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Effect of interpolation kernels and grid refinement
on two way—coupled point-particle simulations

By S. V. Aptet, N. Keanef, S. S. Jain AND M. A. Khanwale

In this study, a two way—coupled point-particle Euler-Lagrange model is used to eval-
uate particle-turbulence interactions at low-volume loadings in decaying isotropic tur-
bulence laden with Kolmogorov-scale particles. Particle-fluid interactions are modeled
using standard drag law for this large density-ratio system. The decay rates in kinetic
energy and dissipation are evaluated with and without considering the self-disturbance
effect created by the particles to obtain the undisturbed fluid velocity needed in the
drag closure. Different interpolation kernels that vary based on local grid resolution and
particle size are evaluated through a systematic grid-refinement study. We find that the
interpolation kernel widths that scale based on the particle size perform significantly
better under grid refinement than kernels based on the grid resolution.

1. Introduction

In two way—coupled point-particle (PP) models used for particle-laden flows, the par-
ticles are typically assumed to be spherical, subgrid (much smaller than the smallest
resolved scales of fluid motion), with low volume loading, and modeled as point sources.
The dynamics of the particles are captured by solving the Maxey-Riley equation with clo-
sure models for drag, lift, added mass, pressure, and history forces, among others (Maxey
1987). The reaction force from the particles is added to the fluid momentum equations.
In low-volume loadings, the particle force closures are based on the relative slip veloc-
ity at the particle location, which involves the difference between the undisturbed fluid
velocity and the particle velocity. The undisturbed fluid velocity seen by the particle is
defined as the fluid velocity seen by the particle in the absence of the self-disturbance
field created by the particle. However, in a two way—coupled point-particle model, the
particle affects the fluid flow in its neighborhood, and thus the undisturbed fluid velocity
is not readily available. It is standard practice to simply use the two way—coupled fluid
velocity to compute the closure forces (Apte et al. 2003).

When the particle size is very small compared to the grid resolution (D, < A), where
D, is the particle diameter and A is the grid size, the above approximation does not
result in any significant error. However, when the particle size is comparable to the grid
size (D, ~ A), because of such an approximation, significant errors in particle and fluid
statistics are reported, especially at low particle Reynolds numbers (Gualtieri et al. 2015;
Horwitz & Mani 2016, 2018; Esmaily & Horwitz 2018; Fukada et al. 2018). Recent work
initiated by Horwitz & Mani (2016) and Esmaily & Horwitz (2018) followed by several
other researchers (Liu et al. 2019; Pakseresht et al. 2020; Pakseresht & Apte 2021; Apte
2022) has led to the development of new schemes and models to recover the undisturbed
fluid velocity with improved predictions in capturing the particle-turbulence interactions
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in homogeneous, isotropic turbulence (Mehrabadi et al. 2018) and wall-bounded channel
flows (Horwitz et al. 2022).

Recently, Horwitz & Mani (2020) conducted a detailed evaluation of numerics and
grid resolution on fluid-particle interactions predicted by point-particle models, with and
without correcting for the particle self-disturbance field, in homogeneous isotropic turbu-
lence. For a particle size to a Kolmogorov-scale ratio (D,/n) of 0.25, the grid resolution
(Dp/A) was refined over the range of 0.25-1 and statistics of fluid kinetic energy, dis-
sipation rate, particle kinetic energy, and particle acceleration were evaluated in detail.
Different interpolation kernels, e.g., trilinear, fourth-order Lagrange, and cubic splines,
for Euler-to-Lagrange (E2L) and Lagrange-to-Euler (L2E) interpolation were used. All
the interpolation kernels have grid-based interpolation stencils. As the grid is refined,
the interpolation stencil becomes narrower, localizing the effect of the particle on the
fluid and vice versa. It was found that, in the absence of any correction model for self-
disturbance, the fluid and particle statistics do not result in grid-converged solutions.
The fluid-particle interactions were better predicted when the grid is coarser, and hence
neglecting the self-disturbance effect resulted in a smaller error on coarser grids. With
grid refinement, the self-disturbance field is stronger, as the particle reaction force is
distributed over a smaller region due to localized interpolation kernels, resulting in a
larger error. In contrast, when a correction model was used to obtain the undisturbed
fluid velocity, consistent results were obtained for all kernels as the grid was refined,
emphasizing the importance of self-disturbance correction, especially when the particle
size is comparable to the grid resolution and grid-based interpolation kernels are used.

