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1. Motivation and objectives

In this study, we choose the three popular diffuse-interface-capturing methods for com-
pressible two-phase flows, and evaluate their performance by simulating a wide range of
flows with multiphase fluids and solids. The first approach is the localized-artificial-
diffusivity (LAD) method by Cook (2007), Subramaniam et al. (2018), and Adler &
Lele (2019) that involves adding diffusion terms to the individual phase mass fraction
transport equations and are coupled with the other conservation equations. The second
approach is the gradient-form approach that is based on the quasi-conservative method
proposed by Shukla et al. (2010). In this method the diffusion and sharpening terms
(together called regularization terms) are added for the individual phase volume fraction
transport equations and are coupled with the other conservation equations (Tiwari et al.
2013). The third approach is the divergence-form approach that is based on the fully
conservative method proposed by Jain et al. (2020). In this method, the diffusion and
sharpening terms are added to the individual phase volume fraction transport equations
and are coupled with the other conservation equations.

This brief is the second part of the two-part brief series. In the first part of the brief
(Adler et al. 2020b), the three diffuse-interface methods considered in this study, along
with their implementation, are described in detail. In this brief, we present the simulation
results and evaluate the performance of the methods using classical test cases, such as:
(a) advection of an air bubble in water, (b) shock interaction with a helium bubble in
air, (c) shock interaction and the collapse of an air bubble in water, and (d) Richtmyer-
Meshkov instability of a copper-aluminium interface. The simulation test cases chosen in
the present study were carefully selected to assess: (1) the conservation property of the
method; (2) the accuracy of the method in maintaining the interface shape; (3) the ability
of the method in maintaining constant interface thickness throughout the simulation; and
(4) the robustness of the method in handling large density ratios.

Some of these test cases have been extensively studied in the past and have been used
to evaluate the performance of various interface-capturing and interface-tracking meth-
ods. Many studies look at these test cases to evaluate the performance of the methods
in the limit of very fine grid resolution. For example, a typical grid size may be on the
order of hundreds of points across the diameter of a single bubble/droplet. However, for
the practical application of these methods in the large-scale simulations of engineering
interest, where there are thousands of droplets, e.g., in atomization processes, it is rarely
affordable to use such fine grids to resolve a single droplet/bubble. Therefore, in this study
we examine these methods in the opposite limit of relatively coarse grid resolution. This
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limit is more informative of the true performance of these methods for practical appli-
cations. All three diffuse-interface capturing methods are implemented in the PadéOps
solver (Adler et al. 2020a) to facilitate fair comparison of the methods with the same
underlying numerical methods, thereby eliminating any solver/implementation-related
bias in the comparison.

The remainder of this brief is outlined as follows. In Section 2, the simulation results
are presented and the performance of the three methods is examined. The concluding
remarks are made in Section 3 along with a summary.

2. Results

The first test case (Section 2.1) is the advection of an air bubble in water. This test
case is chosen to evaluate the ability of the interface-capturing method to maintain the
interface shape for long-time numerical integration and to examine the robustness of the
method for high-density-ratio interfaces. It is known that the error in evaluating the
interface normal accumulates over time and results in artificial alignment of the interface
along the grid (Chiodi & Desjardins 2017; Tiwari et al. 2013). This behavior is examined
for each of the three methods. The second test case (Section 2.2) is the shock interaction
with a helium bubble in air. This test case is chosen to evaluate the ability of the methods
to conserve mass, to maintain constant interface thickness throughout the simulation, and
to examine the behavior of the under-resolved features captured by the methods. The
third test case (Section 2.3) is the shock interaction with an air bubble in water. This
test case is chosen to evaluate the robustness of the method to handle strong-shock/high-
density-ratio interface interactions. The fourth test case (Section 2.4) is the RMI of a
copper–aluminum interface. This test case is chosen to illustrate the applicability of
the methods to simulate interfaces between solid materials with strength, to examine
the conservation properties of the methods in the limit of high interfacial curvature, to
examine the ability of the methods to maintain constant interface thickness, and to assess
the behavior of the under-resolved features captured by the methods.

