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Improving volume-averaged particle-laden flow
models using resolved simulations of particle

diffusers

By M. Vartdal† AND S. S. Jain

Particle-resolved simulations of flows through random beds of fixed monodispersed
particles with prescribed volume fraction gradients in the streamwise direction are used
to create a database containing all terms in the volume-averaged flow equations. The
simulations cover a range of inflow Mach and Reynolds numbers (Ma ∈ [0.1, 0.2] and
Re ∈ [90, 300]), as well as volume fraction gradients. The forces on the particles can be
reasonably well predicted by a drag law developed for homogeneous flows. Furthermore,
the pseudo-turbulent stress can be estimated using an algebraic closure if upstream vol-
ume fraction values are used. Finally, the average interface pressure, needed to close the
volume-averaged equations, deviates from the commonly used phase-averaged pressure in
a manner approximately scaling with the dynamic pressure, with systematic deviations
correlating with the local volume fraction gradient.

1. Introduction

Compressible particle-laden flows play an important role in many applications of prac-
tical interest, such as liquid and solid fuel engines (Dittmann et al. 2011; Ren et al. 2019),
explosive blast mitigation (Milne et al. 2010), and spacecraft landings on extraterrestrial
bodies (Capecelatro 2022). For these systems, detailed experimental data is typically
difficult to obtain and computational models are therefore a vital tool for investigation
and design.
Recently there has been significant research effort aimed at improving volume-averaged

particle-laden flow models. These efforts include improved estimation of forces on par-
ticles by accounting for pairwise interactions (Akiki et al. 2017a,b), improved estimates
of sub-grid velocity variation (Osnes et al. 2019; Moore & Balachandar 2019), develop-
ment of closure models for pseudo-turbulence (Mehrabadi et al. 2015; Vartdal & Osnes
2018; Shallcross et al. 2020), corrections appropriate when particle and mesh scales are of
the same order (Horwitz & Mani 2016) and particle phase stress models (McGrath et al.
2016). These studies include both compressible and incompressible flow regimes and cover
a large range of Mach and Reynolds numbers, as well as volume fractions. Despite these
efforts, there are still a number of unanswered questions with regard to the closure of
the volume-averaged equations. This is particularly true for high-speed two-way coupled
configurations where model deficiencies easily lead to unphysical results (Theofanous &
Chang 2017).
One way to investigate these issues is through particle-resolved simulations (Regele

et al. 2014; Theofanous et al. 2018; Mehta et al. 2018; Osnes et al. 2020). Compared to
experimental studies, these computations have the advantage of generating full-field data
sets that are more useful for aiding modeling efforts. Most particle-resolved simulation
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studies to date have been limited to either homogeneous configurations or particle cur-
tains of constant volume fraction, and to the authors’ knowledge, no systematic study
on the effect of volume fraction gradients is available. In the present study, we aim to
fill this gap by creating a database of particle-resolved simulation data for finite-Mach-
number flows through random distributions of fixed particles with prescribed gradients
in particle volume fractions. For all cases, the particle volume fraction is decreasing in
the streamwise direction, and the particle bed effectively acts as a diffuser. The database
contains all terms in the volume-averaged equations and covers a range of Mach numbers
(Ma ∈ [0.1, 0.2]), Reynolds numbers (Re ∈ [90, 300]), and volume fraction gradients.
The resulting database can be used to explore questions concerning the closure problem

of volume averaging for particle-laden flows. In the present work, we also investigate the
validity of a particle drag and pseudo-turbulence closure model developed using assump-
tions of homogeneity. Furthermore, the dependence of the average interface pressure,
used to close the volume-averaged equations (Crowe et al. 2011), on the flow conditions
is also explored.
The remainder of the text is structured as follows: Section 2 contains the details of the

problem set-up, Section 3 introduces the volume-averaged equations, Section 4 describes
the computational method and discusses grid convergence, Section 5 contains the re-
sults of the analysis of the volume-averaged data, and Section 6 contains the concluding
remarks.