The grid-based interpolation kernels discussed above are commonly used because they
provide compact support for the E2L and L2E interpolations. For example, in trilinear
interpolation, only the nearest neighbors of a grid cell are necessary for the interpola-
tion, making them straightforward to implement for complex, arbitrary-shaped grids. In
addition, the E2L and L2E interpolation functions are typically identical, following the
kinetic energy conservation principles identified by Sundaram & Collins (1996), to ensure
correct behavior of the overall energy balance in the limit of D, < A.

The present work focuses on two main hypotheses when particle sizes are comparable to
the grid resolution (D, ~ A). First, the kernel width used in E2L and L2E interpolations
should scale with the particle size and should be independent of the grid resolution. This
keeps the region of influence of the particle the same, irrespective of the grid resolution.
Second, using a larger kernel width for E2L interpolation with a wider stencil will sample
the fluid velocity from a region with reduced influence from the self-disturbance field,
thus improving the estimate of the fluid velocity at the particle location even without
any correction model. However, a localized kernel for L2E with narrow width may be
able to capture the reaction of the particle on the fluid more accurately. This suggests
the use of nonsymmetric interpolation kernels for E2L and L2E interpolations, especially
in the absence of any correction for the self-disturbance.

To test these hypotheses, a detailed study of particle-turbulence interactions is con-
ducted using three different interpolation kernels and four grid resolutions while keeping
all other fluid and particle parameters the same. Three interpolation functions include
a grid-based Roma-delta. function independent of the particle size and Gaussian ker-
nels with two different kernel widths that scale with the particle size. The Roma-delta
function is a compact, grid-based, second-order interpolation commonly employed in di-
rect forcing-based immersed-boundary methods, whereas Gaussl (0 = Dp4/2/7) and
Gauss2 (o = 1.5D,,) are Gaussian kernel functions with kernel width o that scales with
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FIGURE 1. Interpolation weight distribution with grid refinement keeping the particle size
unchanged: (a) Roma, (b) Gaussl, and (c) Gauss2.

the particle diameter D,. The Gaussl kernel is commonly used in force-coupling meth-
ods (Lombholt et al. 2002), wherein o is chosen such that the fluid velocity at the particle
location matches the rigid-body motion of the particle, approximately enforcing a bound-
ary condition at the particle location (Gualtieri et al. 2015). The Gauss2 kernel width is
similar to the polynomial function used by Deen et al. (2009).

Figure 1 shows the comparison of weights under grid refinement for these three inter-
polation kernels. The Roma-delta function results in the same weights for neighboring
grid points with grid refinement and is independent of the particle size. This makes the
two-way coupling force distribution (L2E) and interpolation of the fluid velocity at par-
ticle location (E2L) highly localized as the grid is refined. Such a kernel is sufficient when
the particle is much smaller than the grid resolution; however, it can give rise to a large
disturbance field for D, ~ A, as the reaction force from the particle is distributed in
a very narrow region. The Gaussl and Gauss2 kernels show weight distributions over a
region of interest surrounding the particle that scales with the particle size. As the grid
resolution becomes finer than the particle size, the interpolation weights are spread over
more neighboring control volumes spanning over a o proportional to the D,. However,
when the particle becomes much smaller than the grid resolution (not shown), this kernel
will produce a sharp delta function at the particle location, resulting in zero or very small
weights at the grid point. Under such circumstances, a grid-based Roma interpolation
kernel may be more suitable for obtaining a smoother transition with particle motion.

In this work, starting with particle size on the order of the grid resolution, evaluation
of point-particle models with and without self-disturbance correction is conducted under
grid refinement, wherein the particle size becomes larger than the grid resolution. Re-
sults obtained from the grid-based Roma interpolation kernel are compared with those
obtained from Gaussl and Gauss2. For these cases, the E2L and L2E interpolation func-
tions are identical. To test the second hypothesis, different interpolation kernels with a
narrower kernel of Roma-delta function for L2E and a wider kernel of Gauss2 for E2L
are used (denoted as Roma-Gauss2).

