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Diffuse-interface capturing methods for
compressible multiphase fluid flows and

elastic-plastic deformation in solids:
Part I. Methods

By M. C. Adler, S. S. Jain, J. R. West, A. Mani AND S. K. Lele

1. Motivation and objectives

Compressible multiphase fluid flow and multiphase elastic-plastic deformation of solid
materials with strength are important phenomena in many engineering applications, in-
cluding shock compression of condensed matter, detonations and shock-material-interface
interactions, impact welding, high-speed fuel atomization and combustion, and cavitation
and bubble collapse motivated by both mechanical and biomedical systems. The numeri-
cal simulation of multiphase compressible flow and material deformation presents several
new challenges in addition to those associated with analogous single-phase simulations.
These modeling complications include but are not limited to (1) representing the phase
interface on an Eulerian grid; (2) resolving discontinuities in quantities at the interface,
especially for high-density ratios; (3) maintaining conservation of (a) the mass of each
phase, (b) the mixture momentum, and (c) the total energy of the system; and (4) achiev-
ing an accurate mixture representation of the interface for maintaining thermodynamic
equilibria.

With these numerical challenges in mind, we choose to pursue the single-fluid approach
(Kataoka 1986), in which a single set of equations is solved to describe all of the phases
in the domain, as opposed to a multifluid approach, which requires solving a separate
set of equations for each of the phases. We are presented with various choices in terms of
the system of equations that can be used to represent a compressible multiphase system.
In this work, we employ a multicomponent system of equations (a four-equation model)
that assumes spatially local pressure and temperature equilibria, including at locations
within the diffuse material interface (Shyue 1998; Venkateswaran et al. 2002; Marquina
& Mulet 2003; Cook 2009). Relaxing the assumption of temperature equilibrium, Allaire
et al. (2002) and Kapila et al. (2001) developed the five-equation model that has proven
successful for a variety of applications with high density ratios, strong compressibility
effects, and phases with disparate equations of state (EOS), and has been widely adopted
for the simulation of compressible two-phase flows (Shukla et al. 2010; So et al. 2012;
Ansari & Daramizadeh 2013; Shukla 2014; Coralic & Colonius 2014; Tiwari et al. 2013;
Perigaud & Saurel 2005; Wong & Lele 2017; Chiapolino et al. 2017; Garrick et al. 2017a,b;
Jain et al. 2018, 2020a). This modeling strategy will be explored in the future, with the
goal of quantifying the advantages of either modeling approach using the same numerical
methods and problem set.

For representing the interface on an Eulerian grid, we use an interface-capturing
method, as opposed to an interface-tracking method, due to the natural ability of the
former method to simulate dynamic creation of interfaces and topological changes. See
Mirjalili et al. (2017) for a recent review on various interface-capturing methods for
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two-phase flows. Interface-capturing methods can be classified into sharp-interface and
diffuse-interface methods. In this work, we choose to use diffuse-interface methods (Saurel
& Pantano 2018) for modeling the interface between compressible materials. This choice
is due to the natural advantages that the diffuse-interface methods offer over the sharp-
interface methods, such as ease of representation of the interface, low cost, good conser-
vation properties, and parallel scalability.

One challenge of diffuse-interface capturing of material interfaces is the tendency of the
interface to diffuse over time. Unlike shock waves, in which the convective characteristics
sharpen the shock over time, material interfaces (like contact discontinuities) do not
sharpen naturally; therefore, diffuse capturing of material interfaces requires an active
balance between interface sharpening and diffusion to maintain the appropriate interface
thickness over time. The severity of this problem is reduced when employing high-order
low-dissipation schemes, and the problem can be completely eliminated with the use of
explicit interface regularization (diffusion and sharpening) terms that result in constant
interface thickness throughout the simulation.

