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In this work, we propose a novel phase-field model for the simulation of two-phase flows 
that is accurate, conservative, bounded, and robust. The proposed model conserves the 
mass of each of the phases, and results in bounded transport of the volume fraction. We 
present results from the canonical test cases of a drop advection and a drop in a shear flow, 
showing significant improvement in the accuracy over the commonly used conservative 
phase-field method.
Moreover, the proposed model imposes a lesser restrictive Courant-Friedrichs-Lewy 
condition, and hence, is less expensive compared to other conservative phase-field models. 
We also propose improvements on computation of surface tension forces and show that 
the proposed improvement significantly reduces the magnitude of spurious velocities at 
the interface.
We also derive a consistent and conservative momentum transport equation for the 
proposed phase-field model and show that the proposed model when coupled with 
the consistent momentum transport equation results in discrete conservation of kinetic 
energy, which is a sufficient condition for the numerical stability of incompressible flows, 
in the absence of dissipative mechanisms. To illustrate the robustness of the method 
in simulating high-density ratio turbulent two-phase flows, we present the numerical 
simulations of high-density ratio droplet-laden isotropic turbulence at finite and infinite 
Reynolds numbers.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Two-phase flows are ubiquitous in nature and have applications in engineering and natural processes such as atomization 
of jets and sprays [1], breaking waves [2], emulsions [3], boiling phenomena [4], carbon sequestration [5], and bubbly 
flows in cooling towers of nuclear power plants [6]. Numerous challenges are associated with the numerical modeling of 
two-phase flows, primarily due to the presence of discontinuities at the interface and the inherent multiscale nature of 
the problem. Over the years, many interface-capturing and interface-tracking methods have been proposed. The interface-
capturing methods are preferred over interface-tracking methods due to the capability of the interface-capturing methods 
to handle dynamic topological changes implicitly. These methods can be broadly classified into a volume-of-fluid (VOF) 
method, a level-set (LS) method, a phase-field (PF) method, and hybrid methods such as a CLSVOF (coupled level-set and 
volume-of-fluid) method, and a VOSET (coupled volume-of-fluid and level-set) method, where typically two methods are 
combined to have the advantages of both methods [7]. The VOF and LS methods are sharp-interface methods and are 
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generally known to be accurate in representing the material interface, which is physically sharp in the continuum limit. The 
main disadvantages of these methods are that a VOF method involves an interface-reconstruction step that is complex and 
expensive, and an LS method is not conservative. The hybrid methods were proposed to overcome some of these challenges 
and combine the advantages of two methods, but they are known to be more complicated than the original methods.

A PF method, in contrast, is a diffuse-interface approach that is relatively less expensive and simple to implement. Some 
PF models are also inherently conservative. Hence, we adopt a diffuse-interface approach in this work, and propose a novel 
PF method that is conservative and more accurate than some existing PF methods in the literature, and we refer to this new 
model as an accurate conservative diffuse-interface/phase-field (ACDI/ACPF) model.

2. Phase-field method

2.1. Cahn-Hilliard and Allen-Cahn models

The classical PF methods are based on Cahn-Hilliard and Allen-Cahn equations [8,9] that were originally developed 
to model the phase separation and coarsening phenomena in solids and the motion of antiphase boundaries in crystalline 
solids, respectively. More recently, these methods have been adopted for modeling the interface between two fluids [10–21]. 
A Cahn-Hilliard PF model is conservative but involves a fourth-order spatial derivative in the equation, which requires careful 
construction of the numerical methods. In contrast, an Allen-Cahn PF model does not involve fourth-order derivatives in the 
equation, but is not conservative.

2.2. Conservative phase-field model

Starting from the Allen-Cahn equation, and subtracting the curvature-driven motion of the interface, Chiu and Lin [22]
derived a conservative diffuse-interface/phase-field (CDI/CPF) model for incompressible flows, which can be written as

∂φ

∂t
+ �∇ · (�uφ) = �∇ ·

{
�

[
ε �∇φ − φ(1 − φ)

�∇φ

| �∇φ|

]}
, (1)

where φ is the PF variable which represents the volume fraction, �u is the velocity, � represents the velocity-scale parameter, 
and ε is the interface thickness scale parameter. This model can be thought of as the one-step conservative LS method 
introduced by Olsson and Kreiss [23], and is also sometimes referred to as a conservative/modified Allen-Cahn equation 
because it can be derived analytically starting from the Allen-Cahn equation. This model has since been widely used not 
only in the finite-volume/finite-difference setting but also in lattice-Boltzmann methods [24–30]. Using central difference 
schemes, Mirjalili et al. [31] showed that the PF variable, φ, remains bounded between 0 and 1 for incompressible flows, if 
the values for � and ε are appropriately chosen. More recently, Jain et al. [32] proposed a CDI method for compressible flows 
and showed that φ remains bounded between 0 and 1 for compressible flows, with the use of central difference schemes, 
provided that an additional constraint on time-step size is satisfied. Additionally, Jain et al. [32] showed that the transport 
of φ with this PF method also satisfies the total-variation diminishing (TVD) property. The compressible CDI model has 
been further coupled with a shock-capturing method for the simulation of high-Mach-number two-phase flows, extended 
to multiphase modeling of deforming solids, and also extended for higher-order explicit and compact central schemes by 
Jain et al. [33].

This CDI/CPF method is easy to implement and cost-effective, but the two main issues with this model are (a) artificial 
distortion of the interface (alignment with the grid) and (b) limited accuracy. Jain et al. [33] compared the compressible CDI 
method of Jain et al. [32] with the quasi-conservative diffuse-interface method by Shukla et al. [34] and Tiwari et al. [35], 
and with the localized-artificial diffusivity based diffuse-interface method by [36], Subramaniam et al. [37], and Adler and 
Lele [38] in the context of compressible flows and made the following conclusions. The CDI method is superior in maintain-
ing the conservation property and in maintaining a constant interface thickness throughout the simulation, but it results in 
artificial distortion of the interface for long-time integrations and in the absence of surface tension effects. This behavior 
is, however, not limited to compressible flows and is valid for both incompressible and compressible flows. To reproduce 
this interface distortion behavior seen before with the CDI method, we here present the simulation results of advection of 
a two-dimensional circular drop/bubble in a periodic domain by solving only the CDI phase-field equation in Eq. (1) (de-
coupled from hydrodynamics) with a prescribed velocity field of �u = 5i, where i is the unit vector along the x direction. 
The domain has the size of 1 × 1 and is discretized into 50 × 50 grid points. The final and initial shapes of the drop, after 
5 flow-through times at time t = 1, are shown in Fig. 1. The shape of the drop can be seen to be significantly distorted 
from the original circular shape at time t = 0. This alignment of the interface with the grid was also observed by Tiwari 
et al. [35] with the quasi-conservative diffuse-interface method and by Wacławczyk [39] and Chiodi and Desjardins [40] in 
the context of a conservative level-set method. Note that, the exact amount of interface distortion is probably dependent on 
the choice of the numerical discretization. Some fixes proposed for this issue are to use a higher-order scheme [33,35] and 
the reformulation of the reinitialization procedure in the conservative LS method [40].
2
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Fig. 1. Final shape of the translating bubble/drop after 5 flow through times, computed using Eq. (1), illustrating the shape distortion of the interface. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

