
Center for Turbulence Research
Annual Research Briefs 2019

Investigation of quantum algorithms for direct
numerical simulation of the Navier-Stokes

equations

By K. P. Griffin, S. S. Jain, T. J. Flint AND W. H. R. Chan

1. Motivation and objectives

The potential for exponential speedup of computations by leveraging quantum sys-
tems (Feynman 1982) opens up new avenues of possibilities for the direct simulation of
complex systems spanning a wide range of scales, including nonlinear dynamics described
by the Navier-Stokes equations. In this treatise, we investigate quantum algorithms for
the numerical solution of the Navier-Stokes equations for incompressible flows at finite
Reynolds numbers.

Previous efforts towards the solution of the Navier-Stokes equations on a quantum
architecture have either re-framed the task at hand as a binary optimization problem on
a quantum annealer (Ray et al. 2019) or employed quantum algorithms to solve a sub-
step of the classical algorithm (Steijl & Barakos 2018; Steijl 2019). Other researchers have
simulated related partial differential equations (PDEs) using variables stored on multi-
qubit nodes through type-II quantum algorithms (Yepez 2001a; Berman et al. 2002).
These various efforts are summarized in Appendix A.

In the present work, we consider storing each velocity variable as an amplitude of
a single product basis state, so that n qubits are sufficient to store information for
N = 2n velocity variables. Rather than using a quantum annealing algorithm, we discuss
an algorithm for a universal quantum computer, thereby leveraging the full power of
quantum computation (the issue of error correction will not be addressed in this work).
Also, rather than solving a sub-step of the problem on a quantum computer, we discuss
implementing the time evolution operator corresponding to the Navier-Stokes equations
directly and in its entirety in the discussed quantum algorithm. During the collection
of flow statistics, care should be taken to avoid measuring the full quantum state to
preserve the exponential speedup possible on a quantum computer. This implementation
may be carried out via either Hamiltonian simulation of a linearized system, similar to
the approach adopted by Engel et al. (2019) for the solution of the Vlasov equation,
or a nonlinear variational algorithm that optimizes a set of variational parameters to
approximate the quantum implementation of the time evolution operator, similar to the
approach adopted by Lubasch et al. (2019) for the solution of the Burgers equation. In the
case of the latter, optimization of the variational parameters will require interfacing with
a classical computer as well. In that work, the time evolution operator corresponding to
the Navier-Stokes equations is implemented as a function of these variational parameters
after the optimization is complete, and is not directly transcribed from the equations of
motion.

Given a known time evolution operator, the desired velocity variables are obtained
via repeated loading of identical initial conditions into the quantum computer, followed
by repeated measurement of the quantum system after an identical set of computations,

347

Griffin et al.

and then averaging of the recorded measurements using a classical computer. In general,
the cost of solving differential equations scales at least with the number of degrees of
freedom. Here, measurement of the velocity field to a predetermined precision also scales
with the number of degrees of freedom,with an appeal to Holevo’s theorem (Holevo 1973).
However, it may be that only integral quantities of the solution, such as the coefficients of
lift and drag for a simulation of an airplane, are of interest, in which case the full solution
field is unnecessary. Instead, a handful of quantities on the order of the number of qubits
or less may suffice. For this reason, it may be possible—depending on the quantities of
interest—to simulate problems exponentially faster than on a classical computer (Harrow
et al. 2009).

1.1. Objectives

This paper discusses three main considerations for the solution of the Navier-Stokes
equations on a universal-gate quantum computer. In Section 2, we discuss how the ve-
locity field can be efficiently stored on and retrieved from a quantum computer, and
what limitations this places on our solution procedure to achieve an exponential advan-
tage over classical computers. In Section 3, we discuss the advantages and disadvantages
associated with solving the governing equations in physical space or Fourier space. In
Section 4, we discuss the treatment of nonlinear terms, which is a fundamental challenge
in quantum computation. We close by drawing conclusions and offering some perspective
on the solution of the Navier-Stokes equations on quantum computers of the present and
near future. This interdisciplinary paper seeks to be accessible to readers from both fluid
mechanics and quantum computing communities. To achieve this aim, we recapitulate
some fundamental concepts in footnotes and appendices.

If the reader is not familiar with the basic principles of quantum computing, we suggest
referring to Appendix B.

2. Representation and retrieval of the velocity field

In the discussed framework, the velocity field—the quantity of interest—is mapped
to values between 0 and 1, and normalized such that all values sum to 1. These veloci-
ties are represented as squared amplitudes of a set of quantum product basis states (see
Appendix B for a quantum primer). Each amplitude, or the corresponding probability,
represents a velocity, and in that sense is a deterministic number. The amplitudes are
time evolved to a final state using the Navier-Stokes equations for the instantaneous
velocity field. The resulting amplitude vector containing the velocities is deterministic
but cannot be directly measured. This is because when a quantum state is measured, it
collapses to one of the product basis states, rather than the deterministic superposition
of product basis states. However, the velocity field is encoded in each of the constituent
product basis states. For this reason, we will need to repeat the simulation many times
if we want to obtain meaningful flow information. By taking statistics of which product
basis state is measured after each run, we can eventually reconstruct the amplitude vec-
tor, and thus the velocity field of interest. A quantum circuit may also, in principle, be
designed to yield integral quantities of the flow field, such as its mean and higher mo-
ments. Multiple measurements will still be needed to reasonably estimate these statistics
to a predetermined level of precision, but the number of measurements will conceivably
be lower than in the case of determining the full flow field.

Note that these quantum simulations are not independent realizations of turbulence.
In other words, their average is not an ensemble or Reynolds average of turbulence.

348

Quantum computing and the Navier-Stokes equations

Rather, these simulations have exactly the same initial conditions. For a theoretical error-
correcting or sufficiently fault-tolerant quantum computer, all the simulations should
lead to the same amplitude vector before measurement. However, since measurement
collapses the quantum state, many simulations are needed to reconstruct this vector,
which contains an instantaneous velocity field and not an averaged velocity field.