2. Problem set-up

In the present study, particle-resolved simulations of flows through random beds of
fixed monodispersed particles with prescribed volume fraction gradients in the streamwise
direction are conducted. The geometry consists of an inflow region with an average gas-
phase volume fraction α = 0.8 of length 5D, where D is the particle diameter, followed
by a diffuser region of length L where the gas-phase volume fraction increases to 0.9. The
diffuser region is followed by a constant volume fraction region of length 10D before the
outflow boundary. A sketch of the set-up is found in Figure 1. The domain is periodic in
the cross-stream directions with a width of 12D. This results in approximately 55 and
27.5 particles per diameter in the streamwise direction for α = 0.8 and 0.9, respectively.
This domain width was chosen to give an acceptable balance between computational
cost and accuracy in determining the volume fraction gradient. As seen in Figure 1, the
realized volume fraction profile, generated by randomly drawing particles to fulfill the
target distribution, introduces oscillations of the order of 5%.
Six different diffuser lengths ranging from L/D = 1 to L/D = 30 have been simulated.

In addition, a geometry with a constant gas-phase volume fraction of 0.8 was also simu-
lated. For this case, a total domain length of 30D was employed. The full list of diffuser
lengths is found in Table 1, in which the constant volume fraction case is denoted by
L/D = ∞.
The gas flow through the bed is governed by the compressible Navier-Stokes equations

and the ideal gas equation of state with a constant specific heat capacity. Furthermore, a
power law dependence of viscosity on temperature with an exponent of 0.75, along with
a Prandtl number of 0.7, is used.
At the upstream boundary, a characteristic boundary condition with constant unit

density, ρ, and temperature, T , along with a constant inflow velocity, u, is employed. The
latter is set to obtain a superficial gas velocity U = αu = 1. The viscosity of the fluid is
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Figure 1. Case set-up for diffuser region of length L/D = 30. The blue curve is the realized
gas-phase volume fraction computed using bins of width D, and the red line is the target volume
fraction.

Rem 90 180 300

L/D
Mam 0.1 0.15 0.2 0.1 0.15 0.2 0.1 0.15 0.2

1 X X X X X X X X X
5 X X X X X X X X X
10 X X X X X X X X
15 X X X X X X
20 X X X X X X
30 X X X X X X
∞ X X X X X

Table 1. Overview of attempted simulations. An X indicates that a solution was obtained.

specified to realize the desired inflow Reynolds number Rem = ρUD/µ, and the pressure
is specified to obtain the target inflow Mach numberMam = U/c. At the particle surfaces,
adiabatic wall boundary conditions are employed and at the downstream boundary, the
mass flux is specified to match that of the inflow. For each geometry, simulations with
three different Reynolds and Mach numbers were attempted. Table 1 gives an overview
of the parameters for which successful simulation results were obtained.

3. Volume-averaged equations

The set-up described above is approximately one-dimensional in the volume-averaged
sense. Let · denote a volume-averaged quantity, 〈·〉 a phase-averaged quantity, and ·̃ =
〈ρ·〉/〈ρ〉 a Favre-averaged quantity. The corresponding Reynolds and Favre decomposi-
tions are given by u = 〈u〉+ u′ and u = ũ+ u′′, respectively. The difference between the
averages, a = ũ − 〈u〉, is commonly referred to as the turbulent mass flux (Schwarzkopf
& Horwitz 2015). Using the above notation and the assumptions of steady flow, the
governing volume-averaged equations simplify to

d

dx
(α〈ρ〉ũ) = 0, (3.1)
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d

dx

(
α〈ρ〉ũũ+ α〈ρ〉R̃11 + α〈p〉 − α〈σ〉11
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=
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∫
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V

∫
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and

d

dx

(
α〈ρ〉Ẽũ+ α〈ρ〉R̃11ũ+ α〈p〉ũ − α〈σ11〉ũ

)
= − d

dx

(
α〈λ∂T

∂x
〉
)
− d

dx
(α〈ρe′′u′′〉)−

+
d

dx
(Du +Dp +Dµ +Dap +Daµ) .

(3.3)

Here, p is the pressure, σ is the viscous stress tensor, λ is the thermal conductivity, E is the
total energy, e is the internal energy and R̃11 = ũ′′u′′ is the streamwise component of the
pseudo-turbulent stress. Furthermore, V denotes the averaging volume, S the continuous
phase boundary in the averaging volume, Du = −1/2(α〈ρu′′

i u
′′
i u

′′〉) is the turbulent
diffusion, Dp = −α〈p′u′〉 is the pressure diffusion, Dµ = α〈u′