To maintain the boundedness of φ with the CDI method, the criterion that needs to be satisfied [31,32] is

�∗ ≥ 1

(2ε∗ − 1)
, (2)

where �∗ = �/|�u|max and ε∗ = ε/(�x) are the non-dimensionalized parameters. One way to improve the accuracy of a 
diffuse-interface method without increasing the grid resolution is by reducing ε , which improves the accuracy by making 
the interface sharper. The discussions on the sharp-interface limit of Allen-Cahn based phase-field models can be found 
in Zhang and Du [41] and Abels and Fei [42]. But with the CDI method, as ε decreases, � needs to increase to keep φ
bounded. For example, if ε is to be made smaller than one grid size (�x), then � > |�u|max . This increase in the value of �
degrades the accuracy of the model and further increases the cost by imposing a more severe Courant-Friedrich-Lewy (CFL) 
restriction. Hence, the accuracy of the CDI model degrades as ε becomes small, particularly as ε approaches 0.5�x, which 
is not ideal. More recently, Chiu [43] proposed an alternate model with a hope to obtain a model that is more accurate 
compared to the CDI model. But their proposed model was not conservative, and required solving two transport equations.

Being aware of all these issues associated with the PF methods in the literature, we therefore seek a method that 
is more accurate than the CDI method, is conservative, maintains boundedness of the volume fraction, converges (as ε
decreases), is cost-effective, and is easy to implement and robust. With this objective, in this work, we propose a novel 
PF model, which we refer to as an accurate conservative diffuse-interface/phase-field (ACDI/ACPF) method, that has all the 
above-listed characteristics. Furthermore, following previous approaches [44–49] we derive a consistent and conservative 
momentum transport equation for the proposed PF model, such that the resulting transport of momentum is consistent 
with the transport of the two-phase mixture mass and results in discrete kinetic energy conservation in the absence of 
dissipative mechanisms.

3. Proposed accurate conservative phase-field model

Ideally, we need the interface to be in an equilibrium state. This is achieved when the right-hand-side (RHS) terms in 
Eq. (1)—also called interface-regularization terms—are the stiffest terms. In this limit,

�∇ ·
[
ε �∇φ − φ(1 − φ)�n

]
= 0.

If s represents a coordinate along the interface normal, then the above equation can now be rewritten along this coordinate, 
with the normal �n = ±1, as

d2φ

ds2
± 1

ε

d

ds
[φ(1 − φ)] = 0.

Choosing �n = +1, integrating the above relation, and using the conditions φ → 0 as s → −∞, we arrive at the relation

dφ

ds
= φ(1 − φ)

ε
.

Further, let ψ represent the signed-distance function from the interface, such that ψ and s are related as ψ(φ) = s(φ) −
s(φ = 0.5). With this, the above relation can be re-expressed in terms of ψ as

dφ = φ(1 − φ)
. (3)
dψ ε

3
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Fig. 2. An illustration of the PF variable, φ , and the signed-distance function, ψ , for an interface located at x = 0. The two large dots are marked on the 
plots at φ = 0.5 and ψ = 0, representing the location of the interface.

Now, integrating this relation and using the conditions φ = 0.5 at ψ = 0, we arrive at the equilibrium kernel function for φ
in terms of the signed-distance function ψ as

φ = e(ψ/ε)

1 + e(ψ/ε)
= 1

2

[
1 + tanh

(
ψ

2ε

)]
. (4)

To illustrate, a plot of φ and ψ , along s, is shown in Fig. 2 for an interface located at x = 0. Now, using the relations in Eqs. 
(3)-(4), we can arrive at the relation

φ(1 − φ) = 1

4

[
1 − tanh2

(
ψ

2ε

)]
. (5)

Further, we can also show that the normal can be reexpressed in terms of ψ as

�n = �∇φ

| �∇φ| = �∇ψ

| �∇ψ | . (6)

Similar relations were used by Wacławczyk [39], Chiodi and Desjardins [40], and Chiu [43] to reformulate interface-capturing 
methods. Using the relation in Eq. (5), we replace the non-linear sharpening flux term φ(1 −φ) in Eq. (1) with the expression 
in terms of ψ . As shown in Fig. 2, ψ is a better-behaved function compared with φ that does not contain any jumps/dis-
continuities. Hence, using ψ to compute the non-linear sharpening flux will result in more accurate discrete representation 
of the flux. Furthermore, with the same reasoning, we also replace the computation of the normal term �∇φ/| �∇φ| in Eq. (1)
with the expression in terms of ψ in Eq. (6). With these modifications, the proposed new PF model, an ACDI/ACPF method, 
can be written as

∂φ

∂t
+ �∇ · (�uφ) = �∇ ·

{
�

{
ε �∇φ − 1

4

[
1 − tanh2

(
ψ

2ε

)] �∇ψ

| �∇ψ |

}}
. (7)

Not only is this form of the PF model derived to obtain a method that is more accurate than the CDI method, but also the 
terms in the model are carefully constructed such that the model also results in the transport of φ that is always bounded 
between 0 and 1 (see Section 3.2). For example, the diffusion term in the proposed ACDI model in Eq. (7) is still written in 
terms of φ, and we do not replace this with an equivalent expression for ψ . This is because, in the limit of φ → 0 or 1, the 
diffusion term that is expressed in terms of ψ could switch signs due to the error in the computation of ψ . This will result 
in failure of the method to maintain a bounded φ between 0 and 1, and can potentially make the method non-robust.

All the terms in the proposed model are in divergence form, and hence, the model is conservative (conserves the mass 
of each phase). The proposed model is also cost-effective and easy to implement because it requires solving a single scalar 
partial-differential equation. Additionally, the superior robustness and the convergence (with ε) properties of the model will 
be illustrated in the following sections.