2.1. Estimating the upper bound on computational speedup

We will define an efficient quantum algorithm as one that is exponentially faster than
a classical algorithm. A requirement for an efficient algorithm is that it uses a number
of qubits, n, that is logarithmic with the number of degrees of freedom in the classical
problem, N . A further requirement is that the quantum gates needed to time advance the
quantum problem can be approximated by a number of two qubit gates that is polynomial
with n (this limits the gate depth and complexity). In this section, we consider the
number of qubits required and the number of time steps simulated, which provides an
upper bound on the computational speedup of any quantum algorithm. To determine the
total cost of the quantum algorithm, we also consider the number of required simulation
realizations in Section 2.2 and the gate complexity and gate depth in Section 4.

For a three-dimensional problem on a grid with M×M×M points, the mesh size is M3,
or equivalently we can define N ≡M3. This problem may be solved using n = 3 logM =
logN qubits. For an incompressible high-Reynolds-number calculation, the convective
Courant-Friedrichs-Lewy (CFL)† number typically limits the time step size permitted
for the numerical scheme to remain accurate and for an explicit time integration scheme
to remain stable. This implies, for a fixed velocity field, that as the mesh is refined, the size
of the time step should change proportionally. In the aforementioned three-dimensional
problem, the number of time steps scales like M , and the number of qubits is O(logM).
Meanwhile, the classical problem size is O(M3) for each of O(M) steps. The lower bound
on the cost of a quantum simulation is O(M logM) (before considering the number of
required simulations or the gate depth and complexity) and the lower bound on the
cost of a classical simulation is O(M4). This means that the quantum computer can at
best achieve between a quadratic and a quartic reduction in cost (before considering the
number of quantum simulations or gate complexity/depth).

In principle, the time step can be held constant as the grid is refined, but the calculation
will become unstable unless an implicit time advancement scheme is used. Furthermore,
using an implicit scheme to bypass the smallest timescales of the problem is only justified
in special cases where the smallest timescales need not be resolved to accurately solve
the problem. For example, this is justified when the spatial mesh is over-resolved. For
example, when a cylindrical mesh is used, adequate resolution in the azimuthal dimension
can lead to over-resolved cells near the centerline. The second case when the time step
can be kept constant with refinement is when only the steady solution is of interest. The
third application is in problems that have quasi-steady modes. For example, in a spring
mass system with two springs of very different stiffnesses, the stiff spring relaxes very
quickly, and this fast timescale need not be captured to solve for the relaxation of the
slow spring accurately. In these three cases, the number of time steps does not scale with
problem size, so the lower bound on cost is O(M3), whereas for the quantum simulation
it is O(logM). In the best case, and exponential speedup is possible (before considering
the number of quantum simulations or gate complexity/depth).

† The definition of the convective CFL= U∆t/∆x, where U is the maximum velocity of the
system, ∆t is the time step and ∆x is the grid spacing.

349

Griffin et al.

2.2. Retrieving a limited set of statistics

The complexity of initializing a quantum state of size M3 is O(M6) or O(4n)‡. The
complexity of measuring the full state on the classical computer depends on the quantities
of interest, as mentioned in Section 1 and earlier in this section. If the full flow field is of
interest, then the number of quantum realizations (and thus the number of initializations)
is at least N , as pointed out by Harrow et al. (2009). To reduce the number of required
realizations, we can reduce the number of measured quantities. For example, Harrow et al.
(2009) only measures 〈x|W |x〉¶, where |x〉 is the full quantum state and W is a weight
matrix, which takes a weighted average of the whole state and assumes that that is the
quantity of interest. In a fluid mechanics application, W might represent a conditional
average over a surface if surface fluxes are of interest. In this way, the number of required
simulations is reduced by a factor of N . The exact number of simulations depends on
the desired precision to which the weighted average is computed. The precision scales
inversely with the square root of the number of samples.

If we are taking full advantage of the quantum computer to advance the problem in
time without intermediate measurements, and eventually measure only a limited number
of quantities, then the problem can in principle be carried out exponentially faster than
the classical time advancement of this problem if the time step is held fixed and the gate
complexity and depth is polynomial with the number of qubits (this will be further an-
alyzed in Section 4). Observe from the scalings above that the initialization of the data,
as well as measurement of the full flow field is of interest, is the bottleneck here given its
O(M3)–O(M6) cost. In addition, if we are interested in the intermediate full flow fields,
then frequent measurement of the full quantum state and subsequent re-initialization are
necessary. Since each measurement and initialization requires an O(M3)–O(M6) oper-
ation, the exponential advantage of the quantum algorithm may be lost. This mapping
of the system unknowns (velocities) directly to squared amplitudes (as was used by En-
gel et al. (2019) in solving the Vlasov equation) is different from previous research on
solving the equations on quantum annealing machines (Chang et al. 2019; Ray et al.
2019; Srivastava & Sundararaghavan 2019; McClean et al. 2016). These prior works have
represented the system unknowns (velocities) in binary where each qubit represents a
single bit. Note that this approach would be significantly less powerful on a universal
quantum computer since the number of velocities that can be stored scales linearly with
the number of qubits rather than exponentially as in our approach.

More concretely, problems that involve saving full flow fields at many time steps may
not be well suited for the discussed model of computation. For example, a checkpointing
algorithm for the solution of adjoint equations would be challenging to efficiently realize
on a quantum computer, since it involves a significant amount of reading, initializing, and
writing intermediate full flow fields. Meanwhile, in other problems of interest, minimal
reading and writing of data might be possible. For example, when an engineer evaluates
the statistically stationary turbulent flow over a vehicle, they may be interested in only
a few integral measures of the solution such as lift and drag.

‡ Using the algorithm (Shende et al. 2006) that is used in Qiskit, a Python-based framework
for quantum computing, the number of CNOT gates required to initialize a quantum state scales
as 4n.

¶ Equivalently, this inner product can be notated as ~xTW~x.