iσ
′
i1〉 is the viscous diffusion,

Dap = αa〈p〉 is the pressure-diffusion effect due to the density-velocity correlation and
Daµ = −αa〈σ〉11 is the analogous viscous effect. In the above expressions, Einstein
summation notation is used where necessary with u = u1. Lastly, the integral terms
on the right-hand side of Eq. (3.2) represent the momentum coupling between the two
phases. It should be noted that for the highest Reynolds number, the flow becomes
unsteady some distance downstream of the inlet. This introduces only minor oscillation
in the volume averages and we approximate the flow as steady for the remainder of this
paper.
The database of results contains all terms in the above equations for four different

streamwise averaging lengths (D, 2D, 4D and 5D), as well as individual particle forces.
The smaller averaging volumes are insufficient for the averages to be insensitive to aver-
aging volume (see Figure 1). Nevertheless, analysis of the involved terms yields valuable
insight into the governing equations.
The momentum coupling integrals of Eq. (3.2) deserve special attention. Following

Crowe et al. (2011), the integral can be split into the contribution from the particles that
are fully inside the volume-averaged region and the contribution from the particles that
intersect the boundary. For the former, the integrals are equal to the sum of the forces
on these particles and they can thus be closed with an appropriate force model. In the
present stationary cases, this consists of the “buoyancy” contribution due to the pressure
gradient and the steady drag contribution. With a slight abuse of notation, we express
the sum of the particle forces per averaging volume as

F x = −(1− α)
d〈p〉
dx

− 3

4D
αCD〈ρ〉ũ2, (3.4)

where CD is an appropriate drag coefficient that must be supplied by a model.
For the particles that intersect the boundary, the integrals do not cover the entire

surfaces of each particle and the mean contributions do not cancel. For simplicity, let us
consider the pressure integral. If we introduce the decomposition p = PI +p′, where PI is
the particle-surface-averaged (interface) pressure and p′ is the deviation from that value,
then, given that a sufficient number of particles intersect the control volume boundary, the
contribution from the fluctuating part can be included with negligible bias in Eq. (3.4).
On the other hand, PI is unknown and requires a separate closure. In Crowe et al. (2011),
PI is approximated by 〈p〉, resulting in the phase-average pressure acting on the entire
boundary of the volume-averaging region. This approximation is, however, not accurate
for large relative velocities between the phases [see Chapter 3.3.1 of Osnes (2019) for
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max(∆Fx/|Fx|) max(∆R̃11/R̃11) max(∆Fx/|Fx|)
L/D Rem Mam ∆ 0.2D 0.1D 0.2D 0.1D 0.2D 0.1D

5 90 0.1 0.057 0.003 0.036 0.008 0.059 0.008
5 180 0.1 0.079 0.012 0.0571 0.007 0.143 0.019
5 180 0.15 0.081 0.011 0.0501 0.009 0.143 0.015
5 180 0.2 0.072 0.013 0.0591 0.012 0.143 0.024
5 300 0.1 0.056 0.029 0.0702 0.019 0.271 0.189
20 90 0.1 0.024 0.003 0.0362 0.008 0.07 0.011
20 180 0.1 0.063 0.012 0.044 0.006 0.228 0.046
20 300 0.1 0.078 0.029 0.0514 0.04 0.291 0.246

Table 2. Grid convergence results. The volume-averaged data is based on bins of width 1D.

details]. Therefore, the interface average values of pressure and viscous stress tensors are
also included in the database.

4. Computational method

The particle-resolved simulations were performed using the compressible Navier-Stokes
solver charLES from Cascade Technologies (Bres et al. 2018). It is a Voronoi-mesh-
based code employing an entropy-stable numerical scheme (Masquelet et al. 2017). It has
previously been used to study both shock-particle cloud interaction (Osnes et al. 2019,
2020) and drag forces on isolated spheres (Osnes & Vartdal 2022).

4.1. Grid convergence

The computational grids consist of a uniform background Voronoi-mesh with a resolution
∆ = 0.1D and refinement zones in all volumes less than 0.1D from a particle surface. In
the refinement regions, the grid length scale is set to ∆/4, resulting in 40 grid points per
diameter, which is similar to that used in Osnes et al. (2020).

A grid convergence test was carried out for a variety of Reynolds and Mach numbers
for L/D = 5 and 20. Three different grid resolutions of ∆ = 0.2D, 0.1D, and 0.05D, with
the same relative refinement level near the particle surface, were employed. The relative
difference between the coarser grid results and the ∆ = 0.05D results for volume-averaged
particle forces, Reynolds stresses, and maximal individual particle force variation is re-
ported in Table 2. As expected, the relative difference is primarily a function of the
Reynolds number. For the two lowest Reynolds numbers, the maximal difference, for
∆ = 0.1D, for volume-averaged quantities is less than 1.5%, while for Rem = 300 the
difference is up to 4%. The latter is not insignificant and should be kept in mind when
interpreting the results presented below.