This brief explores three popular diffuse-interface-capturing methods. The first ap-
proach (referred to as the LAD approach) is based on the localized-artificial-diffusivity
(LAD) method (Cook 2007; Subramaniam et al. 2018; Adler & Lele 2019), in which local-
ized, nonlinear diffusion terms are added to the individual phase mass transport equations
and coupled with the other conservation equations. This method conserves the mass of
individual phases, mixture momentum, and total energy of the system due to the conser-
vative nature of the diffusion terms added to the system of equations and results in no
net mixture-mass transport. This method is primarily motivated by applications involv-
ing miscible, multicomponent, single-phase fluids, but it has been successfully adapted
for multiphase applications. The idea behind this approach is to effectively add species
diffusion in the selected regions of the domain to properly resolve the interface on the grid
and to prevent oscillations due to discontinuities in the phase mass equations. High-order
compact derivative schemes can be used to discretize the added diffusion terms without
resulting in distortion of the shape of the interface over long-duration time advancement.
However, one drawback of this approach is that the interface thickness increases with
time due to the lack of sharpening fluxes that act against the diffusion. This method is
therefore most effective for problems in which the interface is in compression (such as
shock /material-interface interactions with normal alignment). However, the deficiency of
this method due to the lack of a sharpening term is evident for applications in which
the interface between immiscible materials undergoes shear or expansion/tension. LAD
formulations have also been examined in the context of five-equation models, in which
localized diffusion is also added to the volume fraction transport equation (Aslani &
Regele 2018).

The second approach (referred to as the gradient-form approach) is based on the quasi-
conservative method proposed by Shukla et al. (2010), in which diffusion and sharpening
terms (together called regularization terms) are added for the individual phase volume
fraction transport equations and coupled with the other conservation equations (Tiwari
et al. 2013). This method only approximately conserves the mass of individual phases,
mixture momentum, and total energy of the system due to the non-conservative nature
of the regularization terms added to the system of equations. In contrast to the LAD
approach, this method can result in net mixture-mass transport, which can sharpen or
diffuse the mixture density; depending on the application, this may be an advantageous
or disadvantageous property. The primary advantage of this method is that the regu-



Diffuse-interface capturing methods 343

larization terms are insensitive to the method of discretization; they can be discretized
using high-order compact derivative schemes without distorting the shape of the interface
over long-duration time advancement. However, the non-conservative nature of this ap-
proach results in poor performance of the method for certain applications. For example,
premature topological changes and unphysical interface behavior can be observed when
the interfaces are poorly resolved (exacerbating the conservation error) and subjected to
shocks that are not aligned with the interface.

The third approach (referred to as the divergence-form approach) is based on the fully
conservative method proposed by Jain et al. (2020a), in which diffusion and sharpening
terms are added to the individual phase volume fraction transport equations and coupled
with the other conservation equations. This method conserves the mass of individual
phases, mixture momentum, and total energy of the system due to the conservative nature
of the regularization terms added to the system of equations. Similar to the gradient-form
approach and in contrast to the LAD approach, this method can result in net mixture-
mass transport, which can sharpen or diffuse the mixture density. The primary challenge
of this method is that one needs to be careful with the choice of discretization used for the
regularization terms. Using a second-order finite-volume scheme (in which the nonlinear
fluxes are formed on the faces), Jain et al. (2020a) showed that a discrete balance between
the diffusion and sharpening terms is achieved, thereby eliminating the spurious behavior
that was discussed by Shukla et al. (2010). The idea behind this is similar to the use
of the balanced-force algorithm (Francois et al. 2006; Mencinger & Zun 2007) for the
implementation of the surface-tension forces, in which a discrete balance between the
pressure and surface-tension forces is necessary to eliminate the spurious current around
the interface. The current study also demonstrates that appropriately crafted higher-
order schemes may be used to effectively discretize the regularization terms. The method
is free of premature topological changes and unphysical interface behavior present with
the previous approach. However, due to the method of discretization, the anisotropy of
the derivative scheme can more significantly distort the shape of the material interface
over long-duration time advancement in comparison to the gradient-form approach; the
severity of this problem is significantly reduced when using higher-order schemes.