350

Quantum computing and the Navier-Stokes equations

3. Governing equations and their consequences

In this work, we consider the non-dimensional incompressible Navier-Stokes equations†
in velocity-pressure form‡,

∂ui
∂t

= −∂uiuj
∂xj

− ∂P

∂xi
+

1

Re

∂

∂xj

(
∂ui
∂xj

)
, (3.1)

together with the continuity equation

∂ui
∂xi

= 0, (3.2)

where repeated indices imply summation. In order to directly discretize and time ad-
vance the Navier-Stokes equations on a quantum computer in the spirit of a Hamiltonian
simulation (Lloyd 1996), the operator that updates the velocity state must be unitary†.
Equivalently, we require that the semi-discrete equations take the form

∂ui
∂t

= Aui, (3.3)

where A is an anti-Hermitian operator. See Appendix C for a proof of this equivalence.
Using integration by parts, the time derivative is an anti-Hermitian operator if the bound-
ary term (in the time dimension) is zero. This is true, for example, for a problem that is
periodic in time. Similarly, we can show using integration by parts that the first deriva-
tive in space is anti-Hermitian if the boundary terms are zero. Physically, terms in the
divergence form in the Navier-Stokes equations involve only redistribution of momentum
in the case of periodic boundary conditions. However, the anti-Hermiticity of A is not
always guaranteed in the case of the Navier-Stokes equations applied to general flows.
For this reason, a few variants of the governing equations are considered in the ensuing
subsections, with appropriate transformations or assumptions, to enable their solution
on a quantum computer. Other approaches that do not require the Navier-Stokes time
evolution operator to be directly transcribed into a unitary time evolution operator, such
as variational algorithms, are discussed later in Section 4.

3.1. Governing equations in physical space

For incompressible flows, the continuity equation, Eq. (3.2), is a constraint on the ve-
locity field. ui cannot simply be marched forward in time according to Eq. (3.1) be-
cause the pressure field must also be solved for, so that time advancement maintains a
divergence-free velocity field. To find this pressure, we form a Poisson equation by taking
the divergence of Eq. (3.1) and using the continuity equation, Eq. (3.2), to obtain

− ∂2P

∂xi∂xi
=
∂2uiuj
∂xi∂xj

. (3.4)

† The right-hand side contains the nonlinear, pressure, and viscous terms in that order. The
equations are written in conservative (divergence) form, so that it is clear from integration
by parts that for problems with periodic boundary conditions, these terms only redistribute
momentum within the domain.

‡ Recent work concerning Hamiltonian systems with dissipation (Galley 2013) could poten-
tially result in a set of equations more amenable to solution on a quantum computer.

† A quantum computer is composed of gates that perform unitary operations. To translate
a problem to a quantum circuit, it must first be written as an algorithm composed of unitary
operations.

351

Griffin et al.

Solving this elliptic equation is typically the most expensive step in classical algorithms
for the time advancement of the Navier-Stokes equations. Although this system can
be large in realistic applications, it is linear so there are efficient iterative methods for
solving it on a classical computer. One hybrid quantum-classical approach to solving
the Navier-Stokes equations involves solving only the Poisson equation on a quantum
computer, while computing the nonlinear and viscous terms in the momentum equation
on a classical computer (Cao et al. 2012). This avoids the issue of solving a nonlinear
problem on a quantum computer, but does not promise an exponential speedup to the
classical approaches. The speedup depends on the fraction of the original problem that
is spent solving the Poisson equation. A related limitation of this approach is that as a
hybrid method, it involves initializing and measuring the full state every time step. This
is unfavorable since initializing the right-hand side and measuring the left-hand side of
the Poisson equation scales with the problem size rather than the number of qubits.

As we are seeking an exponential speedup for solving the Navier-Stokes equations, we
discuss directly time advancing the velocity field on a universal quantum computer, rather
than using this hybrid quantum-acceleration model. However, the necessity of solving a
Poisson equation that depends on the velocity field makes the solution considerably more
complicated. Due to the no-cloning theorem (Park 1970) (see Appendix B), it will be
difficult to use the velocity field to compute the right-hand side of the Poisson equation
while still preserving the velocity field so that the unitary time advancement operator
A can be applied to it. The velocity field may be copied if it is first measured by a
classical computer and then re-initialized on two sets of qubits, but the initialization and
measurement of the full state incurs a substantial cost. One solution to this problem
is to use a compressed representation of the velocity field. Another solution is to avoid
having to solve a Poisson equation for pressure by solving the Navier-Stokes equations in
Fourier space. In Fourier space, we only need to solve one equation instead of two every
time step, obviating the need to copy the velocity field for the solution of an auxiliary
equation. This approach is discussed further in Section 3.2.

Another way to avoid solving the Poisson equation is to consider the compressible equa-
tions. However, this adds additional complexity (not unlike that of solving the Poisson
equation), such that the transport of momentum now depends on the transport equation
for density (the compressible continuity equation). That is, it is difficult to obtain u from
ρu and ρ while preserving the states of ρu and ρ due to the no-cloning theorem.

3.1.1. Special case: triply periodic domain in physical space with no external forcing

Next, we consider the special case of solving the equations in physical space in a triply
periodic domain in the absence of external forcing. This case is considered because a
simple normalization of the variables is available to make the time advancement operator
anti-Hermitian. Here, the volume-integrated momentum in the domain is a constant by
Gauss’s divergence theorem, since the time rate of change of the volume integral of the
momentum equation is only given by boundary terms, which cancel in a periodic domain

1

Ω

∫

Ω

∂ui
∂t

d~x = 0. (3.5)

First, consider a potential normalization—for just the x-velocity for illustration pur-
poses—that maps all values of u to u′ such that the values are between 0 and 1, and they
sum to 1. The idea is to add a global value to the velocity field, so that all the velocities

352

Quantum computing and the Navier-Stokes equations

are positive, and then divide by their sum

u′(~x) =
u(~x) + max~x [|u(~x)|]∑
~x {u(~x) + max~x [|u(~x)|]} . (3.6)

This normalization has the undesirable property that although u is conserved†, u′ is not
necessarily conserved, since max~x [|u(~x)|] can vary in time. Instead, we propose a more
useful normalization, ũ, which involves adding a constant reference velocity, Uref , such
that

u(~x) + Uref > 0 ∀ ~x, t. (3.7)

Now, we redefine the normalized velocity field to be ũ, where

ũ(~x) =
u(~x) + Uref∑
~x [u(~x) + Uref]