3.1. Calculation of ψ

The proposed PF model requires the computation of ψ , and this can be easily calculated using the algebraic relation

ψ = ε ln

(
φ + ε

1 − φ + ε

)
, (8)

which is obtained by rearranging the relation in Eq. (4). Here, ε is a small number1 that is added, to both the numerator and 
the denominator, to avoid ψ going to −∞ or ∞ when φ goes to 0 or 1, respectively (a value of ε = 10−100 is used in this 

1 If one is using an Intel compiler, it might be beneficial to turn off optimization for the floating-point operations using the flag “-fp-model precise”.
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work). Additionally, if φ assumes values outside the range [0, 1], the computation of ψ using the relation in Eq. (8) results in 
physically unrealizable values. But, because φ is always guaranteed to be bounded between 0 and 1, with the proposed PF 
model, the direct computation of ψ using Eq. (8) will not be an issue. If one is using a different numerical method where φ
is not guaranteed to be bounded between 0 and 1, then one could replace φ with φ̃ = min(max(φ,0),1) in Eq. (8) to make 
this step even more robust, but this is not a necessity for the choice of numerical method in this work. Note that, ψ is only 
an approximation to a signed-distance function and not a perfect signed-distance function because the interface is generally 
not in equilibrium (a hyperbolic tangent function) due to the velocity gradients in the flow which pushes the interface away 
from its equilibrium state. Hence, it is not assumed, anywhere in this work, that ψ is a signed-distance function, e.g., for 
the computation of normal using Eq. (6), | �∇ψ | is not set to 1.

3.2. Choosing the parameters � and ε

The values of � and ε are chosen such that the transport of φ is always bounded between 0 and 1. The criterion that 
needs to be satisfied is

� ≥ |�u|max and ε > 0.5�x, (9)

where |�u|max is the maximum value of the absolute velocity in the domain, and �x is the grid-cell size.
It is almost always practical and preferable to choose the minimum possible values for � and ε that satisfy the criterion 

in Eq. (9). Choosing the value of � to be equal to |�u|max makes the RHS of Eq. (7) the stiffest term in the equation, 
which is required for the interface to maintain an equilibrium kernel shape—a hyperbolic tangent function—throughout the 
simulation. A higher value for �, although it forces the interface to assume the equilibrium kernel shape more quickly, makes 
the RHS term in Eq. (7) stiffer and imposes an additional CFL restriction. Choosing the value of ε to be approximately equal 
to 0.5�x is also preferred, because this keeps the interface, which is resolved on the grid, as sharp as possible. Increasing ε
increases the interface thickness and, hence, reduces the accuracy of the method.

3.3. Cost estimates and accuracy

The choice of parameters � and ε in a diffuse-interface method imposes a restriction on the time-step size due to the 
viscous CFL criterion, which can be expressed as

�tmax ∼ �x2

�ε
. (10)

From the boundedness criterion, for the CDI method, in Eq. (2), as ε∗ → 0.5, the required �∗ goes to ∞. Because both the 
proposed ACDI method in Eq. (7) and the CDI method in Eq. (1) maintain boundedness of φ for the choice of �∗ = 1 and 
ε∗ = 1, the cost of both the CDI and the ACDI methods in terms of the required number of time steps is the same. But 
because the resolved interface becomes sharper as ε reduces, we are interested in estimating the cost of these methods for 
ε∗ < 1.

Using the boundedness criterion in Eq. (9) and expressing �tmax in terms of ε∗ , for the proposed ACDI method, the 
restriction on the time-step size is

�tmax ∼ �x

|�u|maxε∗ .

If ε∗ is chosen to be equal to 0.55, then �tmax|ε∗=0.55 = 20/11 �tmax|ε∗=1, and Nε∗=0.55 = 0.55Nε∗=1, where N is the 
number of time steps. Therefore, the cost is 1.8 times lower than that of the simulation with ε∗ = 1. Similarly, if ε∗ = 0.51, 
then the cost is 1.96 times lower. In contrast, for the CDI method, �tmax can be expressed in terms of ε∗ as

�tmax ∼ �x

|�u|max

(
2 − 1

ε∗

)
.

If ε∗ is chosen to be equal to 0.55, then �tmax|ε∗=0.55 = 20/11 �tmax|ε∗=1, and Nε∗=0.55 = 5.5Nε∗=1. Therefore, the cost 
is 5.5 times higher than that of the simulation with ε∗ = 1. Similarly, if ε∗ = 0.51, then the cost is 25.5 times higher. 
Hence, with the proposed ACDI method, reducing ε not only makes the interface more sharp, but also reduces the cost of 
the simulation. In contrast, with the CDI method, the cost of the simulation increases as ε reduces. As ε∗ → 0.5, the CDI 
method becomes prohibitively expensive.

Apart from the cost, reducing ε also increases the accuracy of the proposed ACDI method by making the resolved 
interface sharper. In contrast, for the CDI method, reducing ε , particularly for the values of ε∗ < 1, reduces the accuracy of 
the method, albeit making the interface sharper. This is because a value of ε∗ < 1 requires �∗ > 1, which makes the RHS 
term in Eq. (1) stiffer. This increases the error associated with the calculation of the non-linear flux and the normal (as 
described in Section 3) and, therefore, exacerbates the issue of artificial interface distortion that was observed by Tiwari 
et al. [35] and Jain et al. [33]. A quantitative comparison of the accuracy of the ACDI and CDI methods, with reducing ε , is 
presented in Section 6.2.1.
5
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3.4. Improvements in computation of surface tension force

Surface tension force can be modeled as a stress or a body force. These are called integral and volumetric formulations, 
respectively. It is crucial to have a discrete balance between the surface tension force and the pressure terms to minimize 
the spurious currents around the interface [50]. The continuum-surface force (CSF) formulation [51] is used in this work 
because it is easy to attain this balance with this formulation.

For a diffuse-interface method, the CSF formulation can be written as �F = σκ �∇φ, where κ is the curvature, and can be 
calculated as

κ = −�∇ · �n = −�∇ ·
( �∇φ

| �∇φ|

)
. (11)

It is known that the error associated with the computation of curvature is the primary reason for the formation of spurious 
currents [52]. With the proposed ACDI method, we now have access to the well-behaved, signed-distance function ψ . Hence, 
utilizing the relation in Eq. (6), curvature can instead be calculated as

κ = −�∇ · �n = −�∇ ·
( �∇ψ

| �∇ψ |

)
, (12)

which reduces the truncation errors in computation of κ (Appendix A) and, therefore, the amount of spurious currents.

4. Coupling with incompressible Navier-Stokes equations

When an interface-capturing method is coupled with the Navier-Stokes equations, it is important to solve a form of 
the momentum equation that transports momentum consistently with the transport of mass. This is required to make the 
resulting coupled system robust in the limit of high-density ratio and high-Re flows.