To evaluate the mass-conservation property of a method, the total mass, mk, of the
phase k is calculated as

mk =

∫

Ω

ρkYkdv, with no sum on repeated k, (2.1)

in which the integral is computed over the computational domain Ω. To evaluate the
ability of a method to maintain constant interface thickness, we define a new parameter—
the interface-thickness indicator (l)—that measures the maximum interface thickness in
the domain as

l = max
φ=0.5

(
1

n̂ · ~∇φ

)
. (2.2)

2.1. Advection of an air bubble in water

This section examines the continuous advection of a circular air bubble in water, with
both phases initialized with a uniform advection velocity. The problem domain spans
(0 ≤ x ≤ 1; 0 ≤ y ≤ 1), with periodic boundary conditions in both dimensions. The do-
main is discretized on a uniform Cartesian grid of size Nx = 100 and Ny = 100. The
bubble has a radius of 25/89 and is initially placed at the center of the domain.

The material properties for the water medium used in this test case are γ1 = 4.4,
ρ1 = 1.0, p∞1 = 6 × 103, µ1 = 0, and σY 1 = 0. The material properties for the air
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(a) (c)(b)

Figure 1. Comparison of the final state of the bubble after five flow-through times using (a)
LAD approach, (b) divergence-form approach, and (c) gradient-form approach. The three solid
black lines denote the isocontours of the volume fraction values of 0.1, 0.5, and 0.9, representing
the interface region.

medium used in this test case are γ2 = 1.4, ρ2 = 1 × 10−3, p∞2 = 0, µ2 = 0, and
σY 2 = 0, where γk, ρk, p∞k, µk, and σY k are the ratio of specific heats, density, stiffening
pressure, shear modulus, and yield stress of phase k, respectively.

The initial conditions for the velocity, pressure, volume fraction, and density are

u = 5, v = 0, p = 1, φ1 = φε1 + (1− 2φε1) fφ, φ2 = 1− φ1, ρ = φ1ρ1 + φ2ρ2,
(2.3)

respectively, in which the volume fraction function, fφ, is given by

fφ =
1

2

{
1− erf

[
625/7921− (x− 1/2)

2 − (y − 1/2)
2

3∆x

]}
. (2.4)

For all the problems, the mass fractions are calculated using the relations Y1 = φ1ρ1/ρ
and Y2 = 1 − Y1. For this problem, the interface regularization length scale and the
out-of-bounds velocity scale are defined by ε = 1.0× 10−2 and Γ∗ = 5.0, respectively.

The simulation is integrated for a total physical time of t = 1 units, and the bubble at
this final time is shown in Figure 1, facilitating comparison among the LAD, divergence-
form, and gradient-form methods. All three methods perform well and are stable for this
high-density-ratio case. The consistent regularization terms included in the momentum
and energy equations are necessary to maintain stability. The divergence-form approach
results in relatively faster shape distortion compared to the LAD and gradient-form ap-
proaches. This shape distortion is due to the accumulation of error resulting from numeri-
cal differentiation of the interface normal vector, which is required in the divergence-form
approach but not the other approaches. A similar behavior of interface distortion was
seen when the velocity was halved and the total time of integration was doubled, thereby
confirming that this behavior is reproducible for a given flow-through time (results not
shown).

For all the problems in this work, a second-order finite-volume scheme is used for
discretization of the interface regularization terms, unless stated otherwise. Two possible
ways to mitigate the interface distortion are by refining the grid or by using a higher-
order scheme for the interface-regularization terms. Because we are interested in the
limit of coarse grid resolution, we study the effect of using an explicit sixth-order finite-
difference scheme to discretize the interface regularization terms. As described in Section
2.8 of the first part of this brief series (Adler et al. 2020b), finite-difference schemes may
be used to discretize the interface regularization terms—without resulting in spurious
behavior—if the nonlinear interface sharpening and the counteracting diffusion terms
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(a) (b)

Figure 2. Comparison of the state of the bubble after five flow-through times using the diver-
gence-form approach with (a) second-order scheme and (b) sixth-order scheme. The three solid
black lines denote the isocontours of the volume fraction values of 0.1, 0.5, and 0.9, representing
the interface region.

are formed at the grid faces (staggered locations), from which the derivatives at the grid
points (nodes) may be calculated. Comparing the second-order and sixth-order schemes
for the interface regularization terms of the divergence-form approach, the final state
of the advecting bubble is shown in Figure 2. The interface distortion is significantly
reduced using the sixth order scheme.