, (3.8)

which sums to 1 and is conserved if u is conserved‡. By analyzing the kinetic energy equa-
tion, one can show that the kinetic energy is not growing in a triply periodic box without
external forcing. Hence, the largest velocity achievable for all time can be determined
from the initial condition. We set Uref to equal this largest achievable velocity

Uref =

√∑

~x

ui(~x)ui(~x), (3.9)

which can be physically interpreted as the velocity obtained if all of the kinetic energy
were to be concentrated in a single cell in the domain, as this sets the upper bound
on the velocity in any cell. This procedure may be generalized to the other velocity
components. One important limitation of this normalization is that Uref grows linearly
with the problem size. This becomes problematic because in the limit of an infinite
problem size, the normalized velocities obey a uniform distribution. To prevent this, a
better estimate of Uref is required when the problem size is large. For example, in the
decaying turbulence example presented above, a reasonable upper bound for the energy in
a given control volume scales with the infinity norm of the energy in the initial condition,

Uref ∼
√
‖ui(~x)ui(~x)‖∞. (3.10)

For more general problems where the volume-integrated momentum is not constant and
the kinetic energy is not necessarily decaying, more general normalizations of the state
vector are proposed in other works. For example, Engel et al. (2019) require additional
qubits to track the magnitude of energy, while Lubasch et al. (2019) introduce an addi-
tional variational parameter to account for the norm of the vector. Both of these papers
will be discussed further in Section 4. However, the normalization approach developed in
this section is preferable to those approaches since it incurs no additional computational
cost. The reader should keep in mind, though, that this approach should only be applied
when the volume-integrated momentum is constant and the volume-integrated energy is
decaying.

3.2. Governing equations in Fourier space

For periodic domains, an alternative form of the equations is available which removes
the need to solve a Poisson equation and greatly simplifies the solution procedure. One

† Discrete conservation of u implies that
∑
~x u(~x) is not a function of time.

‡ In an incompressible fluid, density is a constant, so u is directly related to momentum.
Similarly, uiui/2 = (u2 +v2 +w2)/2 is directly related to the kinetic energy by the fluid density.

353

Griffin et al.

consequence of this transformation is that the nonlinear term in physical space becomes
a convolution product in Fourier space.

By taking the Fourier transform of the governing equations, Eqs. (3.1)-(3.2), we obtain

∂ûi
∂t

+ ikj ûjui = −ikiP̂ −
1

Re
k2ûi, (3.11)

ikiûi = 0, (3.12)

where ki represents the components of the wavenumber vector, and k is the corresponding

magnitude. (̂·) denotes the Fourier transform operator. After taking the divergence of Eq.

(3.11) and using Eq. (3.12), we obtain a Poisson equation for P̂ , which is used to eliminate

P̂ in Eq. (3.11) to obtain

∂ûi
∂t

= ikj ûluj

(
−δli +

kikl
k2

)
− 1

Re
k2ûi. (3.13)

The Fourier transform of the nonlinear term is written as a convolution in Fourier space

ûluj(~k) =
∑

k′1

∑

k′2

∑

k′3

ûl(~k
′)ûj(~k − ~k′). (3.14)

Note that the convenient normalization discussed for the physical space equations in
a triply periodic domain is not applicable in Fourier space. That transformation would
require ûi to be conserved, which is not the case. To prove this, consider a box of decaying
turbulence. The momentum in physical space is conserved, as just mentioned, so ûi(~k =

0) is constant. However, the fluctuations about the mean are decaying, so ûi(~k 6= 0)
are decaying to zero. This is not a serious issue since more general normalizations are
available, as discussed at the end of Section 3.1.1.

3.2.1. Spectral methods for general domains

For non-periodic problems, the use of Fourier decomposition will lead to the Gibbs
phenomenon, so other spectral decompositions† are more appropriate. The convergence
of the spectral decomposition is improved greatly if the eigenfunction basis is defined on
the same domain as the domain of the problem. For example, for a finite dimension—
say, a wall-bounded dimension, like the wall-normal dimension in a channel flow—a
decomposition in terms of Chebyshev polynomials may be appropriate. For a semi-infinite
dimension, such as the wall-normal dimension over a flat plate, Laguerre polynomials may
be well suited. For infinite dimensions, Hermite polynomials can be used. Many other
decompositions exist and will lead to different clusterings of solution points in physical
space, so the optimal decomposition will be problem specific.

On a classical computer, there is a strong preference for using Fourier and Chebyshev
decompositions, because fast algorithms are available which scale as O(N logN), where
N is the problem size. Let n be the number of qubits, which scales as logN . The quantum
Fourier transform has a complexityO(n2), which is exponentially faster than even the fast
Fourier transform. Fast quantum Fourier transforms exist with complexityO(n log n), but
they are not exact, and so may not be appropriate for scientific computing of chaotic
systems such as turbulence. The absence of an exact fast quantum spectral transform
means that we should not necessarily prefer Fourier and Chebyshev transforms for a
quantum algorithm like we would for a classical algorithm.

† Interested readers can refer to Moin (2010) or Andrews & Phillips (2003) for an introduction
to spectral methods.

354

Quantum computing and the Navier-Stokes equations

3.2.2. Transformation of variables to analytically treat the viscous term

Rogallo (1977) first proposed that an integrating factor can be used to analytically
integrate the viscous term in the Navier-Stokes equations. We suggest using this method
when advancing the equations in Fourier space on a quantum computer.

Begin by considering the viscous term. Use the following change of variables

ûi = v̂ie
−k2(t−t0)/Re. (3.15)

After plugging this ansatz into Eq. (3.13), the viscous term vanishes

∂v̂i
∂t
e−k

2(t−t0)/Re = ikj ûluj

(
−δli +

kikl
k2

)
. (3.16)

We make the following substitution for the convolution term

ûluj(~k) =
∑

k′1

∑

k′2

∑

k′3

v̂l(~k
′)e−‖

~k′‖2(t−t0)/Rev̂j(~k − ~k′)e−‖~k−~k
′‖2(t−t0)/Re (3.17)

=
∑

k′1

∑

k′2

∑

k′3

v̂l(~k
′)v̂j(~k − ~k′)e−(‖~k−~k′‖2+‖~k′‖2)(t−t0)/Re. (3.18)

Notice that the term in parentheses in Eq. (3.16) is merely a constant tensor. This
implies that the brunt of computing the right-hand side of this equation is in computing
the convolution term, Eq. (3.18).