In Section 2, a brief description of the zonal advection-diffusion-reaction (Zonal-ADR)
model for self-disturbance correction is provided. Results for flow over a stationary par-
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ticle and then particle-laden decaying isotropic turbulence corresponding to the particle-
resolved direct numerical simulation (PR-DNS) study of Mehrabadi et al. (2018) are
summarized in Section 3, followed by conclusions in Section 4.

2. Mathematical formulation

The core idea behind the Zonal-ADR model for obtaining the undisturbed fluid velocity
in point-particle simulations is summarized here [see Apte (2022) for details]. The self-
disturbance created by a particle is approximated by the following differential equation

oud 9 (ujud R T
j

where pg is the fluid density, and K,u = 1.54 is the effective viscosity designed to
match the disturbance field in the Stokes limit. The same value of K, is found to give
good results even for higher-particle Reynolds numbers (up to 100). The superscript ()%
corresponds to the disturbance field, —i—(Si) is the particle reaction force on the fluid,
and u; without any superscript is the two way—coupled velocity field that is affected
by the self-disturbances of all particles. Knowing u;, the disturbance field is solved for
each particle in a small region of interest surrounding the particle, using an overset-
mesh-like formulation. The undisturbed fluid velocity is then obtained as u}'" = u; + u‘ii.
The implementation of this zonal approach in a collocated, second-order, fractional time-

stepping solver is described in Apte (2022) with detailed verification studies.

3. Results

The Zonal-ADR correction method is used to investigate the particle-turbulence inter-
actions in decaying isotopic turbulence corresponding to the PR-DNS study of Mehrabadi
et al. (2018), which involves Kolmogorov-scale particles. To understand the effect of dif-
ferent kernels and kernel widths for E2L and L2E interpolations, a simple test case of
a stationary particle in a uniform flow is investigated at parameters (Reynolds number,
ratio of D, to A) representative of those in the isotropic turbulence case.

3.1. Flow over a stationary sphere

In this section, flow over a stationary particle is investigated at a particle Reynolds
number (Re,) of 1, which is representative of the Reynolds numbers obtained in the
isotropic turbulence case discussed later in Section 3.2. A particle of size D, = 27/96 is
placed at the center of a cubic domain of length 2. A grid resolution of A = D), = 27/96
is used for baseline computations. A systematic grid refinement study, keeping the particle
parameters the same, is carried out with grid sizes of 27/48, 27/96, 27/192, and 27/256.
The main goal of this study is to quantify the effect of grid refinement on predicting
the drag force on the particle using different interpolation kernels, namely, (i) Roma, (ii)
Gaussl, (iii) Gauss2, and (iv) Roma-Gauss2. The E2L and L2E interpolation functions
are the same for the first three cases, whereas the Roma-Gauss2 uses the Roma function
for L2E and Gauss2 for E2L interpolations.

Table 1 shows the relative error in computing the undisturbed fluid velocity at the
particle location (ug;) with and without the Zonal-ADR correction, compared to the
true value [corresponding to the inlet velocity (ui,) of 1], the relative error in the par-
ticle drag force Fj,, and the actual disturbed two way-coupled velocity at the particle
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No Correction Zonal-ADR
D, /A Interpolation |% Relative Error w2 fu; % Relative Error W2 fug
UGy F, @p/ T Fugl F, @p/ Tin
0.5 Roma 16.3 17.56 0.84 1.24 1.36 0.798
0.5 Gaussl 16.3 17.5 0.837 ]0.83 1.35 0.882
0.5 Gauss2 10.4 11.2 0.897 [0.35 0.9 0.87
0.5 Roma-Gauss2 | 13.0 13.78 0.872 10.59 0.63 0.81
1 Roma 33.7 35.8 0.66 |0.87 0.9 0.47
1 Gaussl 22.5 24.6 0.76 0.6 0.67 0.7
1 Gauss2 11.5 12.5 0.88 |0.35 0.38 0.87
1 Roma-Gauss2 | 16.5 17.7 0.84 |0.59 0.63 0.81
2 Roma 53.4 55.9 0.47 5.4 5.8 -0.16
2 Gaussl 23.1 24.6 0.77 0.1 0.1 0.3
2 Gauss2 13.8 14.9 0.86 0.9 0.98 0.83
2 Roma-Gauss2 | 19.6 21.3 0.8 0.13 0.16 0.25
2.66 Roma 60.9 63.32 0.39 7.1 7.6 -0.558
2.66 Gaussl 16.3 17.5 0.837 [1.47 1.6 0.625
2.66 Gauss2 10.3 11.2 0.897 [0.97 1.05 0.82
2.66 Roma-Gauss2 |12.8 13.7 0.872 1.4 1.3 0.724