2.2. Shock interaction with a helium bubble in air

This section examines the classic test case of a shock wave traveling through air followed
by an interaction with a stationary helium bubble. To examine the interface regulariza-
tion methods, we model this problem without physical species diffusion; therefore, the
interface regularization methods for immiscible phases are applicable, because no phys-
ical molecular mixing should be exhibited by the underlying numerical model. The use
of immiscible interface-capturing methods to model the interface between the gases in
this problem is also motivated by the experiments of Haas & Sturtevant (1987). In these
experiments, the authors use a thin plastic membrane to prevent molecular mixing of
helium and air.

The problem domain spans (−2 ≤ x ≤ 4; 0 ≤ y ≤ 1), with periodic boundary condi-
tions in the y direction. A symmetry boundary is applied at x = 4, representing a per-
fectly reflecting wall, and a sponge boundary condition is applied over (−2 ≤ x ≤ −1.5),
modeling a non-reflecting free boundary. The problem is discretized on a uniform Carte-
sian grid of size Nx = 600 and Ny = 100. The bubble has a radius of 25/89 and is initially
placed at the location (x = 0, y = 1/2). The material properties for the air medium are
described by γ1 = 1.4, ρ1 = 1.0, p∞1 = 0, µ1 = 0, and σY 1 = 0. The material properties
for the helium medium are described by γ2 = 1.67, ρ2 = 0.138, p∞2 = 0, µ2 = 0, and
σY 2 = 0.

The initial conditions for the velocity, pressure, volume fraction, and density are

u = u(2)fs + u(1) (1− fs) , v = 0, p = p(2)fs + p(1) (1− fs) ,
φ1 = φε1 + (1− 2φε1) fφ, φ2 = 1− φ1, ρ = (φ1ρ1 + φ2ρ2)

[
ρ(2)/ρ(1)fs + (1− fs)

]
,

(2.5)
respectively, in which the volume fraction function, fφ, and the shock function, fs, are
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Figure 3. Comparison of the bubble shapes at different times for the case of the
shock/helium-bubble-in-air interaction using various interface-capturing methods. The three
solid black lines denote the isocontours of the volume fraction values of 0.1, 0.5, and 0.9, repre-
senting the interface region.
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Figure 4. (a) Comparison of the interface-thickness indicator, l, by various methods, where l0
is the maximum interface thickness at time t = 0. (b) Comparison of conservation of total mass,
m, of the helium bubble by various methods, where m0 is the mass at time t = 0.

given by

fφ =
1

2

{
1− erf

[
625/7921− x2 − (y − 1/2)

2

∆x

]}
and fs =

1

2

[
1− erf

(
x+ 1

2∆x

)]
,

(2.6)
respectively, with jump conditions across the shock for velocity

(
u(1) = 0; u(2) = 0.39473

)
,

density
(
ρ(1) = 1, ρ(2) = 1.3764

)
, and pressure

(
p(1) = 1; p(2) = 1.5698

)
. For this prob-

lem, the interface regularization length scale and the out-of-bounds velocity scale are
defined by ε = 2.5× 10−2 and Γ∗ = 2.5, respectively.
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The interaction of the shock with the helium bubble and the eventual breakup of the
bubble are shown in Figure 3, with depictions of the evolution at various times, for the
LAD, divergence-form, and gradient-form approaches. The bubble can be seen to undergo
breakup at an approximate (non-dimensional) time of t = 2.5. After this time, the simu-
lation cannot be considered physical because of the under-resolved processes associated
with the breakup and the lack of explicit subgrid models for these processes; each inter-
face regularization approach treats the under-resolved processes differently. Therefore,
there is no consensus on the final shape of the bubble among the three methods. Yet,
a qualitative comparison between the three methods can still be made using the results
presented in Figure 3.