Furthermore, several studies have emphasized the importance of providing physically
consistent corrections to each of the governing equations associated with the interface
regularization process. For example, Cook (2009), Tiwari et al. (2013), and Jain et al.
(2020a) discuss physically consistent regularization terms for the LAD, gradient-form,
and divergence-form approaches, respectively. The physically consistent regularization
terms of Cook (2009), Tiwari et al. (2013), and Jain et al. (2020a) are derived in such
a way that the regularization terms do not spuriously contribute to the kinetic energy
and entropy of the system. This significantly improves the stability of the simulation,
especially for flows with high density ratios. However, discrete conservation of kinetic
energy and entropy is needed to show the stability of the methods for high-Reynolds-
number turbulent flows (Jain & Moin 2020).

For modeling the solid-material deformation we employ a fully Eulerian method, as
opposed to a fully Lagrangian approach (Benson 1992) or a mixed approach such as
arbitrary-Lagrangian-FEulerian methods (Donea et al. 2004), because of its cost-effectiveness
and accuracy for large deformations. There are various Eulerian approaches in the lit-
erature that differ in the way the deformation of the material is tracked. The popular
methods employ the inverse deformation gradient tensor (Miller & Colella 2001; Or-
tega et al. 2014; Ghaisas et al. 2018), the left Cauchy-Green tensor (Sugiyama et al.
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2010, 2011), the co-basis vectors (Favrie & Gavrilyuk 2011), the initial material loca-
tion (Valkov et al. 2015; Jain et al. 2019), or other variants of these methods to track
the deformation of the material in the simulation. In this work we use the inverse de-
formation gradient tensor approach because of its applicability to plasticity modeling.
We introduce terms to maintain consistency of the interface regularization process with
the kinematic equations describing the deformation of the solid, which have not been
previously discussed.

In summary, the two main objectives of this brief are as follows. The first objective
is to assess several diffuse-interface-capturing methods for compressible two-phase flows.
The interface-capturing methods in this work will be used with a four-equation multi-
component model; however, they are readily compatible with a variety of other models,
including the common five-, six-, or seven-equation models. The second objective is to
extend these interface-capturing methods to the simulation of elastic-plastic deformation
in solid materials with strength, including comparison of these methods in the context of
modeling interfaces between solid materials. Section 2 describes the three diffuse-interface
methods considered in this study, along with details of their implementation. The second
brief (Jain et al. 2020b) of this two-part series discusses the application of these methods
to a variety of problems including a shock/helium-bubble interaction in air, an advecting
air bubble in water, a shock/air-bubble interaction in water, and a Richtmyer—Meshkov
instability of an interface between copper and aluminum.

2. Theoretical and numerical model
2.1. Governing equations

The governing equations for the evolution of the multiphase flow or multimaterial con-
tinuum in conservative Eulerian form are described below, including the conservation
of species mass (Eq. 2.1), total momentum (Eq. 2.2), and total energy (Eq. 2.3). These
are followed by the kinematic equations that track material deformation, including the
inverse deformation gradient tensor (Eq. 2.4), the elastic component of the inverse defor-
mation gradient tensor (Eq. 2.5), and the plastic component of the inverse deformation
gradient tensor (Eq. 2.6):
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Here, t and x represent time and the Eulerian position vector, respectively. Y, describes

the mass fraction of each constituent material, m. The variables u, p, €, and o describe

the mixture velocity, density, internal energy, and Cauchy stress, respectively, which
. . . M

are related to the species-specific components by the relations p = Y | ¢pmpm, € =

an\le Y€m, and o = Zi\r{:l GmT s in which ¢, is the volume fraction of material m,
and M is the total number of material constituents.

The right-hand-side terms describe the localized artificial diffusion (see also Section 2.5),
including the artificial viscous stress, 7, = 2u*Six + (8% —2p*/3) (Ou;/0x;) dix, and
the artificial enthalpy flux, ¢ = —x*0T/0x; + Z%Zl him (J3,);, with strain rate ten-
sor, S; = (Ou;/0xy + Ouy/0x;) /2, and temperature, T. The second term in the ar-
tificial enthalpy flux expression is the enthalpy diffusion term (Cook 2009), in which
N = €m + Pm/pm is the enthalpy of species m. The artificial Fickian diffusion of species
m is described by (Jyy,), = —p[D}, (0Yn /0x;) — Y >, Dy (0Y3/0x;)).

