisfied, where A is the grid-cell size, At is the time-step size, |t|max is the maximum
fluid velocity in the domain, and Ny is the number of dimensions. Note that this also
requires ¢f to be bounded between 0 and 1, Vk € Z™ and Vi, which is guaranteed to be
satisfied with the ACDI method (Jain 2022).

If ¢ = Az, then the positivity constraint in Eq. (4.1) reduces to Az < D(2 —
a/2)/|u|max. Hence, positivity can be achieved as long as a < 4. If a = 2, then the
constraint is

D
Ax < W or Pe. <1, (4.3)
where Pe. = Ax|u|max/D is the cell-Peclet number. Similarly, for e = 0.75Az and a = 2,
the constraint is Pe. < 0.67, and for ¢ = 0.6Az and a = 2, the constraint is Pe. < 0.33.

5. Numerical methods

In this work, we use a second-order central scheme for spatial discretization and a
fourth-order Runge-Kutta scheme for time stepping for the proposed model in Eq. (3.1).
A skew-symmetric-like flux-splitting approach (Jain & Moin 2022) is adopted for the
discretization of the ACDI method in Eq. (2.1).

6. Simulation results

In this section, simulations of the proposed model coupled with the ACDI method are
presented. The simulations can be subdivided into four categories: (a) verification of the
confinement of the scalar to the interface region in Section 6.1.1, (b) verification of the
positivity of the scalar in Section 6.1.2, (c¢) effect of the choice of constant coefficient
a in the generalized version of the model in Section 6.1.3, and (d) multidimensional
simulations which include a moving drop with an initially uniform scalar distribution, an
extension of the one-dimensional cases, as well as a stationary drop with a nonuniform
scalar distribution along the interface in Section 6.2.

6.1. One-dimensional simulations
In this section, one-dimensional simulations are presented, which act as verification of
the proposed model. In all the simulations, a unit domain length of L = 1 is used with
a grid size of Az = 0.01, unless specified otherwise. A drop of radius R = 0.2 is initially
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FIGURE 2. The advection of a drop along with an initially uniformly distributed scalar quantity
(dissolved scalar in the bulk) inside the drop. (a) The initial drop and scalar setup, (b) the drop
and scalar after 1 flow-through time at ¢ = 2, and (c) the drop and scalar after 5 flow-through
times at ¢t = 10.

placed in the domain centered at x. = 0.5. The initial condition for the drop is given by
¢; = 0.5[1 — tanh {(|x — 0.5] — 0.2) /(2¢)}], where the subscript ¢ denotes ¢ = 0.

6.1.1. Confinement verification

To verify the effectiveness of the artificial sharpening term in the proposed model in
Eq. (3.1) to confine the scalar to the interface region, we initialize the scalar uniformly
within the drop in this section with a concentration of unity (¢; = ¢;). Since the scalar is
not permitted to dissolve into the bulk phase, we expect it to get reorganized and move
to the interface region.

For the simulations in this section, a uniform velocity of @ = 0.5 is prescribed, and
both the drop and the scalar are advecting with this velocity field. The drop and the
scalar are advected with a nonzero velocity field to verify the ability of the proposed
model to reorganize the scalar field relative to the background flow field. The diffusivity
is chosen to be D = 0.01, so the Pe. = 0.5.

Figure 2 shows the evolution of the scalar with time. After 1 flow-through time, the
scalar has reorganized to the interface region and has reached a steady state. After 5
flow-through times, the scalar is still confined to the interface region, as both the scalar
and the drop are advecting with a velocity of 4 = 0.5.

The artificial sharpening flux in Eq. (3.1) is responsible for the reorganization of the
scalar. Therefore, the velocity associated with this reorganization of the scalar is given
by Ureorg ~ D2(0.5 — ¢)ii/c. For the parameters chosen in this section, @re org =~ 1.
Therefore, Ure_org is larger than the advection velocity @, and this is the case as long as
the positivity criterion in Eq. (4.3) is satisfied. Hence, the sharpening flux will always
dominate over any other background flow, thus resulting in the confinement of the scalar
to the interface region.

6.1.2. Positivity verification

In this section, the robustness of the positivity criterion in Egs. (4.1) and (4.3) is
evaluated. The setup used here is the same as the one in Section 6.1.1. But two different
diffusivities are chosen, D = 0.01 and D = 0.0025, which will result in Pe. = 0.5 and
Pe. = 2, respectively. Since the simulation with D = 0.0025 does not satisfy the positivity
criterion, we expect the scalar to violate the positivity.

Figure 3 shows the final state of the drop and the scalar after 1 flow-through time.
The minimum value of the scalar concentration field seen is also reported in the plots.
As expected, the simulation with Pe. = 2 violates the positivity criterion, and therefore,
negative values of the scalar concentration are observed.
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FIGURE 3. Final state of the drop and the scalar concentration field at time ¢ = 2. The two plots
represent the two diffusivities chosen to test the positivity of the scalar: (a) Pe. = 0.5 and (b)
Pe. = 2.
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FIGURE 4. Final state of the drop and the scalar concentration field at time ¢ = 2 with various
values of a in Eq. (3.8).