Using the LAD approach, the interface diffuses excessively in the regions of high shear,
unlike the divergence-form and gradient-form approaches, where the interface thickness
is constant throughout the simulation. However, using the LAD approach, the interface
remains sharp in the regions where there is no shearing. To quantify the amount of
interface diffusion, the interface-thickness indicator [l of Eq. (2.2)] is plotted in Figure
4(a) for the three methods. The thickness indicator (l) increases almost 15 times for the
LAD method, whereas it remains on the order of one for the other two methods. This
demonstrates a deficiency of the LAD approach for problems that involve significant
shearing at an interface that is not subjected to compression.

Furthermore, the behavior of bubble breakup is significantly different among the var-
ious methods. Depending on the application, any one of these methods may or may
not result in an appropriate representation of the under-resolved processes. However, for
the current study that involves modeling interfaces between immiscible fluids, the grid-
induced breakup of the divergence-form approach may be more suitable than the diffusion
of the fine structures in the LAD approach or the premature loss of fine structures and
associated conservation error of the gradient-form approach. For the LAD approach, the
thin film formed at around time t = 2.1 does not break; rather, it evolves into a thin re-
gion of well-mixed fluid. This behavior may be considered unphysical for two immiscible
fluids, for which the physical interface is infinitely sharp in a continuum sense; this be-
havior would be more appropriate for miscible fluids. For the divergence-form approach,
the thin film forms satellite bubbles, which is expected when there is a breakage of a
thin ligament between droplets or bubbles due to surface-tension effects. However, this
breakup may not be considered completely physical without any surface-tension forces,
because the breakup is triggered by the lack of grid support. For the gradient-form ap-
proach, the thin film formed at around time t = 2.1 breaks prematurely and disappears
with no formation of satellite bubbles, and the mass of the film is lost to conservation
error.

In Figure 2 of Shukla et al. (2010), without the use of interface regularization terms,
the interface thickness is seen to increase significantly. Their approach without interface
regularization terms is most similar to our LAD approach, because the LAD approach
does not include any sharpening terms. Therefore, comparing these results suggests that
the thickening of the interface in their case was due to the use of the more dissipative
Riemann-solver/reconstruction scheme. The results from the gradient-form approach also
match well with the results of the similar method shown in Figure 2 of Shukla et al.
(2010), which further verifies our implementation. Finally, there is no consensus on the
final shape of the bubble among the three methods, which is to be expected, because there
are no surface-tension forces and the breakup is triggered by the lack of grid resolution.

To further quantify the amount of mass lost or gained, the total mass of the bubble
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is computed using Eq. (2.1) and is plotted over time in Figure 4(b). Small variations in
the mass of the bubble for the LAD and divergence-form approaches are primarily due
to the discrepancy between the high-order operators used in the computation step and
the low-order integration operators used in the post-processing step, which otherwise
would have constant mass up to machine precision due to the conservative nature of
the methods. For the gradient-form approach, the loss of mass is observed to be largest
when the bubble is about to break. This is because the mass-conservation error in the
gradient-form approach is proportional to the local curvature, as described in Section 2.7
of the first part of this brief series (Adler et al. 2020b). Therefore, at the onset of breakup,
thin film rupture is different from the other two methods, and the satellite bubbles are
absent.

2.3. Shock interaction with an air bubble in water

This section examines a shock wave traveling through water followed by an interaction
with a stationary air bubble. The material properties are the same as those described in
Section 2.1.

The initial conditions for the velocity, pressure, volume fraction, and density are

u = u(2)fs + u(1) (1− fs) , v = 0, p = p(2)fs + p(1) (1− fs) ,
φ1 = φε1 + (1− 2φε1) fφ, φ2 = 1− φ1, ρ = (φ1ρ1 + φ2ρ2)

[
ρ(2)/ρ(1)fs + (1− fs)

]
,

(2.7)
respectively, in which the volume fraction function, fφ, and the shock function, fs, are
given by,

fφ =
1

2

{
1− erf

[
1− (x− 2.375)

2 − (y − 2.5)
2

∆x

]}
and fs =

1

2

[
1− erf

(
x+ 1

10∆x

)]
,

(2.8)
respectively, with jump conditions across the shock for velocity

(
u(1) = 0; u(2) = 68.5176

)
,

density
(
ρ(1) = 1, ρ(2) = 1.32479

)
, and pressure

(
p(1) = 1; p(2) = 19150

)
.