2.2. Material deformation and plasticity model

The kinematic equations that describe the deformation of the solid in the Eulerian frame-
work employ the inverse deformation gradient tensor, ¢;; = 0X;/0z;, in which X and
@ describe the position of a continuum parcel in the material (Lagrangian) and spatial
(Eulerian) perspectives, respectively. In this work, an inverse deformation gradient is
tracked for each material constituent; however, it is possible to assume a single inverse
deformation gradient for the entire mixture without loss of accuracy for specific scenar-
ios (Ghaisas et al. 2017, 2018). Error associated with the latter approach is localized to
the interface region and is often not significant (Subramaniam 2018). Following Miller &
Colella (2001), a multiplicative decomposition of the total inverse deformation gradient
tensor, g, into elastic, g€, and plastic, g¥, components is assumed, g;; = ah.95 o reflecting
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the assumption that the plastic deformation is recovered when the elastic deformation is
reversed, gfj = gik (ge);jl. It is additionally assumed that the plastic deformation is vol-
ume preserving (Plohr & Sharp 1992), providing compatibility conditions for the inverse
deformation gradient tensor determinants, [gP| = 1 and |g| = |g®| = p/po, in which po
represents the undeformed density and || represents the determinant operator. We also
assume that the materials with strength are elastic perfectly plastic, in that the material
yield stress is independent of strain and strain rate; thus, only the elastic component
of the inverse deformation gradient tensor is necessary to close the governing equations.
The plastic component of the inverse deformation gradient tensor, or the full tensor,
can be employed to supply the plastic strain and strain rate necessary for more general
plasticity models (Adler & Lele 2019).

Plastic deformation is incorporated into the numerical framework by means of a visco-
elastic Maxwell relaxation model, which has been employed recently in several Eulerian
approaches (Ndanou et al. 2015; Ortega et al. 2015; Ghaisas et al. 2018). The plastic
relaxation timescale is described by

2
| 1 [R(e) - 203)
= . : (2.7)
Trel (p/po) o H

in which ¢’ = dev (g). The ramp function R (x) = max (x,0) turns on plasticity effects
only when the yield criterion is satisfied. In many cases, the elastic-plastic source term
is stiff due to the small value of 7, relative to the convective deformation scales. To
overcome this time step restriction, implicit plastic relaxation strategies are used based
on the method of Favrie & Gavrilyuk (2011) and described by Ghaisas et al. (2018).

2.3. Equations of state and constitutive equations

A hyperelastic EOS, in which the elastic stress—strain relationship is compatible with a
strain energy-density functional, is assumed to close the thermodynamic relationships in
the governing equations. The internal energy, ¢, is additively decomposed into a hydro-
dynamic component, €, and an elastic component, €.. The hydrodynamic component is
analogous to a stiffened gas, with

. + YPoo .
e=en(p.p) e (9), €n = %7 €e = ﬁtr {(g _1)2] 7 (2.8)

in which § = |Qe|_1/3 G°, G° = g°Tg®, p is the pressure, p,, (with units of pressure)
and v (nondimensional) are material constants of the stiffened gas model for the hydro-
dynamic component of internal energy, and p is the material shear modulus.In the case of
compressible flow with no material strength, the model reduces to the stiffened gas EOS
commonly employed for liquid/gas-interface interactions (Shukla et al. 2010; Jain et al.
2020a). With this EOS, the Cauchy stress, o, satisfying the Clausius-Duhem inequality
is described by

o = —pL—p 2 {IGY " dev (@]~ 16 devi@) | (29)

in which dev (G®) signifies the deviatoric component of the tensor: dev (G®) = G® —
%tr (G®) 1, with tr (G®) signifying the trace of the tensor and 1 signifying the identity
tensor. The elastic component of the internal energy, €., is assumed to be isentropic.
Therefore, the temperature, T', and entropy, 7, are defined by the hydrodynamic stiffened



Diffuse-interface capturing methods 347

gas component of the EOS, as follows.
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Here, ng is the reference entropy at pressure, pg, and temperature, Tj.