4. Nonlinearity

Nonlinear products are a fundamental challenge in quantum mechanics†. We discuss
two approaches for treating the nonlinear term in the Navier-Stokes equations: a fully
nonlinear variational algorithm and a linearized approach.

4.1. A fully nonlinear approach

Quantum mechanics is inherently linear, so nonlinear products are difficult to directly
treat in a quantum setting (Lubasch et al. 2019). A näıve approach to computing a
nonlinear product on a quantum computer would involve measuring the full velocity
field (which has a size of N , which is 2n). Then, on the classical computer, the nonlinear
product can be performed, which on the classical computer is an O(N) operation. The
quantum computer is then reinitialized with this product. Initialization scales as O(N2)
(Shende et al. 2006). These steps would need to be performed for every time step, so an
exponential speedup over a classical computer is unlikely with this approach.

Instead, we suggest using the variational quantum algorithm of Lubasch et al. (2019) to
perform the nonlinear product. This algorithm is a hybrid quantum-classical algorithm
like the näıve algorithm in the previous paragraph, but it is potentially exponentially
faster. The approach is to construct the velocity field from a layered network, as shown
in Figure 1(b). This network maps the input to the velocity field using d layers of ng
two-qubit gates. Each of the i gates has a parameter λi associated with it (where i goes

from 1 to ng). The classical computer provides ~λ in a way that attempts to construct

the velocity field. To do so, the classical computer iteratively updates ~λ by measuring an
ancilla qubit‡, and evaluates whether the correct choice of ~λ was used by checking if the

† The no-cloning theorem prohibits the copying of an arbitrary quantum state, so we cannot
simply multiply a qubit by itself (see Appendix B).

‡ A qubit that doesn’t hold simulation variables, but rather is used for algorithmic purposes.

355

Griffin et al.

Figure 1. (a) Circuit for computing nonlinear product. (b) Layered network. Figure taken
from Lubasch et al. (2019).

quantity estimated by the ancilla qubit measurements satisfies a desired constraint. The
constraint proposed by Lubasch et al. (2019) advances the velocity field by a single time
step under the forward Euler scheme, but may be generalized to other time advancement
schemes. This procedure would then have to be repeated over the desired number of
time steps until the final solution is obtained. The efficiency of this algorithm hinges on
the magnitude of ng, which is the length of ~λ. In the limit that ng = N , this algorithm
is no more efficient than the aforementioned näıve algorithm, since N measurements
are required at each iteration. However, Lubasch et al. (2019) shows that ng scales like
poly(n), since d, the depth of the network, scales like n and not N . For this reason, the
cost of approximately initializing the quantum state is poly(n).

Using the variational parameters stored on the classical computer, copies of the quan-
tum state can be sent to the input ports of the quantum nonlinear processing unit
(QNPU) (see Figure 1(a)). Lubasch et al. (2019) show the upper bound for the depth of
the quantum circuit used in the QNPU is also polynomial with the number of qubits.
As a result the overall algorithm can be exponentially faster than a classical algorithm
(Lubasch et al. 2019).

4.1.1. Data compression

The variational method of Lubasch et al. (2019), discussed in Section 4.1 for treating
the nonlinearity in the problem, could potentially also be used for data compression. The
layered network was required in their study because it permits the classical computer to
store O(n) variational parameters that represent a solution field of size O(2n). This can
be interpreted as a lossy, exponential data compression. With the ever-increasing size
of numerical simulations, and the potential for quantum computers to be used for even
larger simulations in the future, the exponential data compression is valuable.

For any given time step where the full flow field is of interest, ~λ can be stored on a
classical computer.

Recall that ~λ is exponentially smaller than the full flow field and can be readily stored.
If the variational algorithm converges, then the stored ~λ may be fed into the layered
network to reinitialize the full flow field on the quantum computer. Although initializing
the flow field only requires poly(n) operations (Lubasch et al. 2019), writing the full flow

field would require N operations†, so the stored ~λ does not provide us classical access

† Holevo’s theorem states that n qubits can encode more than n bits of information, but only

356

Quantum computing and the Navier-Stokes equations

to all the velocity variables. However, we can compute statistics or integral measures
of the velocity field on the quantum computer, thereby reducing the dimensionality of
the desired metrics within the quantum circuit, and can then efficiently output these
statistics and measures (see Section 2.2 for details on reducing dimensionality).

For example, suppose we have a data file containing ~λ. We can reinitialize the velocity
field from this small data file. Suppose, further, that the velocity field describes a tur-
bulent flow with small-scale fluctuations. Rather than writing the file and processing it
on a classical computer, we could compute statistics, such as the turbulence intensities
and Reynolds stress profiles in regions of interest. To access these statistics on a classi-
cal computer, the quantum state is measured repeatedly (see Appendix B on measuring
these statistics). This process is fast compared to writing the whole flow field, since the
dimensionality of these statistics is much smaller than the dimensionality of the entire
flow field.

It is important to recognize that this means of exponential data compression is lossy. No
estimates for this compression error are provided in Lubasch et al. (2019); however, the
loss is small enough that they are able to solve Burgers’ equation. The loss will be problem
specific, as it depends on how optimal the layered-network basis is for representing the
solution field (a turbulent flow field). Perhaps a layered network is an efficient way to
store turbulence databases, as turbulence is inherently multi-scale in nature.

4.2. Linearized approach

There has been significant progress in the solution of linear PDEs on quantum computers.
Harrow et al. (2009) demonstrated how to solve linear systems on a quantum computer†,
which is the main computational requirement for numerically integrating PDEs. One
effective approach to solving linear PDEs is given by Engel et al. (2019), who solve the
Vlasov equation. However, the Navier-Stokes equations are nonlinear. We can linearize
about the present state, and then time-advance the linearized problem, but this incurs a
linearization error. Analysis of this error is presented in Section 4.2.1. This error is small if
the time step is small or the integration time horizon is short. A feasible algorithm would
then require frequent updating of the state around which the linearization is performed.