If we represent the diffusion and sharpening fluxes on the RHS of Eq. (7), for phase l, as

�al = �

{
ε �∇φl − 1

4

[
1 − tanh2

(
ψ

2ε

)] �∇ψ

| �∇ψ |

}
, (13)

where φl is the volume fraction of phase l, then this relation satisfies the condition

2∑
l=1

�al = 0. (14)

The implied mass transport equation for the proposed ACDI method can then be written as

∂ρ

∂t
+ �∇ · (�uρ) = �∇ · �f , (15)

where

�f =
2∑

l=1

ρl�al =
{

(ρ1 − ρ2)�

{
ε �∇φ1 − 1

4

[
1 − tanh2

(
ψ

2ε

)] �∇ψ

| �∇ψ |

}}
.

4.1. Consistent momentum transport equation

The consistency corrections for the momentum equation for the proposed ACDI method can be derived with the premise 
that a consistent momentum transport equation does not spuriously contribute to the kinetic energy of the system. The full 
coupled system of equations for the simulation of incompressible two-phase flows can then be written as

∂φ1

∂t
+ �∇ · (�uφ1) = �∇ · �a1, (16)

∂ρ�u
∂t

+ �∇ · (ρ�u ⊗ �u + p1) = �∇ · τ + �∇ · (�f ⊗ �u) + σκ �∇φ1 + ρ�g, (17)

�∇ · �u = 0, (18)

where τ is the stress tensor, and �g represents a generic body force. A fractional-step method [53] is used to compute the 
pressure, which closes the system of equations. The resulting kinetic energy transport equation can be written as

∂ρk + �∇ · (ρ�uk) + �∇ · (�up) = �∇ · (�f k), (19)

∂t

6



S.S. Jain Journal of Computational Physics 469 (2022) 111529
where all the terms are in conservative form. Thus, the proposed consistent momentum equation [Eq. (17)] results in 
conservation of total kinetic energy. A discussion on the coupling of the proposed ACDI method with compressible Navier-
Stokes equations is presented in Appendix B.

5. Numerical method: skew-symmetric-like splitting

In this work, the equations are discretized on an Eulerian Cartesian grid. A fourth-order Runge-Kutta method is used for 
time discretization, and a second-order flux-split conservative finite-difference/finite-volume central scheme is used for the 
spatial discretization of the equations. A discussion on the use of higher-order spatial discretization schemes is presented in 
Appendix C.

The semi-discrete representation of the proposed ACDI PF model in Eq. (7) can be written as

∂φ

∂t
+


̂ j|(m+ 1
2 ) − 
̂ j|(m− 1

2 )

�x j
−

Â j|(m+ 1
2 ) − Â j|(m− 1

2 )

�x j
= 0, (20)

where 
̂ j |(m±1/2) and Â j |(m±1/2) are the numerical fluxes for the convective and the interface-regularization (RHS) terms, 
respectively; the subscript m denotes the grid-cell index; and �x j represents the grid-cell size. Now, adopting the flux-
splitting procedure for the interface regularization terms from Jain and Moin [54], these numerical fluxes can be expressed 
as


̂ j|(m± 1
2 ) =φ

(m± 1
2 )

u
(m± 1

2 )

j ,

Â j|(m± 1
2 ) =

⎧⎨
⎩�

⎧⎨
⎩ ε

�x j

(
� jφ

) − 1

4

⎡
⎣1 − tanh2

⎛
⎝ψ

(m± 1
2 )

2ε

⎞
⎠

⎤
⎦ �∇ψ

| �∇ψ |
(m± 1

2 )

⎫⎬
⎭

⎫⎬
⎭ ,

(21)

where the overbar denotes an arithmetic average of the quantity evaluated at m and m ± 1; � jφ represents a difference 
along the jth coordinate as � jφ = φ|(m+1) − φ|m . For the discrete representation of the consistent regularization terms in 
the mass, momentum, and energy equations, the same formulation in Eq. (21) should be used to maintain consistency. A 
skew-symmetric-like split scheme is used here, because these schemes result in reduced aliasing errors [55–57] and are 
known to improve the conservation properties of the quadratic quantities [58]. Moreover, the scheme in Eq. (21) is also 
responsible for the superior—a less restrictive—boundedness criterion in Section 3.2 of the proposed PF model.

For the incompressible formulation presented in Section 4, a staggered grid is used, where the velocities are stored at the 
staggered locations to avoid pressure checker boarding. The PF variable and the pressure are located at the cell center. The 
staggered-grid formulation results in discrete conservation of total kinetic energy in the absence of dissipative mechanisms 
[59].

6. Results

In this section, the simulation results with the newly proposed ACDI method are presented. Two-dimensional interface 
advection test cases are presented in Sections 6.1 and 6.2, where the proposed ACDI method and the CDI methods are 
compared in terms of accuracy. More importantly, the effect of reducing ε on the convergence behavior and the accuracy of 
the methods are discussed in Section 6.2.1, the grid convergence study is presented in Section 6.2.2, and the computational 
cost savings associated with using ACDI compared to CDI is discussed in Section 6.2.3. This is followed by the incompressible 
hydrodynamics-coupled simulations in Section 6.3, where the robustness of the proposed method is illustrated using the 
high-density-ratio droplet-laden isotropic turbulence simulation at infinite Re.

In all the simulations presented in this section, the mass of each phase is conserved, with the error on the order of 
machine precision; and φ is verified to be bounded between 0 and 1. To quantitatively compare the error of the proposed 
ACDI method with that of the CDI method, we use the error, E , defined as

E =
∫
�

|φ f − φo|dV =
∑

m

∣∣∣φ f |m − φo|m
∣∣∣dV , (22)

where the subscripts f and o denote that the quantities are evaluated at the final and initial times, respectively.

6.1. Advection of a bubble/drop

In this test case, advection of a circular interface is considered to test the distortion of the interface that was seen 
with the CDI method in Fig. 1. The setup is similar to the one presented in Section 1, where a two-dimensional circular 
bubble/drop is initialized at the center of the unit-sized periodic domain that is discretized into a 50 × 50 grid points. A 
uniform velocity field of �u = 5i is prescribed, �t = 0.001, and here the phase-field equation in Eq. (7) is solved (decoupled 
7
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Fig. 3. Final shape of the translating drop/bubble computed using the proposed ACDI method in Eq. (7) and the CDI method in Eq. (1).

Table 1
The error E in the shape of 
the interface for the case of 
bubble/drop advection.

CDI ACDI

0.01352 0.00576

from hydrodynamics). The final and initial shape of the interface are presented in Fig. 3 along with the results from the CDI 
method [obtained by solving Eq. (1)]. Unlike the CDI method, the proposed ACDI method maintains the interface shape for 
long-time integrations. To make a more quantitative comparison, the error E computed using Eq. (22), for both the methods, 
is presented in Table 1. This shows that the proposed ACDI method is more accurate compared to the CDI method, although, 
error E is not the best metric to highlight the significant improvement in shape that is seen in Fig. 3.