6.1.3. Effect of a

In this section, the effect of using a value other than a = 2 in the generalized model in
Eq. (3.8) is illustrated. The setup is the same as the one in Section 6.1.1 with Pe. = 0.5,
and four different values a = 1,2, 3, and 4 are tested. Figure 4 shows the final state of the
drop and the scalar after 1 flow-through time. The positivity of the scalar was verified
for the cases a = 1,2, and 3, and the positivity was violated for a = 4 as expected (see
Section 4).

With the increase in a, the scalar is more concentrated at the interface. This might
result in an improved accuracy due to a sharper representation of the interface-confined
scalar. However, note that only the value of @ = 2 will result in a model that is exactly
consistent with the phase-field model, as described in Section 3.2, and therefore a = 2 is
the recommended value.

6.2. Multidimensional simulations

In this section, the applicability of the proposed model for simulating multidimensional
problems is tested. Two simulation setups in the subsequent sections are chosen: (a)
Advecting drop—a two-dimensional version of the simulations in Section 6.1.1, and (b)
surface diffusion of the scalar—a verification case, where the relative diffusion of the
scalar along the interface is tested and compared against the analytical solutions.
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FIGURE 5. The advection of a two-dimensional drop along with an initially uniformly distributed
scalar quantity (dissolved scalar in the bulk) inside the drop. (a) The drop and scalar setup at
initial time. (b) The drop and scalar after 1 flow-through time at ¢ = 2. The solid green line is
the isocontour of ¢ = 0.5 which represents the interface.

6.2.1. Advecting drop

In this simulation, a unit square domain of size L = 1x1 is used with a grid size of Az =
0.01. A drop of radius R = 0.2 is initially placed in the domain center (0.5,0.5). The initial
condition for the drop is given by ¢; = 0.5 [1 — tanh { ((z — 0.5)% + (y — 0.5)> — 0.2) /(2¢) }].
The scalar is initialized uniformly within the drop (¢; = ¢;). A uniform velocity of @ = 0.5
is prescribed, and Pe. = 0.5. As was seen in Section 6.1.1 for the one-dimensional setup,
we expect the scalar to reorganize and move to the interface region.

Figure 5 shows the scalar concentration and the drop at the initial and final time of
t = 2. As expected, the scalar reorganizes and moves to the interface region, since it is
not allowed to dissolve in the bulk phase. This verifies the applicability of the proposed
model in Eq. (3.1) in multidimensional problems without difficulty.

6.2.2. Surface diffusion of scalar

In this section, the scalar is initially confined to the interface of a stationary drop, but
with a non-uniform concentration profile along the interface. The diffusion of the scalar
along the interface is verified by comparing against analytical solutions.

The initial interfacial concentration (concentration per unit area of the interface) of
the scalar is chosen to be

é(0) = %{1 — cos 0}. (6.1)

By solving a surface concentration equation in polar coordinates, the analytical solution
for the diffusion of the scalar along the circular interface can be derived as

é(0,t) = % (1 — e 72 cos 9) . (6.2)

The simulation domain is chosen to be [—2,2] x [—2, 2], with a grid size of 100 x 100,
and the drop radius is R = 1. Figure 6 shows the scalar concentration at the initial
and final time of ¢ = 1, which illustrates the diffusion of the scalar along the interface
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FIGURE 6. The surface diffusion of scalar on a two-dimensional stationary drop. (a) The drop
and scalar setup at initial time. (b) The drop and scalar configuration at ¢t = 1.
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FIGURE 7. The local interfacial concentration of the scalar ¢ along the drop at various time
instances, computed using the proposed method, and its comparison with the analytical solution
in Eq. (6.2).

without any artificial leakage into the bulk phases. A quantitative comparison of the
scalar concentration is shown in Figure 7 at various times, verifying the proposed model’s
capability to accurately simulate the transport of scalars that are confined to evolving
material interfaces.

7. Conclusion

In this work, a model for the transport of scalars confined to evolving material interfaces
and insoluble surfactants in two-phase flows is developed. The model is solved with
a second-order phase-field model; however, it also can be used with other interface-
capturing methods. The scalar is shown to be consistently transported with the phase-
field variable, resulting in a method that does not allow artificial leakage of the scalar into
the bulk phases on either side of the interface. The model also results in positive scalar
concentrations, a physical-realizability condition, provided the given positivity criterion
is satisfied.
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The proposed model was used to simulate transport of scalars on interfaces in a wide
range of one-dimensional and two-dimensional settings. The model was verified in terms
of its capability to enforce confinement of the scalar to the interface region, the positivity
of the scalar concentration, and its applicability for multidimensional problems. The
accuracy of the model was also verified by comparing against analytical solutions.
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