TABLE 1. Effect of grid refinement on undisturbed fluid velocity and particle drag force as well
as the disturbed fluid velocity at the particle location for different interpolation kernels.

location normalized by the inlet velocity (u%‘g /uin). The errors in particle force and the
undisturbed fluid velocity at the particle location are large (10-60%) and the errors get
worse with grid refinement, especially when the grid-based Roma-delta function is used.
This result is consistent with the main conclusions of Horwitz & Mani (2020), who used
trilinear interpolation for particle-laden isotropic turbulence and observed that coarser
meshes resulted in better predictions and the prediction errors became worse with grid
refinement. As the grid is refined, the Roma kernel becomes narrower and distributes
the particle reaction force to the nearest neighbors of the control volume containing the
particle. This creates a strong disturbance field and, without any correction, results in
a large error. With the Zonal-ADR correction, even for a grid-based Roma interpolation
kernel, particle force and undisturbed fluid velocity errors are significantly smaller for
all grid refinements. However, when the grid resolution is finer than the particle size, a
negative two-way fluid velocity at the particle location is observed, which is unphysical
based on flow around a particle obtained from particle-resolved simulations. This suggests
that, with a very narrow interpolation kernel, a large particle reaction force creates an
extremely strong disturbance resulting in negative fluid velocity at the particle location.

When the interpolation kernel width is based on the particle size (Gaussl and Gauss2),
the errors are reduced even when no correction is used and remain small under grid re-
finement. With the Zonal-ADR correction, the errors are significantly lower (< 1.5%)
compared to the Roma interpolation, and the two-way fluid velocity at the particle lo-
cation does not become negative. Interestingly, even the Roma-Gauss2 (L2E-E2L) inter-
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FIGURE 2. Temporal evolution of normalized particle kinetic energy under grid refinement with
the grid-based Roma kernel for (a) no model, and (b) Zonal-ADR. E&H represents the result
from Esmaily & Horwitz (2018) correction scheme implemented in the present collocated-grid
solver. PR-DNS data is from Mehrabadi et al. (2018).

polation results in small errors compared to the Roma (L2E-E2L) kernel, even without
the Zonal-ADR correction, although the errors are slightly larger than Gaussl or Gauss2
kernels. This suggests that using a wider stencil, proportional to the particle size, to ob-
tain the fluid velocity at the particle location samples the flow from a region less affected
by the self-disturbance of the particle, resulting in better predictions. Numerical errors
produced by not using the same interpolation stencils for L2E and E2L (Sundaram &
Collins 1996) are compensated by better prediction of the undisturbed fluid velocity us-
ing particle-based kernels. However, symmetric (E2L-L2E) kernels, such as Gaussl and
Gauss2, generally give smaller errors.

3.2. Decaying isotropic turbulence

Particle-laden, decaying, isotropic turbulence corresponding to the particle-resolved data
by Mehrabadi et al. (2018), at Taylor microscale Reynolds number of Rey = 27, is
investigated. The computational domain is a triply periodic cubic box of side length
27. The initial condition for each case is the divergence-free random field sampled from
Pope’s model energy spectrum (Pope 2000). The initial Kolmogorov length scale, 7o, is
set to 27/96 and the energy spectrum parameters are based on Mehrabadi et al. (2018).