6.2. Drop in a shear flow

This is a classical interface advection test case that was introduced by Bell et al. [60] and Rider and Kothe [61] and has 
been extensively used in the literature [62] to assess the accuracy of the interface-capturing methods. In this test case, a 
circular drop/bubble of radius R = 0.15 is initially placed in the unit-sized domain at (0.5, 0.75). A shearing velocity field 
given by

u = − sin2 (πx) sin(2π y) cos

(
πt

T

)
,

v = sin(2πx) sin2(π y) cos

(
πt

T

) (23)

is prescribed, where T = 4 is the time period of the flow; t is the time coordinate; x and y are the spatial coordinates; and u
and v are the velocity components along the x and y directions, respectively. Here, � = |�u|max and ε = �x are the interface 
parameters, and �t = 2.5 × 10−4 is the time-step size. The drop undergoes a shearing deformation until t = T /2 = 2, and 
then the flow field is reversed with the hope that the initial drop shape is recovered at the final time of t = T = 4. Fig. 4
shows the shape of the drop at the half time of t = 2 and the final time of t = 4 for the ACDI and the CDI methods, 
computed on a grid of size 2562. The ACDI method is more accurate in recovering the circular shape of the drop compared 
with the CDI method. The error E computed using Eq. (22) for the ACDI method is 8.66×10−4 and for the CDI method is 
1.95×10−3.

6.2.1. Effect of choice of ε on the accuracy of the method
As described in Sections 3.2-3.3, it is important to use as small a value for ε as possible, while maintaining the bound-

edness of φ, because this makes the resolved interface more sharp. Section 3.3 showed that reducing the value of ε/�x
from 1 to 0.5 makes the simulation less expensive for the proposed ACDI method by increasing the maximum allowable 
time-step size, whereas reducing ε increases the cost for CDI method. In this section, the effect of varying the value of ε on 
the accuracy of the methods is evaluated.
8
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Fig. 4. The shape of the drop at (a) half time of t = 2 and (b) final time of t = 4 in a shearing flow, computed in a domain discretized with a grid of size 
2562.

Fig. 5. The final shape of the drop at t = 4 for (a) ε/�x = 1, (b) ε/�x = 0.75, (c) ε/�x = 0.55, and (d) ε/�x = 0.51, in a shearing flow, computed in a 
domain discretized with a grid of size 642.

Here, the test case of a drop in a shear flow from Section 6.2 is repeated, on a coarser grid of size 642, with �t = 0.001, 
for various values of ε , and the shape of the drop that is recovered at the final time of t = 4 is shown in Fig. 5. For 
the proposed ACDI method, the final drop shape is more circular, and it approaches the ideal shape, as the value of ε is 
reduced. But for the CDI method, the final drop shape is more distorted as the value of ε is reduced. Furthermore, the error 
E is plotted against different values of ε in Fig. 6 and are also listed in Table 2. The error for the proposed ACDI method 
decreases as ε/�x decreases, all the way up to ε/�x = 0.5. But the error for the CDI method increases as ε/�x decreases 
for ε/�x < 1. Hence, the proposed ACDI method not only becomes less expensive as ε/�x decreases, but also becomes 
more accurate; therefore, the method converges with decreasing ε/�x. The CDI method, in contrast, not only becomes 
more expensive as ε/�x decreases but also becomes less accurate; therefore, the method diverges with decreasing ε/�x.
9



S.S. Jain Journal of Computational Physics 469 (2022) 111529
Fig. 6. Comparison of the error, E , computed using Eq. (22), at the final time of t = 4 for the CDI and ACDI methods for various values of ε . The test case 
is the drop in a shear flow, computed in a domain discretized with a grid of size 642.

Table 2
Comparison of the error, E , computed using Eq. (22), at the final time of t = 4 for the 
CDI and ACDI methods for various values of ε . The test case is the drop in a shear 
flow, computed in a domain discretized with a grid of size 642. Note that, for CDI, the 
value of �/|�u|max had to be increased for ε/�x < 1 to maintain boundedness of φ
according to Eq. (2). Here, relative cost is calculated based on the relative number of 
time steps which is defined as �tref erence/�tactual = �/|�u|max ×ε/�x, and � = |�u|max , 
ε/�x = 1 are chosen as the reference.

ε/�x CDI ACDI

�/|�u|max E Relative 
cost

�/|�u|max E Relative 
cost

5 1 0.078624 1 1 0.077414 1
2 1 0.030380 1 1 0.027231 1
1 1 0.021705 1 1 0.015077 1
0.75 2 0.028467 1.5 1 0.015080 0.75
0.55 10 0.050817 5.5 1 0.007877 0.55
0.51 50 0.046484 25.5 1 0.007613 0.51

6.2.2. Effect of grid size on the accuracy of the method
In this section, the effect of varying the grid size on the accuracy of the ACDI and CDI methods is evaluated using the 

test case of a drop in a shear flow from Section 6.2. The domain is discretized using N × N grid points; and five different 
grids, 322, 642, 1282, 2562, and, 5122, were chosen to study the convergence of the error in the shape of the drop. Two 
different values of ε/�x = 1 and 0.51 were chosen. The computed error, E , on five different grids are listed in Table 3
along with the order of convergence. The error decreases with an increase in the number of grid points, with an order of 
convergence roughly between 1 and 2 for the ACDI method. The average order of convergence is 1.862 for ε/�x = 0.51 and 
1.752 for ε/�x = 1. On the otherhand, for the CDI method, the average order of convergence is 0.8272 for ε/�x = 0.51 and 
1.539 for ε/�x = 1. The error is also plotted against the grid size in Fig. 7; and the slopes of the individual line segments 
represent the local order of convergence that is listed in Table 3. The ACDI method is also compared against other possible 
variations of the conservative second-order Allen-Cahn based phase-field models in Appendix D.

6.2.3. Computational cost savings
In this section, the computational cost savings of the proposed ACDI method over the CDI method is calculated. This is 

done by estimating the increased spatial and temporal resolution required by the CDI method to yield similar accuracy as 
the ACDI method.

