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A mass-conserving pressure-based method for
two-phase flows with phase change

By N. Scapin∗, A. Shahmardi∗, W. H. R. Chan, S. S. Jain, S. Mirjalili,
M. Pelanti‡ AND L. Brandt∗†

We propose a mass-conserving numerical method for compressible two-phase flows
with phase change, with a focus on the ability to model wetting. The algorithm employs
a four-equation diffuse-interface formulation, which assumes instantaneous kinetic, me-
chanical, and thermal equilibrium, and allows for chemical disequilibrium between the
two phases, hence phase change. In order to target boiling flows at low speeds, we lever-
age a pressure-based method developed in our previous work (Demou et al. 2022). This
approach allows us to treat acoustic effects implicitly and account for compressibility
and complex thermodynamics. Here, we first introduce an augmented four-equation for-
mulation that ensures discrete mass conservation in the absence of phase change. Next,
we add interface regularization to improve the accuracy of the topological description.
Finally, a mass-conserving contact-angle boundary condition is implemented. The new
implementation is validated against different benchmarks showing exact mass conserva-
tion for both phases in the absence of phase change and exact total mass conservation
when phase change is activated. Finally, we present preliminary results on a vapor bubble
detaching from a heated wall for different surface properties.

1. Introduction

One way to meet the rising global energy demand in a sustainable manner is to im-
prove phase change heat transfer (Attinger D. et al. 2014). Phase change is the most
efficient way to increase heat transfer, since latent heat is typically much larger than
sensible heat. The recent development of micro- and nanotechnologies has made the
high-resolution control of surface texture and chemistry feasible over different length
scales (Attinger D. et al. 2014; Liang, G., & Mudawar, I. 2019). These complex surfaces
may significantly affect several processes of high practical interest, e.g., boiling, evapora-
tion, and condensation. In a field where experiments are complex, a deep understanding
of the mechanisms underlying wetting and multiphase flows with phase change may be
achieved through high-fidelity numerical simulations. The objective of the present project
is, therefore to investigate the potential of the diffuse-interface method for simulations
of compressible multiphase flows with phase change in more realistic configurations, in
particular accounting for the contact-line dynamics.

2. Mathematical model

We describe gas-liquid flows by a diffuse-interface four-equation model (Lund 2012; Le
Martelot et al. 2014; Demou et al. 2022), which belongs to the class of Baer–Nunziato
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(Baer & Nunziato 1986) models. We assume instantaneous kinetic, mechanical, and ther-
mal equilibrium, but we account for chemical disequilibrium and thus for phase change.
The model also includes viscous stresses, surface tension, heat conduction, and grav-
ity effects. We denote hereafter with αk, ρk, and Ek the volume fraction, density, and
internal energy per unit volume of phase k, where k = 1, 2. Moreover, p, T , and ~u in-
dicate the pressure, temperature, and velocity field, respectively. The mixture density is
ρ = α1ρ1 +α2ρ2, and the mixture internal energy per unit volume E = α1E1 +α2E2. We
denote with E the total energy of the mixture, which is defined as E = E + ρ|~u|2/2. In
the conservative form, the model reads (Demou et al. 2022)

∂t(α1ρ1) + ~∇ · (α1ρ1~u) =M, (2.1a)

∂t(α2ρ2) + ~∇ · (α2ρ2~u) = −M, (2.1b)

∂t(ρ~u) + ~∇ · (ρ~u⊗ ~u+ p
~~I) = ~∇ · ~~τ + ~Σ + ρ~g , and (2.1c)

∂tE + ~∇ · ((E + p)~u) = ~∇ · (~~τ · ~u) +K + ~Σ · ~u+ ρ~g · ~u . (2.1d)

Here ~g denotes the gravity acceleration, and ~~τ is the viscous stress tensor, for which we
assume a Newtonian constitutive relation,

~~τ = µ[ (~∇~u+ ~∇~uT)− 2
3 (~∇ · ~u)

