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Highlights

• Effect of density ratio on the mechanisms of secondary breakup has been studied. A density
ratio-Weber number phase plot is presented to depict different breakup mechanisms.

• Reynolds number and viscosity ratio shift the breakup transitionWeber number values.

• Instantaneous Weber number is defined to explain the non-breakup of deforming droplets at
low density ratios.
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Abstract

Breakup of liquid drops occurs in several natural and industrial settings. Fully resolved
volume of fluid based simulations presented in this study reveal the complete flow physics and
droplet dynamics that lead to the breakup of a drop in the moderate Weber number regime.
We have investigated the effects of density ratio and Reynolds number on the initial dynamics
of drop deformation. A density ratio-Weber number phase plot is presented that indicates the
variation in the deformation of the drop at various density ratios and Weber numbers. We show
that the initial deformation and dynamics of the droplets at low density ratios is significantly
different from that observed at high density ratios. We also study the temporal characteristics
of the initial droplet deformation and motion.

1 Introduction

When a drop is accelerated in a high speed gas flow, it deforms due to the aerodynamic forces and
eventually fragments into tiny droplets; this is termed as secondary breakup. This phenomenon has
been studied over many decades in the interest of its numerous applications, for example, in rainfall,
sprays, combustion and chemical industries. Complete understanding of the breakup phenomenon
is essential for an accurate determination of the drop size distribution which dictates the surface to
volume ratio and hence the efficiency of drying, chemical reaction and combustion. Further, a better
understanding of the breakup also helps in developing accurate closure relations for Lagrangian and
Eulerian multi-fluid modeling approaches.

Over the years, numerous experimental and numerical studies have been performed to study
the secondary breakup of drops. Several articles (Pilch and Erdman (1987); Faeth et al. (1995);
Guildenbecher (2009)) have periodically reviewed the advances in this field. The secondary breakup
of a drop can be broadly categorized into four modes of deformation and breakup, primarily based on
the aerodynamic Weber number and liquid Ohnesorge number: (a) Vibrational mode, where a drop
oscillates at its natural frequency and it may (or may not) undergo breakup (Hsiang and Faeth, 1992)
and when it breaks it produces fewer daughter drops of the size comparable to that of the parent
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drop (Pilch and Erdman, 1987), (b) Bag mode, where a drop deforms into a flat disc and then is
blown into a thin bag, attached to a toroidal ring, that expands and eventually ruptures, followed by
the breakup of the toroidal ring (Chou and Faeth, 1998; Jain et al., 2015). Bag fragments into a large
number of smaller sized drops and the ring breaks up into a smaller number of larger sized drops.
With an increasing Weber number, some interesting features appear such as bag with a stamen (Pilch
and Erdman, 1987) and bag with multiple lobes (Cao et al., 2007). This phenomenon is thought to
be due to Rayleigh-Taylor (RT) instability (Theofanous et al., 2004; Zhao et al., 2010; Jain et al.,
2015) or a combined RT/aerodynamic drag mechanism (Guildenbecher, 2009). (c) Sheet thinning
mode for higher Weber number, where the ligaments and small daughter drops break off from the
thinning rim of the parent drop until the core of the parent drop reaches a stable state. Earlier,
shear stripping (a viscous phenomenon) was assumed to be the mechanism (A. A. Ranger, 1969),
but later Liu and Reitz (1997) proposed the sheet thinning mechanism, pointing out that it is an
inviscid phenomenon. (d) Catastrophic mode, where a drop breaks up into multiple fragments due to
unstable surface waves at high speeds (Liu and Reitz, 1993). The transition from one breakup mode
to the other occurs very gradually as a function of Weber number (We) (as shown later in Figure 9).
Different studies have proposed different transitional values of We (subject to the inaccuracies in
the exact calculation of We and also the presence of impurities that alter the properties of the fluid
used in the experiments; see Table 1) and hence the reliability of the transitional values of We has
remained a moot point. Other parameters that influence the breakup mechanism are the density
ratio and the gas Reynolds number (and the liquid Ohnesorge number).