From the study of the effect of ε on the accuracy of the methods in Section 6.2.1, it was found that the CDI method 
is most accurate for ε/�x ≈ 1, and the ACDI method is most accurate for ε/�x ≈ 0.5. Hence, now assuming the error of 
0.0002171 (Table 3), obtained with the ACDI method on 512 × 512 grid for ε/�x = 0.51, as the targeted error, the grid 
resolution required to achieve this error with the CDI method can be calculated. Assuming that the asymptotic convergence 
is already achieved at the resolution of 512 × 512, the error of 0.0006282 obtained with the CDI method can be used to 
extrapolate the grid point requirement to achieve the targeted error of 0.0002171. From Section 7, the average order of 
convergence for the CDI method for ε/�x = 1 is estimated to be n = 1.539. Using the relation

n = log ( error1
error2

)

log (�x1 )
, (24)
�x2

10
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Table 3
Comparison of the error, E , computed using Eq. (22), at the final time 
of t = 4 for the CDI and ACDI methods. The test case is the drop in a 
shear flow. Note that, for CDI, the value of �/|�u|max = 50 is used for 
ε/�x = 0.51 to maintain boundedness of φ according to Eq. (2).

Grid CDI

E
(ε/�x = 0.51)

Order E
(ε/�x = 1)

Order

32 × 32 0.05403 0.04428
64 × 64 0.04648 0.2172 0.02171 1.0458
128 × 128 0.01315 1.822 0.004741 2.195
256 × 256 0.008764 0.5854 0.001946 1.285
512 × 512 0.005455 0.6840 0.0006282 1.631

Grid ACDI

E
(ε/�x = 0.51)

Order E
(ε/�x = 1)

Order

32 × 32 0.03788 0.04737
64 × 64 0.007613 2.315 0.01508 1.651
128 × 128 0.002102 1.857 0.004396 1.778
256 × 256 0.0008591 1.291 0.0009681 2.183
512 × 512 0.0002171 1.984 0.0003675 1.397

Fig. 7. Comparison of the error, E , computed using Eq. (22), at the final time of t = 4 for the CDI and ACDI methods for various grid sizes N . The test case 
is the drop in a shear flow, computed in a domain discretized with a grid of size N2.

the increased grid resolution required for the CDI method to yield similar accuracy as the ACDI method is calculated to be 
N� = �xAC D I/�xC D I = 1.99 ≈ 2. In three dimensions, the increased grid count is, therefore, N3

� ≈ 23 = 8.
In Section 3.3, the required time-step size as a function of ε for both CDI and ACDI is reported. Using ε/�x = 0.51 for 

ACDI, the required time step size is �t AC D I ∼ �xAC D I/(|u|max0.51), and using ε/�x = 1 for CDI, the required time step 
size is �t AC D I ∼ �xC D I/|u|max . Therefore, the increased temporal resolution required for the CDI method to yield similar 
accuracy as the ACDI method is calculated to be Nt = �t AC D I/�tC D I = 1.99/0.51 ≈ 4.

Therefore, the total cost savings of using the ACDI method over the CDI method in three dimensions is about a factor of 
N3

� × Nt = 32.

6.3. Droplet-laden isotropic turbulence

In this section, the simulation of a droplet-laden isotropic turbulence is presented on coarse grids. It is well known 
that the coarse-grid simulation of a turbulent flow is a good test of the nonlinear stability and robustness of the method, 
which were previously studied, for single-phase flows, by Honein and Moin [63], Mahesh et al. [64], Hou and Mahesh [65], 
Subbareddy and Candler [66], and Kuya et al. [67], and for two-phase flows by Jain and Moin [54]. This is due to the lack of 
grid resolution to support dissipative mechanisms that stabilize the method. Here, high-density-ratio droplet-laden isotropic 
turbulence is simulated at finite and infinite Re. The infinite-Re simulation corresponds to an inviscid case, where there are 
no dissipative mechanisms, and acts as a true test of robustness of the method.
11
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Fig. 8. The snapshots from the droplet-laden isotropic turbulence simulation with the droplet-to-carrier fluid density ratio of ρ1/ρ2 = 1000, and the initial 
Taylor-scale Reynolds number of Reλ,o = 100, at (a) t = 0 and (b) t = 5.7735.

For the infinite-Re simulation case, the proposed ACDI method is coupled with both the consistent momentum transport 
equation in Eq. (17), which results in discrete kinetic energy conservation, and the standard momentum equation (inconsis-
tent), which does not conserve kinetic energy. This is done to illustrate the importance of solving the consistent momentum 
transport equation.

The initial setup consists of a single spherical drop, of radius R = 1, that is placed at the center of the triply periodic 
domain. The domain has dimensions of 2π × 2π × 2π , and is discretized into a grid of size 64 × 64 × 64. Here, � = |�u|max

and ε = 0.51�x are the interface parameters, and �t = 2.5 × 10−3 is the time-step size. The velocity field is initialized 
using the energy spectrum

E(k) ∝ k4 exp

[
−2

(
k

ko

)2
]
, (25)

where k is the wavenumber, and ko is the most energetic wavenumber. Here, ko is chosen to be equal to 4, and hence, the 
initial Taylor microscale is set as λo = 2/ko = 0.5.

The density of the droplet fluid is ρ1 = 1000, and the density of the carrier fluid is ρ2 = 1. The surface tension between 
the two fluids is set to zero; i.e., the Weber number is ∞. For the finite-Re simulation, the dynamic viscosity of the two 
fluids is chosen to be μ1 = 1.732 and μ2 = 1.732 × 10−3, such that the initial Taylor-scale Reynolds number is Reλ,o = 100, 
where, the Taylor scale Reynolds number is defined as Reλ = urmsλ/ν , where urms =< uiui > /3 = (2/3) 

∫ ∞
0 E(k)dk is the 

root-mean-square velocity fluctuation. For the infinite-Re simulation, the dynamic viscosity of the two fluids is chosen to 
be μ1 = μ2 = 0, such that Reλ,o = ∞.

The snapshots of the simulation results for the Reλ,o = 100 case at time t = 0 and the final time of t = 5.7735 are 
presented in Fig. 8. Note that the breakup of the droplets and ligaments seen in this case is induced by the lack of grid res-
olution and, therefore, should not be considered physical. One needs to implement a subgrid-scale model to correctly predict 
the behavior of droplet breakup and the drop-size distribution. Here, we are instead interested in testing the robustness of 
the proposed ACDI method and the consistent momentum transport equation.

The time evolution of the total kinetic energy K = ρuiui/2, normalized by the initial value, for both finite- and infinite-Re
cases is shown in Fig. 9. For the finite-Re case, the total kinetic energy of the system decays due to the viscous dissipation; 
and for the infinite-Re case, the kinetic energy is conserved throughout the simulation (as expected), which results in stable 
numerical simulations. For the infinite-Re case, results from the inconsistent momentum formulation are also shown in 
Fig. 9 for comparison. Due to the inconsistent transport of momentum, the total kinetic energy is not conserved; therefore, 
the simulation diverges.