~~I ], (2.2)

where µ = α1µ1 + α2µ2, with µk denoting the dynamic viscosity of phase k. Moreover,
~Σ is the surface tension force,

~Σ = σκ~∇α1 , (2.3)

where σ is the surface tension coefficient and κ = −~∇ ·
(
~∇α1

|~∇α1|

)
the local curvature. The

heat conduction K is expressed by Fourier law,

K = ~∇ · (λc~∇T ) , (2.4)

where the mixture thermal conductivity is λc = α1λc1 + α2λc2, with λck denoting the
thermal conductivity of phase k. Note that M is the mass transfer term, which is ex-
pressed as a relaxation term proportional to the difference in chemical potential as

M = ν(g2 − g1), (2.5)

where ν is a chemical relaxation parameter. A formulation of the model [Eq. 2.1] in
terms of the primitive variables α1, p, T , and ~u was proposed in Demou et al. (2022),
as a basis for a pressure-correction algorithm, more suited for low-Mach-number prob-
lems, in particular boiling flows. Here we employ a similar pressure-correction method
for the conservative formulation for the transport equations of the two masses and the
momentum to guarantee the conservation of ρk exactly (Jain et al. 2020; Jain 2022).
We therefore propose an augmented four-equation model, solving for the five variables
(α1ρ1, α2ρ2, ρ~u, p, T ) and consisting of the transport equations for the phase masses
[Eq.2.1a), (2.1b)], the mixture momentum equation [Eq.2.1c], and the pressure and tem-
perature equation derived in Demou et al. (2022),

∂tp+ ~u · ~∇p+ ρ c2pT
~∇ · ~u = SpM+ Sep(~∇~u : ~~τ +K) , and (2.6a)

∂tT + ~u · ~∇T +
ρc2pTT

Cp1 + Cp2

(
Cp1Γ1

ρ1c21
+
Cp2Γ2

ρ2c22

)
~∇ · ~u =MST + SeT (~∇~u : ~~τ +K), (2.6b)
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where the speed of sound is (Fl̊atten & Lund 2011; Pelanti & Shyue 2019)

1

c2pT
=

1

c2p
+
ρTCp1Cp2
Cp1 + Cp2

(
Γ2

ρ2c22
− Γ1

ρ1c21

)2

, (2.7)

and Cpk = αkρkκpk (extensive heat capacities), where κpk = ∂hk

∂Tk

∣∣
pk

= Tk
∂sk
∂Tk

∣∣
pk

. More-

over, the forcing terms read

ST = 1
DT

[(
χ2

Γ2
− χ1

Γ1

)
(α1ζ1ρ2+α2ζ2ρ1) +

(
ρ1c

2
1

Γ1
− ρ2c

2
2

Γ2

)
(α1ζ1 + α2ζ2)+

(
α1

Γ1
+ α2

Γ2

)
(ρ2−ρ1)

]
,

(2.8a)

Sp = 1
DT

[(
χ1

Γ1
− χ2

Γ2

)
(α1φ1ρ2 + α2φ2ρ1) +

(
ρ2c

2
2

Γ2
− ρ1c

2
1

Γ1

)
(α1φ1 + α2φ2)

]
, and (2.8b)

SeT = − 1

DT
(α1ρ2ζ1 + α2ρ1ζ2) , Sep =

1

DT
(α1φ1ρ2 + α2φ2ρ1) , (2.8c)

with

DT = α1α2

(
ρ1c

2
1

Γ1
− ρ2c

2
2

Γ2

)
(φ1ζ2 − φ2ζ1) +

(
α1

Γ1
+
α2

Γ2

)
(α1φ1ρ2 + α2φ2ρ1) . (2.8d)

Here φk, ζk, and the Grüneisen coefficient Γk are defined as

φk =

(
∂ρk
∂Tk

)

pk

, ζk =

(
∂ρk
∂pk

)

Tk

, and Γk =

(
∂pk
∂Ek

)

ρk

. (2.9)

The model is closed with an equation of state for each phase, e.g., by pressure and
temperature relations pk(Ek, ρk) and Tk(Ek, ρk), k = 1, 2. The mixture equation of state is
determined by these and the thermodynamic constraints p1 = p2 = p, T1 = T2 = T . Our
numerical method can use arbitrary equations of state; nevertheless, for the numerical
experiments presented here we have used the Noble-Abel stiffened Gas equation of state
for both phases as in Le Métayer & Saurel (2016).