For the baseline case, the grid size (A) is selected to be the same as the initial Kol-
mogorov scale, which is equal to the particle size (D), = 19). The particle-to-fluid density
ratio is p,/py = 1800, and the volume and mass loading are ¢ = 0.001 and ¢,, = 1.8,
respectively, giving a total of NV, = 1689 particles in the domain. This results in a large
particle Stokes number, St, = (1/18)(pp/pf)(Dp/n0)? = 100. Particle dynamics is based
only on the drag force modeled using the standard Schiller-Naumann drag correlation.
Keeping all the above parameters the same, the grid is systematically refined (A = 27/96,
27 /144, 27 /192, and 27/256), and simulations are carried out for the four different inter-
polation kernels described before. Thus, D, /A ranges between 1-2.66 from the coarsest
to the finest resolution. Initially, particles are injected at random positions and the par-
ticle velocity is set equal to the fluid velocity interpolated to the particle location using
trilinear interpolation.

Figure 2(a,b) shows the temporal evolution of particle kinetic energy normalized by
the initial fluid phase kinetic energy obtained using the grid-based Roma interpolation
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tell PR.DNg PP-DNS E&H No Correction Zonal-ADR

kD (Trilinear) (Trilinear) Roma Gaussl Gauss? Roma Gaussl Gauss2
5 =08 15 5 =08 15
Dp DP

0.54 | 0.9303 0.9267 0.9246 |0.9645 0.9410 0.9351 [0.9236 0.9283  0.9279
2.7 1 0.5172 0.4732 0.4701 ]0.7028 0.5562  0.5272 [0.4693 0.4977  0.5010
4.87 | 0.2855 0.2423 0.2453 ]0.5141 0.3331  0.3004 [0.2483 0.2670  0.2743
6.55 [ 0.1821 - 0.1562 ]0.4081 0.2302  0.1999 [0.1564 0.1714  0.1754

TABLE 2. Normalized particle kinetic energy (k(p)/ kéf )) at different times predicted with
and without the Zonal-ADR model with different interpolation kernels and compared against
PR-DNS as well as PP-DNS by Mehrabadi et al. (2018). E&H represents the implementation of
the correction scheme by Esmaily & Horwitz (2018) in the present solver.

kernel for four different grid resolutions with and without any self-disturbance correction.
Without any correction model, as the grid is refined, the prediction of particle kinetic
energy becomes more inaccurate, a result consistent both with the stationary particle
test case presented in Section 3.1 and with the conclusions of Horwitz & Mani (2020).
As the grid is refined, the Roma interpolation kernel becomes narrow, adding a large
reaction force in the neighborhood of the particle and creating a strong disturbance
field. Since the fluid velocity is sampled using the same interpolation kernel and without
any correction, the particle force is underpredicted, resulting in the slower decay of the
particle kinetic energy. With the Zonal-ADR correction, however, all grid resolutions
predict the temporal evolution of the particle kinetic energy very similar to the PR-
DNS data. Thus, even for this grid-based, narrow interpolation kernel, the Zonal-ADR
correction captures the fluid-particle interactions fairly accurately. The small mismatch
compared to the PR-DNS data in Figure 2(b) is attributed to the lack of knowledge on
the exact parameters for initial spectrum used in PR-DNS, and the use of a collocated
grid-based solver in the present work.

The effect of using interpolation kernel widths proportional to the particle size is
investigated next. Figure 3(a) shows the temporal evolution of normalized particle kinetic
energy using the four interpolation kernels with and without the correction scheme on the
1923 grid. Even without any correction, the kinetic energy decay rate is reasonably well
captured by the Gaussl, Gauss2, and Roma-Gauss2 interpolation kernels. The kinetic
energy is slightly overpredicted without correction. This is because the fluid velocity
at the particle location contains the self-disturbance and results in a smaller particle
force, similar to the stationary particle case. With correction, however, the results follow
the PR-DNS study reasonably well for all interpolation kernels. Table 2 documents the
particle kinetic energy at different times with and without the correction model for
different interpolation kernels compared to the PR-DNS study. Also shown is the PP-
DNS study conducted by Mehrabadi et al. (2018), using the correction scheme developed
by Horwitz & Mani (2018), and predictions from the E&H correction scheme (Esmaily
& Horwitz 2018) with trilinear interpolation implemented in the present solver.