6.4. Spurious currents in a stationary drop/bubble

In this section, a simple test case of a stationary drop/bubble is used to evaluate the accuracy in computing surface 
tension force with the proposed ACDI method. The CSF formulation involves computation of curvature, and the error in 
computing curvature results in spurious currents. Hence, the maximum magnitude of spurious currents can be used as a 
metric to estimate the accuracy in the implementation of surface tension force terms.

A two-dimensional stationary drop of radius R = 0.4 is placed at the center of a square domain of unit size. The do-
main is discretized into a grid of size 642. Here, � = |�u|max and ε = 0.75�x are the interface parameters, and �t = 0.001
is the time-step size. The density and viscosity of the droplet fluid and the surrounding fluid are set to be equal. The 
fluid properties are chosen such that the Laplace number is La = ρDσ/μ2 = 12000. The maximum magnitude of the non-
dimensional spurious currents (Camax = μ|�u|max/σ , where Ca is the capillary number) in the domain is computed and 
plotted with time in Fig. 10. A significant reduction in the spurious currents, by over 2 orders of magnitude, can be seen 
with the proposed ACDI method when the curvature is computed using Eq. (12), as opposed to Eq. (11). Fig. 11 shows 
12
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Fig. 9. The evolution of total kinetic energy for the droplet-laden isotropic turbulence simulation for both finite and infinite Re. The consistent formulation 
is the PF model coupled with the proposed consistent momentum transport equation in Eq. (17), and the inconsistent formulation is the PF model coupled 
with the standard momentum equation.

Fig. 10. Evolution of the maximum non-dimensional spurious currents (Camax) in the domain with time. Time is normalized by the capillary time-scale 
τσ = √

ρD3/σ . LS denotes an LS method.

the differences in the form of spurious currents around the interface when the curvatures are computed using Eqs. (11)
and (12).

Furthermore, to compare the present formulation with the LS formulation, the results from Abadie et al. [68] are also 
presented in Fig. 10. The curvature computation is very accurate in an LS method due to the use of a signed-distance 
function to compute interface normals. Although the improved curvature computation results in improving the accuracy 
of the surface-tension force, the well-balanced nature of the surface tension model gets destroyed due to the reinitializa-
tion step in the LS method [68]. With the proposed ACDI method, the well-balanced nature of the surface tension model 
is retained, unlike the LS method, resulting in significantly lower magnitude of spurious currents compared with an LS 
method.

7. Conclusions

In this work, we proposed a novel PF model for the simulation of two-phase flows that is accurate, conservative, bounded, 
and robust. The proposed model conserves the mass of each of the phases and results in bounded transport of the volume 
fraction. We present results from the canonical test cases of a droplet advection and drop in a shear flow, showing an 
improvement in accuracy over the commonly used conservative PF method.

We also showed that the proposed method imposes lesser CFL restriction, and hence, is less expensive compared to 
previous methods. The proposed method also facilitates reformulation of the surface tension force calculation in terms 
of the new signed-distance variable. We showed that this improves the surface tension force calculation and significantly 
reduces the spurious currents at the interface. We further derived a consistent and conservative momentum transport 
equation for the proposed PF model that results in discrete conservation of kinetic energy, which is a sufficient condition 
for the numerical stability of incompressible flows in the absence of dissipative mechanisms.
13
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Fig. 11. Form of the spurious currents around the interface at t/τσ ≈ 55 with curvature computed using (a) φ [Eq. (11)] and (b) ψ [Eq. (12)]. Here, the 
color represents the magnitude of the velocity in simulation units.

We discretize the proposed PF model using a flux-split conservative central scheme proposed by Jain and Moin [54], 
which reduces the aliasing error and is also responsible for the superior boundedness property of the model. To illustrate the 
robustness of the method in simulating high-density-ratio turbulent two-phase flows, we present the numerical simulations 
of droplet-laden isotropic turbulence at infinite Reynolds numbers for a density ratio of 1000.
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Appendix A. Reduced error in the computation of curvature

The improvement in the computation of surface tension forces proposed in Section 3.4 is due to the reduced truncation 
errors in the computation of κ using Eq. (12) as opposed to Eq. (11). This reduction in truncation errors can be easily seen 
as follows.

2 http://web .stanford .edu /group /ctr /ResBriefs /2021 /15 _Jain .pdf.
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Assuming 1D for simplicity, and discretizing κ as

km =
n|(m+ 1

2 ) − n|(m− 1
2 )

�x
(26)

where n is the 1D normal vector along x direction. For the formulation in Eq. (11) that uses φ to compute κ , the error in the 
discrete computation of n is proportional to the truncation error in the computation of φ′|(m+ 1

2 ) , which can be expressed 
as

εφ = φ′|(m+ 1
2 ) − φ|(m+1) − φm

�x
= − (�x)2

24
φ′′′(x|(m+ 1

2 )), (27)

where ′ denotes a derivative here. If φ ∼ tanh x, then φ′′′ ∼ (4 tanh2 x sech2 x − 2sech4 x), which is nonzero at x = 0 (inter-
face location). Note that the odd derivatives of φ are non-zero at x = 0 and the value of these derivatives at x = 0 increases 
with the increase in the order of the derivative. On the other hand, for the formulation in Eq. (12) that uses ψ to compute 
κ , the error in the discrete computation of n is proportional to the truncation error in the computation of ψ ′|(m+ 1

2 ) , which 
can be expressed as

εψ = − (�x)2

24
ψ ′′′(x|(m+ 1

2 )). (28)

If ψ ∼ x, then ψ ′′′ ∼ 0. Therefore, the computation of κ using the formulation in Eq. (12) is much more accu-
rate than the computation of κ using the formulation in Eq. (11). Note, however, φ is not exactly equal to tanh x
and ψ is not exactly equal to x, unless the interface is in perfect equilibrium. Hence, this is an approximate anal-
ysis and the computation of κ is, therefore, not exact using the relation in Eq. (12), albeit being more accu-
rate.