2.1. Interface regularization

One well-known drawback of diffuse-interface methods is the spreading of the interface
over many computational cells. To maintain the interface sharpness, we therefore apply
an anti-diffusion technique (Tiwari et al. 2013; Jain et al. 2020; Mirjalili et al. 2020).
Following in particular the approach proposed in Jain (2022), we include interface reg-
ularization in the mass and momentum equations of our augmented 4-equation model.
The final form of the mathematical model is

∂t(α1ρ1) + ~∇ · (α1ρ1~u) =M+ ~∇ · ~R(α1, ρ1) + Lw,1, (2.10a)

∂t(α2ρ2) + ~∇ · (α2ρ2~u) = −M+ ~∇ · ~R(α2, ρ2) + Lw,2, (2.10b)

∂t(ρ~u) + ~∇ · (ρ~u⊗ ~u+ p
~~I) = ~∇ · ~~τ + ~Σ + ρ~g + ~∇ · [(ρ1 − ρ2) ~R(α1, ρ1)], (2.10c)

∂tp+ ~u · ~∇p+ ρ c2pT
~∇ · ~u = SpM+ Sep(~∇~u : ~~τ +K) , and (2.10d)

∂tT + ~u · ~∇T +
ρc2pTT

Cp1 + Cp2

(
Cp1Γ1

ρ1c21
+
Cp2Γ2

ρ2c22

)
~∇ · ~u =MST + SeT (~∇~u : ~~τ +K),(2.10e)
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where the regularization term ~R is defined as

~R(αk, ρk) = Ξ εi ρk ~∇αk −
Ξρk

4

[
1− tanh2

(
ψk
2εi

)]
~nk , k = 1, 2, (2.11)

where

ψk = εi ln

(
αk + ε

1− αk + ε

)
, (2.12)

with εi denoting the interface thickness, Ξ = Γv|~umax| denoting the regularization veloc-
ity, Γv is a velocity scale, and ε is a small tolerance that is set equal to 2·10−16. Moreover,
~nk = ~∇ψk/|~∇ψk|. The terms Lw,k are added to the right-hand side of Eqs. (2.10a)-(2.10b)
to enforce mass conservation in the presence of non-zero flux boundary conditions at the
solid wall, as detailed in Section 2.2.

2.2. Contact-line treatment

A static contact-angle boundary condition is enforced as a condition on the wall-normal
gradient of (αkρk), with k = 1, 2 (Jacqmin 1999). Note that unlike previous stud-
ies (Jacqmin 1999; Ziyang et al. 2022), we impose a boundary condition on the mass
of both phases rather than on the volume fraction since only the former is a conserved
quantity in the presence of local density variations. Here, we adopt the following expres-
sion to impose the equilibrium contact angle θeq,k

∇(αkρk) · ~n =
ρk
εi
fw,k cos(θeq,k), (2.13)

where fw,k = 6αk(1−αk) is a kernel function that is non-zero only at the interface. Note
that θeq,2 = π − θeq,1 and the expression above imply a zero flux boundary condition
only if θeq = π/2. To relax this constraint and to enforce mass conservation when θeq 6=
π/2, we employ a Lagrange multiplier Lw,i. This approach, proposed in the context of
incompressible flows in Ziyang et al. (2022), is here adapted for compressible flows with
phase change. Assuming Lw,k = qk(t)W(αk, ρk), with qk(t) a space-independent function
and W(αk, ρk) = ρkfw,k a kernel function, an expression for qk(t) can be obtained by
integrating Eqs. (2.10a) and (2.10b) over the volume and enforcing total conservation of
the mass of each phase,

qk(t) = − 1∫

V

6ρkαk(1− αk)dV

∫

V

∇ · ~R(αk, ρk)dV. (2.14)

When phase change is included, mk should not be conserved; in this case, the multiplier
enables us to achieve exact total mass conservation, as discussed in Section 2.3.