Several experimental studies have been performed in the last decades to unravel the physics of
secondary breakup of droplets (see Guildenbecher (2009) for an elaborate review). Some of the
studies have been performed at low density ratios (in the range 1 − 10) while most of the studies
have been performed for water-air systems. Simpkins and Bales (1972) and Harper et al. (1972)
presented experimental and theoretical studies, respectively, of secondary breakup of droplets at
high Bond numbers. Harper et al. (1972) showed that Rayleigh-Taylor instability is dominant at
higher Bond numbers after a short time algebraic deformation in time. Experiments of Simpkins
and Bales (1972) corroborated the theoretical findings. Patel and Theofanous (1981) studied the
fragmentation of drops moving at high speed for mercury/water system (density ratio ∼ 10). They
showed that the breakup time even at low density ratios correlates well with the time constant
for the growth of unstable Taylor waves in the entire range of Bond numbers. Later, Theofanous
et al. (2004) studied droplet breakup at different static pressures over a wide range of gas densities,
all in the rarefied range. In this study, they noted that the upstream face of the droplet, upon
droplet flattening, becomes immediately susceptible to Rayleigh-Taylor instability. Further, they
showed that for low Weber numbers, Bag formation corresponds to one Rayleigh-Taylor wave on
the ‘disc-shaped’ droplet. Lee and Reitz (2000) performed experiments for a range of gas densities
(corresponding to density ratios 100− 1000). Using a pressurized chamber the ambient air pressure
was controlled to vary the density ratio from 100 to 1000. They concluded that the Rayleigh number
and also the density ratio have little effect on the drop breakup mechanisms, although the transition
Weber numbers vary a bit. Gelfand (1996) studied liquid(drop)-gas and dense liquid(drop)-light
liquid systems and discussed the similarities between the features observed in the two systems. He
noted that the value of the first critical Weber number in liquid-liquid systems is higher than the
gas-liquid systems. He also noted that the breakup features such as bag and bag-stamen that are
observed at low We (around 15 to 40) for gas-liquid systems, do not appear clearly in the liquid-liquid
systems.

Most of the numerical studies have been performed with low density ratios and only a few with
high density ratio. Efforts in numerical studies have only started to pay off recently and most
numerical simulations attempt to study the breakup at low density ratios (ρ∗ < 100), essentially
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Breakup regime 1 2 3 4 5 6 7

Vibrational We < 12 We < 10 We < 11 We < 13 We < 12
Bag 12 < We < 50 10 < We < 18 11 < We < 35 13 < We < 35 13 < We < 18 12 < We < 24

Bag-stamen 50 < We < 100 18 < We < 30
35 < We < 80
(multimode)

35 < We < 80
(multimode)

24 < We < 45
Bag-plume 18 < We < 40 45 < We < 65
Multibag 28 < We < 41 65 < We < 85

Plume-shear 40 < We < 80
Sheet (Shear)

thinning
100 < We < 350 We > 63 80 < We < 800 85 < We < 120

Catastrophic We > 350 We > 800

1. Pilch and Erdman (1987), 2. Krzeczkowski (1980), 3. Hsiang and Faeth (1995), 4. Chou et al. (1997), 5. Dai and Faeth (2001),
6. Cao et al. (2007), 7. Jain et al. (2015)

Table 1: Transition Weber number (We) for different breakup regimes.