Appendix B. Compressible flows

The extension of the proposed phase-field model for compressible flows follows naturally from the recent works of Jain 
et al. [32,33]. The interface regularization in the five-equation model [32] or the four-equation model [33] can be replaced 
with the regularization term proposed in this work in Eq. (13). With this, the consistent transport equations for the mass, 
momentum, and energy can be derived for the proposed ACDI method, and the coupled system of equations can be written 
as

∂φ1

∂t
+ �∇ · (�uφ1) = φ1( �∇ · �u) + ζ1( �∇ · �u) + �∇ · �a1, (29)

∂ml

∂t
+ �∇ · (�uml) = �∇ · �Rl, l = 1,2, (30)

∂ρ�u
∂t

+ �∇ · (ρ�u ⊗ �u + p1) = �∇ · τ + �∇ · (�f ⊗ �u) + σκ �∇φ1 + ρ�g, (31)

∂ E

∂t
+ �∇ · {(E + p)�u} = �∇ · (τ · �u) + �∇ · (�f k) +

2∑
l=1

�∇ · (ρlhl�al) + σκ �u · �∇φ1 + ρ�g · �u, (32)

p = f (ρe, φl,αl, βl, γl, ...), (33)

where ml = ρlφl is the partial density of phase l; �Rl = ρl�al is the consistent mass flux; hl = el + pl/ρl is the specific enthalpy 
of phase l; E = ρ(e + k) is the total energy of the mixture per unit volume; e is the specific mixture internal energy; and 
the function ζ1 is given by

ζ1 = ρ2c2
2 − ρ1c2

1
ρ1c2

1
φ1

+ ρ2c2
2

φ2

, (34)

where cl is the speed of sound for phase l. The system of equations [Eqs. (29)-(32)] is closed using a generalized mixture 
equation of state given in Eq. (33), where αl , βl , and γl are the material parameters for phase l.

Appendix C. Higher-order spatial schemes

Throughout this work, a flux-split second-order central scheme from Jain and Moin [54] has been used. However, an 
appropriate higher-order scheme can also be used with the proposed ACDI model. For example, following the generalization 
of flux-splitting procedure for higher-order schemes in Ducros et al. [70] and Pirozzoli [71], a fourth-order flux-split central 
15



S.S. Jain Journal of Computational Physics 469 (2022) 111529
Fig. 12. The error, E , computed using Eq. (22), at the final time of t = 4 for the drop in a shear flow case. Here, the figures represent the error calculated 
in domain that is discretized with the grids of size (a) 642 (coarse simulation), and (b) 2562 (refined simulation).

Table 4
Average time taken, in seconds, for the drop in a 
shear flow case in Fig. 12 (b). The simulation was 
run on 256 Intel Xeon CPU cores.

2nd order 4th order

Average time taken 129.1 s 222 s

scheme for the sharpening and convective terms that will still result in maintaining the boundedness of φ can be written 
as


̂ j |(m± 1
2 ) =

2∑
i=1

[
ai

(
φ|m + φ|(m±i)

2

)(
u j |m + u j |(m±i)

2

)]
,

Â j |(m± 1
2 ) =

⎧⎪⎨
⎪⎩�

⎧⎪⎨
⎪⎩

ε

�x j

(
� jφ

) −
2∑

i=1

⎧⎪⎨
⎪⎩ai

1

4

[
1 − tanh2

(
ψ |m + ψ |(m±i)

4ε

)]⎛
⎜⎝

�∇ψ

| �∇ψ |
∣∣∣
m

+ �∇ψ

| �∇ψ |
∣∣∣
(m±i)

2

⎞
⎟⎠

⎫⎪⎬
⎪⎭

⎫⎪⎬
⎪⎭

⎫⎪⎬
⎪⎭ ,

(35)

where a1 = 4/3 and a2 = −1/6 are the coefficients. Similarly, any arbitrarily high-order flux-split central scheme can be con-
structed. Note that, unlike the proposed ACDI model, higher-order schemes for the CDI model will not result in maintaining 
the boundedness of φ.

To evaluate the accuracy of the ACDI model with a higher-order scheme, the test case of a drop in a shear flow from 
Section 6.2 is repeated, on grids of sizes 642 and 2562, using the second-order scheme in Eq. (21) and the fourth-order 
scheme in Eq. (35), for various values of ε . Here, a value of �/|u|max = 1.5, 2 were used for ε/�x = 0.55, 0.51, respectively, 
for the fourth-order scheme. For a higher-order scheme, the boundedness criterion is � ≥ C |�u|max and ε > 0.5�x, where C
is a value greater than 1. For a fourth-order scheme, C was found, from inspection, to be approximately 2.

The final drop shape at t = 4 is not shown here, but the error E is plotted against different values of ε in Fig. 12. On 
the coarser grid of size 642, both the second-order and fourth-order schemes have relatively similar accuracy for all values 
of ε considered. But on the refined grid of size 2562, the fourth-order scheme yields more accurate results compared to 
the second-order scheme. This is because the asymptotic convergence of the fourth-order scheme is only achieved in the 
refined-grid limit. Furthermore, to make a true comparison of the results with the second-order scheme and the fourth-
order scheme, the average computational cost of the simulations, for the four simulations in Fig. 12 (b) are computed and 
listed in Table 4. The computational cost of the simulations with the fourth-order scheme is also higher compared to the 
second-order scheme. Hence, it is a trade-off between cost and accuracy.

With these observations, the best-practice recommendation for simulation of two-phase flows can be stated as follows: 
for a coarse-grid large-eddy simulation (LES), a second-order scheme is sufficient; but for a refined-grid direct numerical 
simulation (DNS), a higher-order scheme is viable, which results in more accurate simulations albeit at higher costs.

Appendix D. Variations of the phase-field model

In this section, the proposed ACDI model is compared against the other possible variations of the conservative second-
order Allen-Cahn-based phase-field model that one could construct. These models can be written as

(model A)
∂φ

∂t
+ �∇ · (�uφ) = �∇ ·

{
�

{
ε �∇φ − 1

4

[
1 − tanh2

(
ψ

2ε

)] �∇φ

| �∇φ|

}}
, (36)
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Table 5
Comparison of the error, E , computed using Eq. (22), at the final time of t = 4 for the 
CDI and ACDI methods along with the other possible variations of the conservative 
second-order Allen-Cahn-based phase-field model. The test case is the drop in a shear 
flow.

E 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

ACDI 0.04737 0.01508 0.004396 0.0009681 0.0003675
CDI 0.04428 0.02171 0.004741 0.001946 0.0006282
model A 0.04678 0.02152 0.005297 0.001844 0.0005914
model B 0.04637 0.01530 0.003821 unstable unstable

(model B)
∂φ

∂t
+ �∇ · (�uφ) = �∇ ·

{
�

{
1

4

[
1 − tanh2

(
ψ

2ε

)](
�∇ψ − �∇ψ

| �∇ψ |

)}}
. (37)

The difference between model A in Eq. (36) and the ACDI model is that the normal vector, in the sharpening term, is 
computed in terms of φ. For model B in Eq. (37), the diffusion term is also expressed in terms of ψ . The comparison of error 
E , computed using Eq. (22), is presented in Table 5 for the drop in a shear flow case from Section 6.2. Here, � = |�u|max , and 
ε/�x = 1 are chosen as the parameters.
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