For the individual particle forces, the same trend is observed. However, in this case the
deviations are larger, with a maximal difference of 24.6% for Rem = 300 and L/D = 20.
Based on this, we conclude that a grid resolution of ∆ = 0.1D is insufficient for evaluating
individual particle forces at the highest Reynolds number. In the remainder of the paper,
analysis is restricted to volume-averaged quantities.
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5. Results

5.1. Evaluation of drag law developed for homogeneous flow

The momentum balance for the studied configurations is dominated by the pressure gra-
dient and the forces acting on the particles. This implies that an accurate drag law is
paramount for achieving accuracy with volume-averaged flow models in these cases. Prior
to the summer program, a drag law based on particle-resolved simulations of homoge-
neous (triple periodic) flow configurations that covers the volume fraction, Reynolds, and
Mach number ranges considered here was developed. It takes the form

CD (α,Rep,Map) =
CD,Loth(Rep,Map)

α2
+ b1 (α) exp

[
−(1− α)(100Map)

1/3
]

+b2 (α,Rep) exp [−(1− α) (200Map)] + b3(α,Map),
(5.1)

where Rep = 〈ρ〉ũD/µ, Map = ũ/c, and CD,Loth is the drag law for an isolated sphere
from Loth et al. (2021). b1 (αp) and b2 (αp,Rep) are the volume fraction correction iden-
tified by Tenneti et al. (2011), and b3 is an additional correction. Note that the above
model uses the local Favre-averaged velocity as input and not the undisturbed flow. The
above model is preliminary, and the full details will be published in a separate work.
Since Eq. (5.1) was developed based on homogeneous flow simulations, its accuracy in

the presence of volume fraction gradients is tested here by comparing its predictions to
the simulation results based on average drag coefficients computed from bins of width
D. Figure 2(a) shows that the drag law works quite well, with most model predictions
falling within 10% of the simulation results. There is a weak trend of under-prediction by
the model, especially for low drag coefficient values. This corresponds to high Reynolds
numbers, and some of the discrepancies may be attributed to insufficient grid resolution.
However, for the drag coefficients from the homogeneous regions, displayed in Figure 2(b),
we observe significantly less under-prediction. This indicates that the observed increase
in drag with volume fraction gradient is likely to be real. However, finding a simple
functional relationship for the deviation turned out to be challenging and is left as an
interesting topic for future work.

5.2. Pseudo-turbulence closure model

Based on the particle-resolved simulations of shock-particle cloud interaction, Osnes et al.
(2019) proposed an algebraic closure model for the streamwise pseudo-turbulent stress.
This model is based on the idea of decomposing the volume-averaged flow field into two
parts: one region that moves at the particle velocity, denoted αsep for separation, and
another region that moves at the “free” stream velocity. This idea was also explored in
Fox et al. (2020). With this assumption, the model for the pseudo-turbulent stress can
be expressed as

R̃11 = ũ2 αsep

α− αsep
. (5.2)

The above relation can be inverted to obtain an expression for αsep

αsep =
α

1 + ũ2/R̃11

, (5.3)

which can be evaluated using particle-resolved data. The results of Osnes et al. (2020)
showed that αsep is almost constant for a given Reynolds number in a homogeneous
cloud. However, at the edge of the particle clouds, where volume fraction gradients are
non-negligible, large variations were observed. In the present work, we have evaluated the
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Figure 2. Particle-resolved bin-averaged drag coefficients versus the homogeneous-flow-based
model in Eq. (5.1). (a) Diffuser regions. (b) Homogeneous regions. The symbols are colored by
volume fraction. Dashed lines indicate a deviation of 10%. Only a representative subset of data
is plotted for clarity.

average αsep value for the regions with volume fraction gradients from all simulations.
The results are shown in Figure 3(a). A clear trend of decreasing αsep with L/D is
observed, and the simple closure relation thus appears to be insufficient in the presence
of volume fraction gradients. The idea behind the model, however, is to account for
the separated flow volumes that appear behind the particles. Thus, it is reasonable to
assume that the separation volume depends on the upstream volume fraction. Based on
this observation, the average value of αsep was recomputed using the volume fraction two
diameters upstream of the averaging volume

αsep(x) =
α(x− 2D)

1 + ũ2(x)/R̃11(x)
. (5.4)

The results are displayed in Figure 3(b). With this adjustment, an almost constant
separation volume is again observed. This is an encouraging result that suggests that
algebraic closures for pseudo-turbulence may still be of use in the presence of gradients.
Some variation is observed for the low-Reynolds-number and high-Mach-number cases,
but this is likely due to the relatively large changes in flow conditions through the diffuser
region.