due to numerical convergence issues at high density ratios. Nevertheless, these studies find direct
applications in high-pressure environment applications as well as in manufacturing of metal pellets by
quenching liquid metal droplets. Zaleski et al. (1995) performed one of the earliest numerical studies
of the secondary breakup of drops in 2D. They observed a backward-bag at low Weber number (We)
for ρ∗ = 10 and reported that their results contradict the general experimental observations (which
were mostly done for higher ρ∗ values), where a forward-bag is seen at this We. They suggested
that this mismatch is a result of the discrepancy in their initial conditions. Han and Tryggvason
(2001) extensively studied the breakup of drops for two ρ∗ values, 1.15 and 10. For ρ∗ = 10, they
observed a forward-bag at low We and backward-bag at higher We, and for ρ∗ = 1.15 they observed
backward-bag for all moderate We. They concluded that the formation of forward-bag is due to
the detachment of the wake downstream of the drop and the formation of backward-bag is due
to the entrapment of the drop in the vortex ring. On decreasing Re, they also observed that a
higher We is required to obtain the same mode of breakup. Aalburg et al. (2003) reported that the
secondary atomization is essentially independent for ρ∗ > 32 and that there is no effect of Re on
Wecrit beyond Re > 100. Kékesi et al. (2014) studied the breakup of drops for ρ∗ =20, 40 and 80
and reported to have observed new breakup modes such as Bag, Shear, Jellyfish shear, thick rim
shear, thick rim bag, rim shear and mixed. The new breakup modes were due to the influence of
the viscous effects in their simulations (some of these cases are at Oh� 0.1 and Reg < 100). Yang
et al. (2016) also studied the effect of ρ∗ on the breakup but at a very high We = 225 value in
the regime of catastrophic breakup for ρ∗=10, 25, 32, 60. On decreasing ρ∗, they observed a lower
deformation rate but the range of ρ∗ values chosen was probably too low at such high We to see any
discernible effect of changing ρ∗ on the breakup. Formation of spherical cap and ligaments and the
fragmentation of ligaments further into multiple drops were the common features they observed in
their study. Recently, 3D simulations were performed for water and air at atmospheric conditions
(ρ∗ ∼1000) by Xiao et al. (2014) where they validated their LES code. In more recent studies, Xiao
et al. (2016) and Xiao et al. (2017) have studied the effect of Oh and Mach number on the breakup
of a drop, respectively. We, in our previous work (Jain et al., 2015), have extensively studied the
breakup and its characteristics for ρ∗ = 1000 using fully resolved 3D simulations.

For the systems with low density ratios (< 100) and at moderate Weber numbers (20-80),
backward-bag (opening of the bag facing the downstream direction followed by sheet thinning)
has been seen as the predominant breakup mode in the numerical simulations (see Kékesi et al.
(2014); Khosla et al. (2006)). In the present work, we numerically study the effect of a wide range of
density ratios on the drop breakup mechanisms at different aerodynamic Weber numbers. We focus
on the effect of flow features in the surrounding medium on the drop deformation. We note that the
initial deformation into a bag or bag-stamen essentially drives the subsequent fragmentation.

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Symmetry axis

Figure 1: Schematic of the simulation setup (not drawn to scale). Flow direction represents the
direction of the gas flow. Drop is shown at the initial time (t = 0).

The paper is organized as follows: Section 2 describes the equations solved, the computational
domain and the grid independence study. Results and discussion are presented in Section 3. The
summary of the study and important conclusions are discussed in Section 4.

2 Problem description and Formulation

Figure 1 shows the schematic of the computational domain for the axisymmetric simulations per-
formed in this study with the dashed line marking the axis of symmetry. The domain is 10d0 along
the radial direction and 20d0 along the axial direction, where d0 is the diameter of the drop. Liquid
and gas densities are ρl and ρg, respectively, and the ratio ρ∗ = ρl/ρg is varied from 10 to 1000 by
keeping the gas density as unity and varying the liquid density. Viscosity of the liquid and the gas
are given by µl and µg, respectively. Surface tension coefficient at the liquid-gas interface is given
by σ.