2.4. Pressure and temperature equilibration method

Many models for multiphase simulation assume that the thermodynamic variables are not
in equilibrium, necessitating the solution of an additional equation for volume fraction
transport (Shukla et al. 2010; Jain et al. 2020a). Our model begins with the assump-
tion that both pressure and temperature remain in equilibrium between the phases. To
achieve a stable equilibrium requires that all phases be present with non-negative volume
fractions throughout the entire simulation domain. This is encouraged by initializing the
problem with a minimum volume fraction (typically ¢min < 107%) and including addi-
tional criteria for volume fraction diffusion (Sections 2.6 and 3) or mass fraction diffusion
(Section 2.5) based on out-of-bounds values of volume fraction and/or mass fraction. This
equilibration method is stable in the well-mixed interface region, but can result in stabil-
ity issues outside of the interface region, where the volume fraction of a material tends
to become very small—a phenomenon exacerbated by high-order discretization methods.
The equilibration method follows from Cook (2009) and Subramaniam et al. (2018). For
a mixture of M species, we solve for 2M + 2 unknowns, including the equilibrium pres-
sure (p), the equilibrium temperature (T'), the component volume fractions (¢,,), and
the component internal energies (e,,), from the following equations.

M M
P=pm, T=Tn, D> ém=1 > Yuen=c (2.11)
m=1 m=1

2.5. Localized artificial diffusivity

LAD methods have long proven useful in conjunction with high-order compact derivative
schemes to provide necessary solution-adaptive and localized diffusion to capture discon-
tinuities and introduce a mechanism for subgrid dissipation. Regardless of the choice of
interface-capturing method, LAD is required in the momentum, energy, and kinematic
equations, in all calculations, to provide necessary regularization. For instance, the ar-
tificial shear viscosity, p*, primarily serves as a subgrid dissipation model, whereas the
artificial bulk viscosity, 8*, enables shock capturing, and the artificial thermal conductiv-
ity, k*, captures contact discontinuities. The artificial kinematic diffusivities (g*, g*, gP*)
facilitate capturing of strain discontinuities, particularly in regions of sustained shearing.

When LAD is also used for interface regularization (to capture material interfaces), the
artificial diffusivity of species m, D}, , is activated, in which the coefficient Cp controls
the interface diffusivity and the coefficient Cy controls the diffusivity when the mass
fraction goes out of bounds. When using the volume-fraction-based approaches for inter-
face regularization (Sections 2.6 and3), it is often unnecessary to also include the species
LAD (D7, = 0); however, the species LAD seems to be necessary for some problems in
conjunction with these other interface regularization approaches.

The diffusivities are described below, where the overbar denotes a truncated Gaussian

filter applied along each grid direction; A; is the grid spacing in the 4 direction; A; ,,
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Ai g, Nk, Aiy,,, and A; 4 are weighted grid length scales in direction 7; ¢, is the linear
longitudinal wave (sound) speed; H is the Heaviside function; and e = 10732
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Here, S = /5;;5;; is a norm of the strain rate tensor, .S, and e9 = ,/% g ef is a norm

ij
of the Almansi finite-strain tensor associated with the g equations, efj =1 (8i5 — Grigrj)-
The other artificial kinematic diffusivities, g¢* and ¢gP*, are obtained in the same manner
as ¢g*, but with the Almansi strain based on only the elastic or plastic component of the
inverse deformation gradient tensor, respectively. We observe that LAD is not strictly
necessary to ensure stability for the ¢g¢ equations; in fact, it has not been included in
previous simulations (Ghaisas et al. 2018; Subramaniam et al. 2018), because the elastic
deformation is often small relative to the plastic deformation, but LAD is necessary to
provide stability for the g and gP equations, especially when the interface is re-shocked,
resulting in sharper gradients in the plastic (and total) deformation relative to the elastic
deformation. The form for LAD is identical between the three sets of deformation equa-
tions, except for the choice of Almansi finite-strain norm, which is chosen to reflect the
component of deformation associated with the specific set of equations. Typical values
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for the model coefficients are (¢ = (P = 0.5, { = (P¢¢ = 0.25, C), =2 x 1073, C = 1,
C.=1x10"2,Cp =3x1073, Cy =1 x 102, and Cy = 1.0; these values are used in the
subsequent simulations unless stated otherwise. However, these coefficients often need
to be specifically tailored to the problem; for example, the bulk viscosity coefficient can
be increased to more effectively capture strong shocks in materials with large stiffening
pressures.