Linearized approaches to solving the Navier-Stokes equations have been used in con-
junction with data assimilation for weather prediction (Korn 2009). However, when data
are unavailable and high-fidelity predictions over long time horizons are required, the
fully nonlinear approach in Section 4.1 should be preferred.

Moreover, even if we tolerate the linearization error, the process of efficiently linearizing
a nonlinear equation is not trivial in a quantum setting. It likely requires us to measure the
quantum state—so that the gates that implement the linear operator may be updated
with the current velocity—and subsequently reinitialize the quantum state‡. Drawing
from the ideas of Section 4.1.1, one might potentially avoid measuring the full quantum
state by using a layered network to describe and regenerate the quantum state.

4.2.1. Error incurred by time-advancing the linearized system

The time evolution of a quantum state |x〉, with the variables encoded as amplitudes
of the constituent product basis states, is unitary for a generic differential equation of

n bits of information are readily accessible (can be measured from a single realization of the
quantum state).

† An accessible introduction to the Harrow-Hassidim-Lloyd algorithm is given by Dervovic
et al. (2018).

‡ See the end of Section 3.1 for an explanation on why measurement is required.

357

Griffin et al.

the form
d |x〉
dt

= A |x〉 , (4.1)

if A is an anti-Hermitian operator. See Appendix C for a proof of this statement. Now,
consider the Taylor expansion of |x(t)〉 around t0 as

|x(t)〉 = |x(t0)〉+
d |x〉
dt

∣∣∣∣
t0

δt+O{(δt)2}. (4.2)

Use Eq. (4.1) and replace d |x〉 /dt by A(t0) as follows,

|x(t)〉 = |x(t0)〉+A(t0) |x(t0)〉 δt+O{(δt)2} = {I +A(t0)δt}|x(t0)〉+O{(δt)2}. (4.3)

Now, using Eq. (C 2), and replacing I +A(t0)δt by U(t0) +O{(δt)2}, we obtain

|x(t)〉 = U(t0) |x(t0)〉+O{(δt)2}. (4.4)

By neglecting the second-order error term, we obtain an evolution equation for |x〉 as

|x(t)〉 = U(t0) |x(t0)〉 , (4.5)

which is second-order accurate in time every time step and is also unitary. With this
estimate for linearization in mind, we recommend the fully nonlinear approach for general
problems.

5. Conclusions

We have discussed some key challenges and potential solutions for the direct numer-
ical simulation of the Navier-Stokes equations on a universal quantum computer. One
essential result is that an an efficient quantum algorithm requires that the user be only
interested in a reduced set of statistics from the full problem, as a limited number of
quantities of interest decrease the total number of quantum simulations required to re-
cover an estimate of those quantities. We are fortunate that in the simulation of turbulent
flows, rarely is the instantaneous velocity field of interest, so the cost of estimating the
squared amplitudes of the product basis states is greatly reduced. Furthermore, rarely
are these statistics sensitive to the exact initial conditions of the flow, which permits
approximate initialization.

The solution of nonlinear equations on a quantum computer remains an outstanding
problem. One promising approach by Lubasch et al. (2019) is discussed here. In that
work, the nonlinear term in the Navier-Stokes equations is treated using a variational
algorithm. Its success hinges on the use of a layered network to circumvent the high cost
of state initialization on the quantum computer. To date, the limitations of this approach
have not been well studied, particularly to what extent the information losses (in their
layered network representation of the velocity field data) will affect the accuracy of time
integration. For this reason this approach is endorsed with some reservation. That work
has claimed to have solved the Burgers’ equation, but did not report detailed results.
This claim is encouraging since that equation is similar to the Navier-Stokes equations
but without the pressure term. Either by solving a Poisson equation or by transforming
to Fourier space, this algorithm could be extended to the Navier-Stokes equations. These
approaches are discussed above. Our overall conclusion on treating nonlinearity is that
this remains an unsolved issue and one that should be closely monitored by researchers
interested in solving the Navier-Stokes equations on a quantum computer.

358

Quantum computing and the Navier-Stokes equations

One exciting result from using a layered network of Lubasch et al. (2019) is the idea
of leveraging it for exponential data compression. By storing only the variational pa-
rameters, we can regenerate the quantum state on the quantum computer and, although
we can not access this exponentially larger data set, we can efficiently extract statistics
from it provided that the dimension of the statistics is small compared to the size of
the data set. This could have vast implications for scientific computing in the quantum
age. Without this sort of exponential data compression, quantum calculations that are
exponentially larger than classical contemporaries would be difficult to post-process or
restart after a calculation is complete. One downside of this form of storage is that it is
lossy, and this information loss needs to be quantified theoretically or at least empirically
by applying it to data sets describing turbulent flows.

Next we summarize some secondary recommendations of this paper. We recommend
representing velocities as squared amplitudes of product basis states, rather than a bi-
nary representation. We discussed using Rogallo’s variable transformation to remove the
viscous terms from the system of equations, burying their effect in the definition of a
transformed variable. We propose a convenient normalization in physical space for triply
periodic, unforced simulations. We discuss solving the linearized equations for data assim-
ilation applications where a linearization error is permissible. We also discuss advancing
the equations in Fourier space, which replaces the nonlinear term with a convolution
term and removes the need to solve a Poisson equation in each time step.

Appendix A. Summary of previous attempts to solve fluid flow problems using
a quantum computer

Ray et al. (2019) used an adiabatic annealing-based quantum computer, as opposed to a
universal-gate quantum computer, to solve the laminar plane channel flow problem. This
equation is a reduced form of the Navier-Stokes equations and is an ordinary differential
equation for the streamwise velocity. The authors used a finite-difference method to
discretize the system and convert the equation into a linear system. Subsequently, they
converted the real variables into a binary format, and used a least-squares formulation
to transform the linear system into an optimization problem that can be solved on an
annealing-based quantum computer. However, the accuracy was not satisfactory, and did
not seem to improve with the increase in the number of grid points or precision used in
the computation, due to the noise in the system.

Srivastava & Sundararaghavan (2019) presented a solution method for a linear system
of equations where the solution procedure involves transforming the linear system into a
minimization problem and then mapping the energy functional onto a Ising Hamiltonian
on a D-Wave quantum computer.