2.3. Phase change

The phase change termM, given by Eq. (2.5), is implemented with an operator splitting
technique. We first solve the governing equations without M and obtain intermediate
values for (αkρk)l,∗, T l,∗ and pl,∗, where l = 1, 2, 3 denotes the Runge-Kutta stage.
The independent variables are updated at the end of each stage using the non-iterative
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strategy proposed in Pelanti (2022) as

(α1ρ1)l,n+1 = (α1ρ1)l,∗ +
gl,∗2 − gl,∗1

Kg
(1− exp (−νKg∆t)) , (2.15a)

pl,n+1 = pl,∗ + Sp
gl,∗2 − gl,∗1

Kg
(1− exp (−νKg∆t)) , and (2.15b)

T l,n+1 = T l,∗ + ST
gl,∗2 − gl,∗1

Kg
(1− exp (−νKg∆t)) , (2.15c)

where Kg = 1/ξl,∗1 + 1/ξl,∗2 and 1/ξl,∗k = (−1)k−1Sp/ρk − skST for k = 1, 2. Note that
ρ is obviously invariant during the mass transfer step and, therefore exact global mass
conservation is enforced by updating (α2ρ2)l,n+1 = ρl,n+1 − (α1ρ1)l,n+1. Our numerical
method is capable of handling arbitrary values of the relaxation rate ν, which is in general
a function of the thermodynamic variables. For the numerical experiments presented here,
we have assumed ν → +∞, i.e., instantaneous mass transfer (zero relaxation time).

3. Numerical details

Equations (2.10a) (2.10e) are discretized in space on a Cartesian grid with uniform
spacing along the three directions, i.e., ∆x = lx/Nx, ∆y = ly/Ny, and ∆z = lz/Nz,
where lx, ly, and lz are the domain lengths and Nx, Ny, and Nz the number of grid
points. A staggered arrangement is chosen for the velocity field, whereas all the other
variables are defined at the cell centers. Unless otherwise stated, we set εi = 0.51∆x and
Γv = 5 in Eq. (2.11). This value of Γv is chosen to avoid excessive interface smearing
during the mass transfer. The spatial operators are discretized in divergence form using
a second-order accurate finite difference scheme. The equations are marched in time with
a third-order low-storage Runge-Kutta method. More details are given in Demou et al.
(2022).

4. Numerical experiments

4.1. Rising bubble

To assess the ability of the proposed methodology to capture topological changes, we con-
sider the well-established test case of a rising bubble (Hysing et al. 2009). The numerical
solution obtained here is compared with the reference solution in Hysing et al. (2009),
in terms of bubble rising velocity and shape, in addition to the assessment of the mass
conservation. By introducing as reference length and velocity lr = d0 and ur =

√
|~g|d0,

with d0 the initial bubble diameter, as gas and liquid densities ρg,r and ρl,r, as gas and
liquid dynamic viscosities µg,r and µl,r, and as surface tension σ, we can define the five
physical dimensionless parameters which govern the problem: Re = ρg,rurd0/µg,r, the
Weber number We = ρg,ru

2
rd0/σ, the Froude number Fr = u2

r/(|~g|d0), the density and
the viscosity ratios λρ = ρl,r/ρg,r and λµ = µl,r/µg,r. In this work, simulations are con-
ducted with Re = 35, We = 1, Fr = 1, λρ = 1000, and λµ = 100. The domain consists
of a two-dimensional liquid column of size lx = 2d0, ly = 4d0, with a bubble initially
placed at (xc0, yc0) = (d0, d0). The top and bottom boundaries are no-slip non-moving
walls, while periodic conditions are prescribed in the horizontal directions. The initial
velocity field is zero and the pressure is uniform. Four grid resolutions are examined: Nx×
Ny=[32×64, 64×128, 128×256, 256×512], with a constant time step ∆t

√
|~g|/d0 = 3·10−4,

199



Scapin et. al.