The problem domain spans (−2 ≤ x ≤ 8; 0 ≤ y ≤ 5), with periodic boundary condi-
tions in the y direction. A symmetry boundary is applied at x = 8, representing a per-
fectly reflecting wall, and a sponge boundary condition is applied over (−2 ≤ x ≤ −1.5),
modeling a non-reflecting free boundary. The problem is discretized on a uniform Carte-
sian grid of size Nx = 400 and Ny = 200. A second-order, penta-diagonal, Padé filter
is employed for dealiasing in this problem to improve the stability of the shock/bubble
interaction. For this problem, the artificial bulk viscosity, artificial thermal conductivity,
artificial diffusivity, interface regularization length scale, interface regularization velocity
scale, and out-of-bounds velocity scale are defined by Cβ = 20, Cκ = 0.1, CD = 20,
ε = 2.5× 10−2, Γ = 2.0, and Γ∗ = 0.0, respectively.

Notably, for this problem, the LAD in the mass equations is also necessarily included
in the divergence-form and gradient-form approaches to maintain stability. The latter
approaches become unstable for this problem for large Γ (the velocity scale for interface
regularization). The reason for this is presently unclear, but may result from excessively
fast interface regularization speed relative to sound speed coupled with the pressure-
temperature equilibration process; this is the subject of ongoing investigation. Figure 5
describes the evolution in time of the shock/bubble interaction and the subsequent bubble
collapse. There is no significant difference between the various regularization methods for
this problem. The similarity is due to the short convective timescale of the flow relative to
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Figure 5. Comparison of the bubble shapes at different times for the case of
shock/air-bubble-in-water interaction using various interface-capturing methods. The three solid
black lines denote the isocontours of the volume fraction values of 0.1, 0.5, and 0.9, representing
the interface region.

the maximum stable timescale of the volume fraction regularization methods; effectively,
all methods remain qualitatively similar to the LAD approach.

2.4. Richtmyer–Meshkov instability of a copper–aluminum interface

This section examines a shock wave traveling through copper followed by an interac-
tion with a sinusoidally distorted copper–aluminum material interface, which has been
examined in several previous studies (Lopez Ortega 2013; Subramaniam et al. 2018;
Adler & Lele 2019). The problem domain spans (−2 ≤ x ≤ 4; 0 ≤ y ≤ 1), with periodic
boundary conditions in the y direction. A symmetry boundary is applied at x = 4, rep-
resenting a perfectly reflecting wall, and a sponge boundary condition is applied over
(−2 ≤ x ≤ −1.5), modeling a non-reflecting free boundary. The problem is discretized
on a uniform Cartesian grid of size Nx = 768 and Ny = 128. The material properties for
the copper medium are described by γ1 = 2.0, ρ1 = 1.0, p∞1 = 1.0, µ1 = 0.2886, and
σY 1 = 8.79× 10−4. The material properties for the aluminum medium are described by
γ2 = 2.088, ρ2 = 0.3037, p∞2 = 0.5047, µ2 = 0.1985, and σY 2 = 2.176× 10−3.

The initial conditions for the velocity, pressure, volume fraction, and density are

u = u(2)fs + u(1) (1− fs) , v = 0, p = p(2)fs + p(1) (1− fs) ,
φ1 = φε1 + (1− 2φε1) fφ, φ2 = 1− φ1, ρ = (φ1ρ1 + φ2ρ2)

[
ρ(2)/ρ(1)fs + (1− fs)