Xu et al. (2018) used probability density function methods for the simulation of tur-
bulent binary scalar mixing process modeled using coalescence/dispersion closure (Pope
1982; Kosály & Givi 1987). They presented a quantum algorithm that is quadratically
more efficient in terms of repetitions than Monte Carlo methods—i.e., the number of
repetitions Nr required to achieve a precision of ε is on the order of 1/ε as opposed to
1/ε2 that is typical of Monte Carlo methods—and simulated their quantum algorithm on
a classical computer by sampling from the same probability distribution as that of the
measurement outcome of a quantum computer.

Steijl & Barakos (2018) and Steijl (2019) developed a hybrid quantum-classical com-
puter approach to simulate Navier-Stokes equations. They used a hybrid particle-mesh

359

Griffin et al.

Figure 2. Bloch sphere representation of a qubit (wikipedia.org), where |ψ〉 represents a
quantum state, θ is the colatitude, φ is the longitude, and |0〉 and |1〉 are the basis states.

vortex-in-cell method for the simulation of incompressible Navier-Stokes equations, where
the equations are transformed into a transport equation for vorticty, and three Poisson
problems for velocity. They modified the vortex-in-cell formulation to use the quan-
tum Fourier transform (QFT) to solve Poisson equations as opposed to standard finite-
difference method, to avoid amplification of the noise by the application of finite-difference
operations on to the data.

They found that the QFT took up to 20 times longer than the classical fast Fourier
transform, though the computational complexities were similar for both. They used up
to 24 qubits to simulate colliding vortex rings on up to 2563 mesh and also assessed the
effect of noise on the accuracy of the simulation data.

Yepez (2002) proposed a factorized quantum lattice-gas algorithm for modeling non-
linear Burgers’ equation for a type-II quantum computer. A type-II quantum computer
is a large parallel array of quantum computers (nodes) connected through classical com-
munication channels, which has the advantage that it can scale indefinitely, as opposed
to a type-I conventional globally phase-coherent quantum computer (Yepez 2001b).

They showed that the microscopic quantum mechanical model that they proposed re-
duces to a transport equation—a quantum lattice-Boltzmann equation at the mesoscopic
scale. To verify the model, a simulation of the formation of a shock was performed and
compared against the analytical solution. The numerical simulation results showed excel-
lent agreement with the analytical solution, thus verifying the algorithm. Furthermore,
potential pathways for extending the algorithm to simulate the Navier-Stokes equations
in three dimensions by using non-local collisions to apply inter-particle potential were
presented along with the cost estimates of simulating a high-Reynolds-number turbulent
flow.

Cao et al. (2012) used a hybrid quantum-classical approach where the classical com-
puter updates the velocity field and only the linear Poisson equation is solved on the
quantum computer. This can be thought of a quantum accelerator model where the
most computationally demanding part of the classical calculation is off-loaded to the
quantum co-processor. This approach does not promise an exponential speedup of the
entire calculation since it still advances the full system on the classical computer.

Appendix B. Qubits, quantum states, and measurement in quantum systems

A qubit, or quantum bit, may be expressed as a superposition of two orthonormal
basis states |0〉 and |1〉. A single qubit may store a quantum state |ψ〉 = α |0〉 + β |1〉,

360

Quantum computing and the Navier-Stokes equations

where α, β ∈ C, 0 < |α|2, |β|2 < 1 and they sum to 1. This may be visualized as a
unit vector on the Bloch sphere, as depicted in Figure 2. The north and south poles
of the Bloch sphere represent the two standard basis vectors, |0〉 and |1〉, respectively.
Upon measurement, the qubit will collapse to one of these two vectors. Once the qubit is
measured, the original superposition of the two states cannot be recovered. This is called
wavefunction collapse, and is an example of the observer effect, where a measurement
of a phenomenon inevitably changes the phenomenon. After collapse, the state is like a
classical bit, and takes a value of either 0 or 1.

Just before measurement, the probability of collapse to the |0〉 or |1〉 state is determined
by the colatitude, θ. There is a probability |α|2 of measuring 0 and a probability |β|2 = 1−
|α|2 of measuring 1. To reconstruct this probability distribution, we need to perform this
measurement many times, since the wavefunction collapses after a single measurement
and cannot be recovered. This reconstruction may be performed by repeatedly initializing
the qubit to the state |ψ〉 and then measuring. Moreover, due to the no-cloning theorem
(Park 1970), which implies that a quantum state can not be copied, we can not simply
copy the qubit and measure the copies to infer the quantum state. Instead, the process
that was used to prefer the qubit in the first place must be repeated for each desired
measurement. For example, in the case of solving the Navier-Stokes equations, this might
involve solving the equations for every measurement trial.

A quantum state vector can be formed from many qubits. The number of resulting
product basis states grows exponentially with the number of qubits used. For example,
consider the two-qubit quantum state, |q1q2〉. Upon measurement, there are four possible
product basis states, |00〉, |01〉, |10〉, and |11〉. The number of orthonormal basis states,
N , grows exponentially with the number of qubits, n: N = 2n. For each of the N states,
there is a probability associated with measuring them. We will use these probabilities to
store velocities (the quantity of interest when solving the Navier-Stokes equations). As
in the single-qubit case, these probabilities must sum to 1 and must each be ∈ [0, 1].

To understand the power of present-day quantum computers, consider that the largest
quantum computers today have on the order of 70 qubits, so there are 1021 accessible
product basis states. In principle, such a computer could encode as much information
as a mesh with 1021 grid points. As a point of reference, the largest simulations today
are on the order of 1012 grid points (Bermejo-Moreno et al. 2013). Most importantly,
if we double the number of processors on a classical computer, we can solve a twice-
larger problem in the same amount of time, assuming perfect weak scaling. Meanwhile,
to double the problem size on a quantum computer, we only need to add a single qubit,
because N = 2n. For this reason, we expect the gap between quantum and classical
computers to continue to grow exponentially in the future. However, scaling the size
of quantum computers is not a simple task due to the inherent practical difficulties in
maintaining the environment required for the operation of qubits without incurring errors
(MicrosoftQuantumTeam 2018).