(a) (b)

Figure 1. Rising bubble test case: (a) rising velocity of the bubble center of mass from
the simulations at the different resolutions indicated, (b) relative variation of the mass
of each phase over time.

(a) (b) (c)

Figure 2. Interface of the rising bubble at time t
√
|~g|/d0 = 3 for different grid resolutions:

(a) Nx × Ny = 64 × 128, (b) 128 × 256, and (c) 256 × 512. The dotted black line represents
the reference solution taken by Hysing et al. (2009).

the largest time step ensuring a stable time integration for the highest grid resolution
(i.e., 256× 512), adopted to have the same time discretization error in all the cases. Fig-
ure 1(a) displays the rising velocity of the bubble center of mass. As the grid is refined,
the numerical solutions approach the reference data, with an excellent agreement for the
grid with 256 × 512 points. The temporal evolution of the relative mass variations are
reported in figure 1(b) for both phases. Mass conservation is achieved up to machine
precision as a consequence of the conservative discretization of Eqs. (2.10a)- (2.10b). Fig-
ure 2 reports the bubble shape at time t

√
~g/d0 = 3, which converges to the one reported

in Hysing et al. (2009) when increasing the resolution. Small differences are observed
for the two ”satellite bubbles” [see Fig. 2], which are an indication of underresolution of
surface tension forces in this two-dimensional simulation. These two bubbles display a
larger volume and a different orientation with respect to the reference solution obtained
with a geometric volume-of-fluid method. Such deviations are, however, small and within
the expected differences when two different numerical methods are compared.
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(a) (b)

Figure 3. Static contact-line test case. Bubble shape for two equilibrium contact angles:
(a) θ = 45o, (b) θ = 135o. The dotted black lines represent the shape computed with
Eqs. (4.1).

4.2. Static contact line

As the second test case, we consider a semicircular bubble of diameter d0 sliding on
a horizontal wall. The wall is either hydrophobic or hydrophilic, i.e., with equilibrium
contact angle θeq > 90o and θeq < 90o. In both cases, the initial contact angle of the
bubble is prescribed equal to θeq = 90o, and, therefore the bubble relaxes towards the
desired θeq after a transient. The case setup consists of a two-dimensional domain of
dimension 4d0×2d0 with the bubble held at [xc0, yc0] = [2d0, 0]. The domain is discretized
with Nx × Nz = 128 × 64 grid points. Periodic boundary conditions are applied along
the horizontal direction and no-slip along the horizontal boundaries. The dimensionless
physical parameters defining the problem are Re = 25, We = 0.1, λρ = 1000, λµ = 50,
and the thermal conductivity ratios λk = 20; gravity is absent, i.e., Fr = ∞. Note that
the effect of gravity is neglected. Figure 3 reports the initial and the equilibrium shape
of the bubble for a wall chemistry yielding an equilibrium contact angle θeq = 45o and
θeq = 135o. As expected, the bubble relaxes towards the desired shape with the prescribed
contact angle. The final radius rd/d0, the height Hd/d0, and the spreading length ld/d0

can be computed analytically as proposed in Ziyang et al. (2022),

rd
d0

=
1

2

√
π/2

θ − sin(θeq) cos(θeq)
,

Hd

d0
=
rd
d0

(1−cos(θeq)), and
ld
d0

= 2
rd
d0

sin(θeq). (4.1)

We therefore consider different values of θeq and display in Figure 4(a) the resulting
hd/d0 and ld/d0 versus the analytical prediction in Eqs. (4.1) and confirm that a very
good agreement is obtained for all the cases. Finally, note that owing the use of the
Lagrange multiplier discussed in Section 2.2, the mass of the two phases is conserved to
machine precision [see Figure 4(b)].