5.3. Average interface pressure

From dimensional arguments, the difference between PI and the phase-averaged pressure
is likely to scale as the dynamic pressure. Therefore, the difference is plotted as a function
of dynamic pressure in Figure 4. The data appears to scatter around a line of slope 1/4,
and the deviation from this line is highly correlated with the gradient in volume fraction,
as indicated by the color of the symbols. A positive gradient results in a smaller difference
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Figure 3. Equivalent separation region, αsep, for pseudo-turbulence using (a) the original model
from Osnes et al. (2019) and (b) an upstream value of the volume fraction. Symbols are colored
by Mas.

and a negative gradient in a larger difference. From Eq. (3.1), we can deduce that the
opposite correlation to flow acceleration is implied. The latter is somewhat intuitive, as
one expects pressure differences to be correlated with accelerations.
In terms of relative values, pressure differences of the order of 10% of the phase-average

were observed for some configurations. This implies that the adjusted closures for the
volume-averaged equations are likely to have additional non-negligible terms scaling with
(1−α)〈ρ〉ũ2. Exploring the full mathematical implications of this observation is, however,
deferred to future work.

6. Concluding remarks

In this study, particle-resolved simulations of flows through random beds of fixed
monodispersed particles with prescribed volume fraction gradients in the streamwise di-
rection have been used to create a database containing all terms in the volume-averaged
flow equations. The simulation covered a range of Reynolds and Mach numbers as well
as volume fraction gradients.
Analysis of the data revealed that a drag model developed based on simulations of

homogeneous flow gives relatively accurate predictions. Volume fraction gradients ap-
pear to induce slightly higher values of drag, but more work is needed to establish ac-
curate functional relationships. Furthermore, the applicability of the algebraic closure
for pseudo-turbulence stresses presented in Osnes et al. (2019) was investigated. While
the original model parameter displayed a dependence on the volume fraction gradient,
the majority of this variation was eliminated by using an upstream value of the vol-
ume fraction, and the simplicity of the model can thus be preserved in the presence of
gradients. Finally, the deviation of the average interface pressure, needed to close the
volume-averaged equations, from the phase average was shown to approximately scale
with the dynamic pressure, and deviations from this scaling were strongly correlated with
the local volume fraction gradient. Formulation of a new closure of the volume-averaged
equations based on these observations is deferred to future work.
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Figure 4. Pressure difference versus dynamic pressure computed from volume averages based
on bins of width D. The symbols are colored by streamwise volume fraction gradient. The dark
line represents a line of slope one.

Acknowledgments

The authors would like to thank A. N. Osnes, S. Balachandar, P. Johnson and S. T. Bose
for many fruitful discussions. The authors acknowledge use of computational resources
from the Yellowstone cluster awarded by the National Science Foundation to CTR.

REFERENCES

Akiki, G., Jackson, T. & Balachandar, S. 2017a Pairwise interaction extended
point-particle model for a random array of monodisperse spheres. J. Fluid Mech.
813, 882–928.

Akiki, G., Moore, W. & Balachandar, S. 2017b Pairwise-interaction extended
point-particle model for particle-laden flows. J. Comput. Phys. 351, 329–357.

Bres, G. A., Bose, S. T., Emory, M., Ham, F. E., Schmidt, O. T., Rigas, G.
& Colonius, T. 2018 Large-eddy simulations of co-annular turbulent jet using a
Voronoi-based mesh generation framework. AIAA Paper 2018-3302.

Capecelatro, J. 2022 Modeling high-speed gas–particle flows relevant to spacecraft
landings. Int. J. Multiphas. Flow 150, 104008.

Crowe, C. T., Schwarzkopf, J. D., Sommerfeld, M. & Tsuji, Y. 2011Multiphase
Flows with Droplets and Particles . CRC Press.

Dittmann, T., Jacobs, G. & Don, W. S. 2011 Dispersion of a cloud of particles by
a moving shock: effects of shape, angle of incidence and aspect ratio. AIAA Paper
2011-411.
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