Appendix C. Proof that if A in Eq. (4.1) is anti-Hermitian, then the time
evolution of |x〉 is unitary

Consider the solution of Eq. (4.1) for a linear problem, i.e., assuming that the operator
A does not depend on |x〉)

|x(t)〉 = eA(t−t0)|x(t0)〉. (C 1)

361

Griffin et al.

Let U = eAδt, where δt = t− t0. The Taylor expansion of U about I is

U = I +Aδt+
A2(δt)2

2!
+
A3(δt)3

3!
+ (C 2)

Taking the conjugate transpose of (C 2) yields

U† = I +A†δt+
(A2)†(δt)2

2!
+

(A3)†(δt)3

3!
+ (C 3)

Since A is anti-Hermitian, A† = −A. Hence,

U† = I −Aδt+
A2(δt)2

2!
− A3(δt)3

3!
+ (C 4)

Note that U† is equal to e−Aδt. This gives us

UU† = I. (C 5)

Thus, U is a unitary operator, and the time evolution of a quantum state |x〉 is unitary,
since

|x(t)〉 = U |x(t0)〉.

Acknowledgments

The authors are grateful to Yihui Quek and Dr. Kazuki Maeda, who provided thought-
ful feedback in their revision of this manuscript. K. P. Griffin is funded by a National
Defense Science and Engineering Graduate Fellowship. W. H. R. Chan is funded by a
National Science Scholarship from the Agency of Science, Technology and Research in
Singapore. S. S. Jain is funded by a Franklin P. and Caroline M. Johnson Graduate
Fellowship.

REFERENCES

Andrews, L. C. & Phillips, R. L. 2003 Mathematical Techniques for Engineers and
Scientists. Bellingham, WA: SPIE Press.

Berman, G. P., Ezhov, A. A., Kamenev, D. I. & Yepez, J. 2002 Simulation of the
diffusion equation on a type-II quantum computer. Phys. Rev. A 66, 012310.

Bermejo-Moreno, I., Bodart, J., Larsson, J., Barney, B. M., Nichols, J. W.
& Jones, S. 2013 Solving the compressible Navier-Stokes equations on up to 1.97
million cores and 4.1 trillion grid points. In Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis, p. 62.
ACM.

Cao, Y., Daskin, A., Frankel, S. & Kais, S. 2012 Quantum circuit design for solving
linear systems of equations. Mol. Phys. 110, 1675–1680.

Chang, C. C., Gambhir, A., Humble, T. S. & Sota, S. 2019 Quantum annealing
for systems of polynomial equations. Sci. Rep. 9, 1–9.

Dervovic, D., Herbster, M., Mountney, P., Severini, S., Usher, N. &
Wossnig, L. 2018 Quantum linear systems algorithms: a primer. arXiv preprint
1802.08227.

Engel, A., Smith, G. & Parker, S. E. 2019 A quantum algorithm for the Vlasov
equation. arXiv preprint 1907.09418.

362

Quantum computing and the Navier-Stokes equations

Feynman, R. P. 1982 Simulating physics with computers. Int. J. Theor. Phys. 21,
467–488.

Galley, C. R. 2013 Classical mechanics of nonconservative systems. Phys. Rev. Lett.
110, 174301.

Harrow, A. W., Hassidim, A. & Lloyd, S. 2009 Quantum algorithm for linear
systems of equations. Phys. Rev. Lett. 103, 150502.

Holevo, A. S. 1973 Bounds for the quantity of information transmitted by a quantum
communication channel. Probl. Peredachi Inf. 9, 3–11.

Korn, P. 2009 Data assimilation for the Navier-Stokes-α equations. Physica D 238,
1957–1974.

Kosály, G. & Givi, P. 1987 Modeling of turbulent molecular mixing. Combust. Flame
70, 101–118.

Lloyd, S. 1996 Universal quantum simulators. Science 273, 1073–1078.

Lubasch, M., Joo, J., Moinier, P., Kiffner, M. & Jaksch, D. 2019 Variational
quantum algorithms for nonlinear problems. arXiv preprint 1907.09032.

McClean, J. R., Romero, J., Babbush, R. & Aspuru-Guzik, A. 2016 The theory
of variational hybrid quantum-classical algorithms. New J. Phys. 18, 023023.

MicrosoftQuantumTeam 2018 Achieving scalability in quantum computing.
https://cloudblogs.microsoft.com/quantum/2018/05/16/achieving-

scalability-in-quantum-computing.

Moin, P. 2010 Fundamentals of Engineering Numerical Analysis. Cambridge University
Press.

Park, J. L. 1970 The concept of transition in quantum mechanics. Foundations of
Physics. 1, 23–33.

Pope, S. 1982 An improved turbulent mixing model. Combust. Sci. Technol. 28, 131–145.

Ray, N., Banerjee, T., Nadiga, B. & Karra, S. 2019 Towards solving the Navier-
Stokes equation on quantum computers. arXiv preprint 1904.09033.

Rogallo, R. S. 1977 An ILLIAC program for the numerical simulation of homogeneous
incompressible turbulence. NASA Tech. Memo.

Shende, V. V., Bullock, S. S. & Markov, I. L. 2006 Synthesis of quantum-logic
circuits. IEEE T. Comput. Aid. D. 25, 1000–1010.

Srivastava, S. & Sundararaghavan, V. 2019 Box algorithm for the solution of dif-
ferential equations on a quantum annealer. Phys. Rev. A 99, 052355.

Steijl, R. 2019 Quantum algorithms for fluid simulations. IntechOpen.

Steijl, R. & Barakos, G. N. 2018 Parallel evaluation of quantum algorithms for
computational fluid dynamics. Comput. Fluids 173, 22–28.

Xu, G., Daley, A. J., Givi, P. & Somma, R. D. 2018 Turbulent mixing simulation
via a quantum algorithm. AIAA J. 56, 687–699.

Yepez, J. 2001a Quantum lattice-gas model for computational fluid dynamics. Phys.
Rev. E 63, 1–18.

Yepez, J. 2001b Type-II quantum computers. Int. J. Mod. Phys. 12, 1273–1284.

Yepez, J. 2002 Quantum lattice-gas model for the burgers equation. J. Stat. Phys. 107,
203–224.

363