4.3. Detaching bubble from a superheated wall

To demonstrate the potential of the method, we consider the case of a detaching bubble
from a solid wall for different wettabilities and wall temperatures, in particular, three
equilibrium contact angles, θeq = [45o, 90o, 120o], and two superheating temperatures,
∆T = 5, 15 K. Note that these values correspond to a Jacob number Ja = Cp,1∆T/∆hlv,
with ∆hlv the latent heat, of 0.025 and 0.085. We consider a two-dimensional domain
of size 7d0 × 3.5d0, where d0 is the initial diameter of a semicircular bubble initially
placed at (xc0, yc0) = [3.5d0, 0]. The domain is discretized with Nx × Ny = 256 × 128
grid points. We set Re = 125, We = 1, Fr = 1, λρ = 1103, λµ = 50, and λk = 20,
which correspond to the case of a mixture of water and its vapor at ambient pressure.
The velocity field is initially set to zero, and the initial temperature is equal to the
saturation temperature at the initial pressure. Periodic boundary conditions are applied
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(a) (b)

Figure 4. (a): Bubble height hd/d0 and spreading length ld/d0 at equilibrium for different
contact angles θeq.(b): Relative mass variations versus time of both phases for the case
θeq = 45o.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Rising boiling bubble over a supersaturated wall for Ja = 0.025 at t
√
~g/ly =

0.25 − 1 − 2. (a)-(c)-(e) Results for a contact angle θeq = 90o. (b)-(d)-(f) Results for
θeq = 120o.

along the x direction, no-slip at the bottom wall, and outflow at the upper wall. In
Figure 5 we show plots of the vapor volume fraction at three different times for the
neutral and hydrophobic walls. In particular, we observe a complete detachment of the
bubble from the wall for the case θ = 90o without breakup; whereas for θ = 120o

(hydrophobic case), we observe stretching of the bubble and its breakup. The upper part
of the bubble departs from the wall and the lower part remains attached to the heated
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(a) (b)

Figure 6. Nusselt number at the bottom wall, Nu = qly/(k1∆T ), for (a) Ja = 0.025 and
(b) Ja = 0.085. Three different static contact angles are investigated, θeq = 45o, 60o and

120o. The reference time scale is the free-fall time tff =
√
ly/~g.

surface and grows. The wall wettability also determines the heat flux, i.e., the Nusselt
number Nu, at the bottom wall, displayed in figure 6. The Nusselt number is larger for
hydrophilic surfaces due to the larger liquid-wall surface area, which promotes fast bubble
detachment. Conversely, the detachment is slower on hydrophobic walls since the vapor
phase experiences a longer residence time close to the heated wall with reduced heat
transfer (because of the lower thermal conductivity of the vapor). The lowest residence
time at the bottom wall is experienced for θeq = 45o, which explains the increase of
Nu at the earlier stages. This time progressively increases with θeq, and therefore Nu

initially decreases until t
√
~g/ly ≈ 0.25 − 0.50 for θeq = 90o − 120o, whereas it increases

once the bubble detaches. In all the cases, the value of Nu reaches a maximum value,
which is similar for θ = 45o − 90o and smaller for θ = 120o given the smaller liquid-wall
contact area. After, Nu slowly decreases for θeq = 45o and 90o for both Ja. Conversely,
for θeq = 120o, the increase in the superheating temperature leads to vapor production

at the heated wall with a reduction of the heat flux at t
√
~g/ly ≈ 1.5, which is most

pronounced for Ja = 0.085.

5. Conclusions

We have developed a mass-conserving pressure-based method for two-phase compress-
ible flows with phase change based on a pressure-temperature-equilibrium single-velocity
model. An anti-diffusion interface sharpening technique has been applied to improve the
accuracy of the topological description. Static contact-angle boundary conditions have
been implemented by using a Lagrange multiplier to ensure mass conservation. In the
future, we aim to employ the proposed computational model to gain fundamental un-
derstanding of phase change over patterned surfaces, resolving the contact-line dynamics
and the Marangoni stresses generated by the local variations of the surface tension due
to temperature gradients.
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