]
,

(2.9)
respectively, in which the volume fraction function, fφ, and the shock function, fs, are
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Figure 6. Comparison of the copper–aluminum interface shapes at different times for the Cu-Al
RMI case using various interface-capturing methods. The three solid black lines denote the
isocontours of the volume fraction values of 0.1, 0.5, and 0.9, representing the interface region.
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Figure 7. (a) Comparison of the interface-thickness indicator, l, by various methods, where l0
is the maximum interface thickness at time t = 0. (b) Comparison of conservation of total mass,
m, of aluminum by various methods, where m0 is the mass at time t = 0.

given by

fφ =
1

2

(
1− erf

{
x− [2 + 0.4/ (4πy) sin (4πy)]

3∆x

})
and fs =

1

2

[
1− erf

(
x− 1

2∆x

)]
,

(2.10)
respectively, with jump conditions across the shock for velocity

(
u(1) = 0; u(2) = 0.68068

)
,

density
(
ρ(1) = 1, ρ(2) = 1.4365

)
, and pressure

(
p(1) = 5× 10−2; p(2) = 1.25

)
. The kine-

matic tensors are initialized in a pre-strained state consistent with the material com-
pression associated with shock initialization, assuming no plastic deformation has yet
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occurred, with

gij = geij =

{[
ρ(2)fs + ρ(1) (1− fs)

]
/ρ1, for i = j = 1

δij , else
and gpij = δij . (2.11)

For this problem, the interface regularization length scale and the out-of-bounds velocity
scale are defined by ε = 3.90625× 10−3 and Γ∗ = 1.0, respectively.

The time evolution of the growth of the interface instability is shown in Figure 6. The
simulation is integrated well into the nonlinear regime where the bubble (lighter medium)
and the spike (heavier medium) have interpenetrated, forming mushroom-shaped struc-
tures with fine ligaments. The qualitative comparison between the methods in this test
case is similar to that of the shock-helium-bubble interaction in air. With the LAD ap-
proach, the interface thickness increases with time, especially in the regions of high shear
at the later stages. However, with the divergence-form and gradient-form approaches, the
interface thickness is constant throughout the simulation. This is quantified by plotting
the interface-thickness indicator [l of Eq. (2.2)] for each of the three methods in Figure
7(a). The thickness indicator increases almost 50 times for the LAD method, whereas it
stays on the order of one for the other two methods, illustrating that the LAD incurs
significant artificial diffusion of the interface at later stages in the nonlinear regime.

It is also evident from Figure 6 that the gradient-form approach results in significant
copper mass loss, and the dominant mushroom structure formed in the nonlinear regime
is completely lost. To quantify the amount of mass lost or gained, the total mass of the
aluminum material [Eq. (2.1)] is plotted against time in Figure 7(b). The gradient-form
approach results in significant gain in the mass of the aluminum material, up to 20%,
at the later stages of the simulation. This makes it practically unsuitable for accurate
interface representation in long-time numerical simulations. With the divergence-form
approach, the breakup of the ligaments to form metallic droplets is seen in Figure 6.

3. Concluding remarks

This work examines three diffuse-interface-capturing methods and evaluates their per-
formance for the simulation of immiscible compressible multiphase fluid flows and elastic-
plastic deformation in solids. The first approach is the localized-artificial-diffusivity (LAD)
method of Cook (2007), Subramaniam et al. (2018), and Adler & Lele (2019), in which
artificial diffusion terms are added to the individual phase mass fraction transport equa-
tions and are coupled with the other conservation equations. The second approach is the
gradient-form approach that is based on the quasi-conservative method of Shukla et al.
(2010). In this method, the diffusion and sharpening terms (together called regularization
terms) are added to the individual phase volume fraction transport equations and are
coupled with the other conservation equations (Tiwari et al. 2013). The third approach is
the divergence-form approach that is based on the fully conservative method of Jain et al.
(2020). In this method, the diffusion and sharpening terms are added to the individual
phase volume fraction transport equations and are coupled with the other conservation
equations. In the present study, all of these interface regularization methods are used in
conjunction with a four-equation, multicomponent mixture model, in which pressure and
temperature equilibria are assumed among the various phases. However, the latter two
interface regularization methods are commonly explored in the context of a five-equation
model, in which temperature equilibrium is not assumed. Therefore, prudence should be