2.6. Fully conservative divergence-form approach to interface reqularization

In this approach, interface regularization is achieved with the use of diffusion and sharp-
ening terms that balance each other. This results in constant interface thickness during
the simulation, unlike the LAD method, in which the interface thickness increases over
time due to the absence of interface sharpening fluxes. All regularization terms are con-
structed in divergence form, resulting in a method that conserves the mass of individual
species as well as the mixture momentum and total energy.

Following Jain et al. (2020a), we consider the implied volume fraction transport equa-
tion for phase m, with the interface regularization volume fraction flux (a,),,

8¢m 8¢m - a(am)k
ot + ug D = o (2.18)

In this work, this equation is not directly solved, because the volume fraction is closed
during the pressure and temperature equilibration process (Section 2.4), but the action of
this volume fraction flux is consistently incorporated into the system through the coupling
terms with the other governing equations. We employ the coupling terms proposed by
Jain et al. (2020a) for the mass, momentum, and energy equations, and propose new
consistent coupling terms for the kinematic equations.

Using the relationship of density (p) and mass fraction (Y;,) to component density
(pm) and volume fraction (¢,,) for material m (pY,, = pm®m, with no sum on repeated
m), we can describe the interface regularization term for each material mass transport
equation,

0 (am)k Pm
&ck ’

Consistent regularization terms for the momentum and energy equations follow,

Im = with no sum on repeated m. (2.19)

B 0 (am)k: Pm Ui _ 0 1 .
F»L = T and H= 87{1,‘]@ (am)k meujuj + (ph’)m ) (220)

in which the enthalpy of species m is described,
(ph),,, = empm + Pm, with no sum on repeated m. (2.21)
Consistent regularization terms for the kinematic equations take the form

_ 10(a), (ru) 9

K;; = 2.22
J p 81‘/€ ( )

from which K; or K. fj may be obtained similarly by replacing g;; with g;; or gfj, respec-
tively.
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The volume fraction interface regularization flux for phase m is described by

0 0
(am), =T 6% — Sm (), | Lm + F*eDb%, with no sum on repeated m,

Tk —— Tk

. interface

interface sharpening out-of-bounds

diffusion diffusion

(2.23)
with the interface sharpening term
(bm — 05) (1= S n=1 65 — bm |, for 65, < dm < Y=t 5

0, else

in which ¢¢, denotes the minimum allowable volume fraction for phase m; this floor pro-
motes physically realizable solutions to the pressure and temperature equilibria, which
would otherwise not be well behaved if the mass or volume fraction exceeded the phys-
ically realizable bounds between zero and one. We assume ¢¢, = 1 x 107 unless stated
otherwise. The optional mask term,

1, for ¢ < ¢ < S n=1 o

™=

0, else
localizes the interface diffusion and interface sharpening terms to the interface region,
restricting the application of the non-compactly discretized terms to the interface region.
Unlike the gradient-form approach, this mask in the divergence-form approach is not
necessary for stability, as demonstrated by Jain et al. (2020a). The interface normal
vector for phase m is given by

(o) = % O Obm| _  [00m Obm with no sum on repeated m
Mk al'k 8:5, ’ 65(}7; o 8:102 axi ’ p ’
(2.26)
The out-of-bounds diffusivity, described by
1
Db - [1 B ¢m/ (¢$n)b} max over m; no SL‘lrﬂ7 b - 5’ (2.27)

maintains ¢,, 2 ¢S,. The overbar denotes the same filtering operation as applied to
the LAD diffusivities. A user-specified length scale, ¢ ~ Ax, typically on the order of
the grid spacing, controls the equilibrium thickness of the diffuse interface. The velocity
scale, I' & ;4. controls the timescale over which the interface diffusion and interface
sharpening terms drive the interface thickness to equilibrium. The velocity scale for the
out-of-bounds volume fraction diffusivity is also specified by the user, with T'* > T.
Volume fraction compatibility is enforced by requiring that Zn]\le (am), = 0.