Figure 3(b) shows the temporal evolution of the net dissipation rate normalized by the
initial dissipation rate for the various interpolation kernels with and without correction.
As shown by Sundaram & Collins (1996) and Mehrabadi et al. (2018), the evolution
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FIGURE 3. Temporal evolution of (a) normalized particle kinetic energy and (b) net dissipation
rate using the Zonal-ADR model (ZN) and no model (NM) with different interpolation kernels
on the 192® grid. The PR-DNS data Mehrabadi et al. (2018) and Esmaily & Horwitz (2018)
correction scheme (E&H) with trilinear interpolation and implemented in this solver is also
shown for comparison. The Gaussl and Gauss2 lines for Zonal-ADR nearly overlap.

equation for the mixture kinetic energy of the system e,, = (1 — ¢)pfk(f) + gbppk(p) is

N,

de, 1 1 — 1

o (1- ¢)V /VuusQudeJr v > Fi-(up) — (1 - ¢)V Fi - (ugap,i), (3.1)
=1 A

1=

—

—elh e e

where F; is the force acting on a particle, —e(/) is the kinetic energy dissipation rate
resolved on the grid, II(®) is the particle kinetic energy dissipation rate, and II() is
interphase kinetic energy transfer term between the particle and fluid. Here, —e*) =
11 — 1) represents the additional dissipation near the particle surfaces (Sundaram &
Collins 1996). In the present work, the net dissipation rate [¢("¢t) = —¢(f) 4 T1(P) — [1()]
is computed from the rate of change of the fluid and particle kinetic energy [left-hand
side of Eq. (3.1)]. Without correction, the grid-based Roma interpolation significantly
underpredicts the net dissipation rate. However, particle size-based interpolation kernels
capture the trends of the PR-DNS data even without correction. The peak in the dis-
sipation rate, created mainly by the no-slip conditions and resultant flow disturbance
in PR-DNS; is also well captured by the point-particle model with correction. Figure 4
shows the contributions of the resolved dissipation rate and interphase energy transfer
[fe(f ) — 11 )}, the particle kinetic energy dissipation rate to the net dissipation rate for
two interpolation kernels (Gaussl and Roma-Gauss2) with and without correction. All
parts of the dissipation rate are well captured by the particle-based interpolation ker-
nel, even with the asymmetric Roma-Gauss2 interpolation. This suggests that sampling
fluid velocity from a region less perturbed by the self-disturbance of the particle com-
pensates for the errors introduced by nonsymmetric interpolation in the kinetic energy
conservation, especially when the particles are on the order of the grid resolution.

4. Conclusions

A two way—coupled point-particle model is used to evaluate the particle-turbulence
interactions with and without correcting for the self-disturbance created by Kolmogorov-
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FIGURE 4. Temporal evolution of the resolved fluid (-e(¥)), particle dissipation rates (IT‘")), and

interphase energy transfer (—I1/)) to the net normalized dissipation rate (e("“)/eéﬁ) using the
Zonal-ADR correction (ZN) and no model (NM) with different interpolation kernels.

scaled particles in decaying isotropic turbulence at low volume loading, corresponding
to the PR-DNS data of Mehrabadi et al. (2018). A Zonal-ADR method (Apte 2022) is
used for obtaining the undisturbed fluid velocity at the particle location needed for drag
closure. Two types of interpolation kernels: (i) grid-based and (ii) particle-size based,
are used to evaluate their influence on the particle-turbulence interactions. It is shown
that the grid-based interpolation kernels, which vary based on the local grid resolution,
irrespective of the particle size, significantly under predict the interaction force and hence
the decay rates of particle kinetic energy, especially when no model is used for the self-
disturbance correction. Particle-size based kernels with kernel widths that scale with the
particle size can better capture these interactions even without any correction model. As
the grid is refined and the particle size becomes larger than the grid resolution, a kernel
width proportional to particle size keeps the region of particle-fluid interaction unchanged
and allows sampling of the fluid parameters from a region that is less affected by the self-
disturbance field. With correction for the self-disturbance field, all interpolation kernels
resulted in a good prediction of the particle-fluid kinetic energy exchange. The particle
kinetic energy decay rate is slightly under predicted with no correction model, suggesting
the need for self-disturbance correction for particles comparable to the grid resolution.
A detailed study at larger Reynolds numbers will be conducted in the future.
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