366



Diffuse-interface capturing methods

Method Conservation
Sharp

interface
Shape

distortion
Behavior of under-resolved

ligaments and breakup

LAD Yes

No
(interface
diffuses

in the regions
of high shear)

No

Diffusion
(phases artificially diffuse

as fine-scale features
approach unresolved scales)

Divergence
form

Yes Yes

Yes
(interface

aligns with
the grid)

Breakup
(phases artificially break up

as fine-scale features
approach unresolved scales)

Gradient
form

No
(under-resolved

features
will be lost)

Yes No

No conservation
(conservation error is introduced
as interface curvature is poorly
resolved for fine-scale features)

Table 1. Summary of the advantages and disadvantages of the three diffuse-interface capturing
methods considered in this study: LAD method based on Cook (2007), Subramaniam et al.
(2018), and Adler & Lele (2019); divergence-form approach based on Jain et al. (2020); and the
modified gradient-form approach based on Shukla et al. (2010) and Tiwari et al. (2013). The
relative disadvantages of each approach and the different behaviors of under-resolved processes
are underlined.

exercised when making direct comparisons of interface regularization behavior between
four-equation and five-equation models.

The primary objective of this work is to compare these three methods in terms of
their ability to maintain constant interface thickness throughout the simulation; simu-
late high-density-ratio interfaces; conserve mass, momentum, and energy; and maintain
accurate interface shape for long-time integration. Comparison of the different implicit
treatments of subgrid phenomena is also of interest. The LAD method has previously
been used for simulating material interfaces between solids with strength (Subramaniam
et al. 2018; Adler & Lele 2019). Here, we introduce consistent corrections in the kine-
matic equations for the divergence-form and the gradient-form interface regularization
approaches to extend these methods to the simulation of interfaces between solids with
strength.

We employ several test cases to evaluate the performance of the methods, including
(1) advection of an air bubble in water, (2) shock interaction with a helium bubble in
air, (3) shock interaction and the collapse of an air bubble in water, and (4) Richtmyer–
Meshkov instability of a copper–aluminum interface. For the application of these methods
to large-scale simulations of engineering interest, it is rarely practical to use hundreds
of grid points to resolve the diameter of a bubble/drop. Therefore, we choose to study
the limit of relatively coarse grid resolution, which is more representative of the true
performance of these methods.

The performance of the three methods is summarized in Table 1. The LAD and
divergence-form approaches conserve mass, momentum, and energy, whereas the gradient-
form approach does not. The mass-conservation error increases proportionately with the
local interface curvature; therefore, fine interfacial structures will be lost during the simu-
lation. The divergence-form and gradient-form approaches maintain a constant interface
thickness throughout the simulation, whereas the interface thickness of the LAD method
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increases in regions of high shear due to the lack of interface sharpening terms to counter
the artificial diffusion. The LAD and gradient-form approaches maintain the interface
shape for a long time compared to the divergence-form approach; however, the interface
distortion of the divergence-form approach can be mitigated with the use of appropriately
crafted higher-order schemes for the interface regularization terms.

For each method, the behavior of under-resolved ligaments and breakup features is
unique. For the LAD approach, thin ligaments that form at the onset of bubble breakup
(or in late-stage RMI) diffuse instead of rupturing. For the gradient-form approach, the
ligament formation is not captured because of mass-conservation issues, which result
in premature loss of these fine-scale features. For the divergence-form approach, the
ligaments rupture due to the lack of grid support, acting like artificial surface tension
that becomes significant at the grid scale.

For broader applications, the optimal method depends on the objectives of the study.
These applications include (1) well-resolved problems, in which differences in the behavior
of under-resolved features is not of concern, (2) applications involving interfaces between
miscible phases, and (3) applications involving more complex physics, including regimes
in which surface tension or molecular diffusion must be explicitly modeled and problems
in which phase changes occur. We intend this demonstration of the advantages, disad-
vantages, and behavior of under-resolved phenomena exhibited by the various methods
to be helpful in the selection of an interface regularization method. These results also
provide motivation for the development of subgrid models for multiphase flows.
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