2.7. Quasi-conservative gradient-form approach to interface regularization

As with the divergence-form approach, the interface regularization in this approach is
achieved with the use of diffusion and sharpening terms that balance each other. There-
fore, this method also results in constant interface thickness during the simulation. Shukla
et al. (2010) discuss disadvantages associated with the divergence-form approach due to
the numerical differentiation of the interface normal vector. The numerical error of these
terms can lead to interface distortion and grid imprinting due to the anisotropy of the
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derivative scheme. Ideally, we would like to have a regularization method that is con-
servative and that does not require any numerical differentiation of the interface normal
vector. However, starting with the assumption of conservation, for nonzero regulariza-
tion flux, we see that numerical differentiation of the interface normal vector can only
be avoided in the limit that the divergence of the interface normal vector goes to zero.
This limit corresponds to the limit of zero interface curvature, which cannot be avoided in
multidimensional problems. Therefore, this illustrates that a conservative method cannot
be constructed for multidimensional applications without requiring differentiation of the
interface normal vector; the non-conservative property (undesirable) of the gradient-form
approach is a necessary consequence of the circumvention of interface-normal differen-
tiation (desirable). This is demonstrated below, in which the phase subscript has been
dropped.

o) {F[g%—‘r(b(l—(b)ﬁk]} 0 <F68¢>+3F¢(1—¢)m+r¢(1_¢)8ﬁk

oz, Oy " Ow, \ 0wy Oy Oz,

— n (‘?{F{eaq5

o
V-is0 - 0x Ox;

+o-0)}.

(2.28)
in which the final expression is obtained in the limit of V - 11 — 0.
Following Shukla et al. (2010), we arrive at an implied volume fraction transport
equation for phase m, with the interface regularization volume fraction term a,,,
Obm Odm Oap,
ot T g, — iy
Unlike the divergence-form approach, the gradient-form approach requires no numerical
differentiation of interface normal vectors, but it consequently results in conservation
error. Like the divergence-form approach, this volume fraction transport equation is not
directly solved, because the volume fraction is closed during the pressure and temperature
equilibration process (Section 2.4), but the action of the volume fraction regularization
term is consistently incorporated into the system of equations for mass, momentum,
energy, and kinematic quantities through quasi-conservative coupling terms.
We employ an interface regularization term for each component mass transport equa-
tion consistent with the interface regularization volume fraction term,

(2.29)

O pm

, with no sum on repeated m. (2.30)

Because of the assumption of pressure and temperature equilibrium (volume fraction
is a derived variable—mnot an independent state variable), it is important to form mass
transport regularization terms consistently with the desired volume fraction regulariza-
tion terms. In the method of Tiwari et al. (2013), the terms do not need to be fully
consistent (e.g., the component density is assumed to be slowly varying); the terms only
need to produce similar interface profiles in the limit of T' — oo (Shukla et al. 2010),
because the volume fraction is an independent state variable. Following the assumption
of Tiwari et al. (2013) that the velocity, specific energy, and kinematic variables (but
not the mixture density) vary slowly across the interface, the stability of the method is
improved by further relaxing conservation of the coupled equations. For example, the
consistent regularization term for the momentum equation reduces to

O, P 0 P

m
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Similarly, the consistent regularization term for the energy equation reduces to

g 1 Ompm (1
H = %: (nm)k 87.13]@ |:C¥m,0m <2ujuj + hm>:| ~ Z (nm)k Txk (2ujuj + hm) .

(2.32)
Consistent regularization terms for the kinematic equations take the form
1 0cv, (Pm) gij 1 0cm, (pm)
Kij = ; (nm), ETJ ~ ; (M), PR (2.33)

from which K; or K fj may be obtained similarly by replacing g;; with gf; or gfj, respec-
tively.
The volume fraction interface regularization flux for phase m is defined by

¢ .
am=T1¢€ 5 LN R Lo, with no sum on repeated m. (2.34)
ZLj N~~~
interface
interface sharpening
diffusion

The volume fraction out-of-bounds diffusion term employed in the divergence-form ap-
proach (Eq. 2.23) is also active in the gradient-form approach. The gradient-form dis-
cretization of this term (including an equivalent volume fraction out-of-bounds term in
Eq. 2.34) exhibits poor stability away from the interface, whereas the divergence-form
approach does not. Following Shukla et al. (2010) and Tiwari et al. (2013), a necessary
mask term blends the interface regularization terms to zero as the volume fraction ap-
proaches the specified minimum or maximum, thereby avoiding instability of the method
away from the interface, where the calculation of the surface normal vector may behave
spuriously and lead to compounding conservation error,

2
Z = {100 [(m) 1 for g SIm ST o

b

0, else

(2.35)

in which ¢;2 ~ 1 x 1072 is a user-specified value controlling the mask blending function.
Other variables are the same as defined in the context of the divergence-form approach.

2.8. High-order numerical method

The equations are discretized on an Eulerian Cartesian grid. Time advancement is achieved
using a five-stage, fourth-order, Runge-Kutta method, with an adaptive time step based
on a Courant—Friedrichs-Lewy (CFL) condition. Other than the interface regularization
terms for the divergence-form approach, all spatial derivatives are computed using a high-
resolution, penta-diagonal, tenth-order, compact finite-difference scheme. This scheme is
applied in the domain interior and near the boundaries in the cases of symmetry, anti-
symmetry, or periodic boundary conditions. Otherwise, boundary derivatives are reduced
to a fourth-order, one-sided, compact difference scheme.

The interface sharpening and interface diffusion regularization terms in the divergence-
form approach are discretized using node-centered derivatives, for which the fluxes to
be differentiated are formed at the faces (staggered locations); linear terms (e.g., ¢;)
are interpolated from the nodes to the faces, where the nonlinear terms are formed
le.g., Pit1/2 (1 — ¢i+1/2)]. Here, we refer to the finite-difference grid points as nodes.
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All variables are stored at the nodes (collocated). If the nonlinear fluxes are not formed
at the faces, poor stability is observed for node-centered finite-difference schemes of
both compact and non-compact varieties due to the nonlinear interface sharpening term.
Both second-order and sixth-order (non-compact) discretization schemes are examined
for these terms. The second-order scheme recovers the finite-volume approach success-
fully employed by Jain et al. (2020a), whereas the higher-order scheme provides increased
resolution and formal accuracy; however, discrete conservation is not guaranteed. The
out-of-bounds diffusion is discretized using the high-order compact scheme for all inter-
face regularization approaches.

A spatial dealiasing filter is applied after each stage of the Runge-Kutta algorithm
to each of the conservative and kinematic variables to remove the top 10% of the grid-
resolvable wavenumber content, thereby mitigating against aliasing errors and numerical
instability in the high-wavenumber range, which is not accurately resolved by the spatial
derivative scheme. The filter is computed using a high-resolution, penta-diagonal, eighth-
order, compact Padé filter, with cutoff parameters described by Ghaisas et al. (2018).

3. Concluding remarks

The second brief (Jain et al. 2020b) of this two-part series examines the application of
these methods to a variety of problems, including (1) advection of an air bubble in water,
(2) shock interaction with a helium bubble in air, (3) shock interaction and the collapse
of an air bubble in water, and (4) Richtmyer—Meshkov instability of a copper—aluminum
interface. The primary objective of this work is to compare these three methods in terms
of their ability to maintain constant interface thickness throughout the simulation; sim-
ulate high-density-ratio interfaces; conserve mass, momentum, and energy; and maintain
accurate interface shape for long-time integration. Comparison of the different implicit
treatments of subgrid phenomena is also of interest. For the application of these methods
to large-scale simulations of engineering interest, it is rarely practical to use hundreds of
grid points to resolve the diameter of a bubble/drop. Therefore, the limit of relatively
coarse grid resolution, which is more representative of the true performance of these
methods, is examined in the second part of this brief series.
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