Boundary condition on the left end of the computational domain is that of gas inlet and a uniform
velocity of Ug is prescribed. Outlet flow boundary conditions are imposed at the right end of the
computational domain. Slip boundary conditions are applied at the other (side) walls of the domain
to minimize the confinement effects and axisymmetric boundary conditions are imposed at the axis
of symmetry marked by the dashed line in Figure 1. The drop is accelerated by the high-speed
gas flow and its breakup is governed by the following five non-dimensional numbers: aerodynamic
Weber number We = ρgU

2
g d0/σ (ratio of the gas inertial forces to the surface tension forces), liquid

Ohnesorge number Oh = µl/
√
ρld0σ (ratio of the viscous capillary time scale, µld0/σ, to the inertial

capillary time scale
√
ρld30/σ), gas Reynolds number Re = ρgUgd0/µg (ratio of gas inertial forces

to the gas viscous forces), viscosity ratio M = µl/µg (ratio of drop viscosity to the gas viscosity)
and the density ratio ρ∗ = ρl/ρg (ratio of drop density to the gas density). For the 3D simulations
presented in the later part of the paper, we have used the computational setup similar to the one
discussed in Jain et al. (2015).

A one-fluid formulation is used for the numerical simulations (Mirjalili et al., 2017). The gov-
erning equations for the coupled liquid and gas flow simulated in this study are described in the
following. Considering both the drop fluid and the surrounding gas to be incompressible, the corre-
sponding continuity equation is given by,

∇ · u = 0, (1)
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where u is the divergence free velocity field. The governing equations for the momentum conser-
vation are given by the Navier−Stokes equations (Eqn. 2) modified to implicitly account for the
surface tension forces and the interfacial boundary conditions of continuity of velocity, and normal
and tangential stress balance:

ρ(C)(
∂u

∂t
+∇ · uu) = −∇p+∇ · (2µ(C)D) + σκnδs. (2)

Here, C is the volume fraction of liquid that takes a value of zero in the gas phase and one in the liquid
phase. The density and viscosity for the one-fluid formulation are expressed as, ρ = ρlC+ρg(1−C)
and µ = µlC+µg(1−C), respectively. The deformation rate tensor is given by D = (∇u+(∇u)T )/2.
The last term in the equation (σκnδs) accounts for the surface tension force (σκ, where κ is the local
interface curvature) acting on the interface, expressed as a volumetric force using the surface Dirac
delta function (δs) and modeled using the continuum surface force approach (Brackbill et al., 1992).
The direction of this force is along the local normal (n) at the interface. The evolution equation
for the interface is given as an advection equation in terms of the volume fraction, C, obtained by
applying kinematic boundary condition at the interface:

∂C

∂t
+ u.∇C = 0. (3)

We use a cell-based Octree grid adaptive mesh refinement (AMR) geometric volume of fluid
(VOF) algorithm in Gerris (see Popinet, 2003, 2009; Tomar et al., 2010) to solve the above set of
equations. Gerris uses a second-order accurate staggered time discretization for velocity, volume-
fraction and pressure fields. Balanced-force algorithm by Francois et al. (2006) is used to accurately
calculate the surface tension forces and minimize spurious currents. The discretization of the equa-
tions (Eqn. 1-4) are described in detail in Popinet (2003) and will be discussed here only briefly.

Discretized Navier−Stokes equations are solved using a projection method. First, an auxiliary
velocity field is obtained using the following discretization (Popinet (2003)):

ρn+ 1
2

(u∗ − un
∇t + un+ 1

2
.∇un+ 1

2

)
= ∇ · (µn+ 1

2
(Dn + D∗)) + (σκδsn)n+ 1

2
. (4)

Void fraction is updated using the following equation with the fluxes computed geometrically
(Popinet (2009)):

Cn+ 1
2
− Cn− 1

2

∆t
+∇.(Cnun) = 0. (5)

The pressure Poisson equation:

∇ ·
( ∇p
ρ(C)

)
=
∇ · u∗

∆t
, (6)

is solved using a geometric multigrid method and the auxiliary velocity field is updated as following,

un+1 = u∗ −
∆t

ρn+ 1
2

∇pn+ 1
2
, (7)

to obtain a divergence free velocity field ( ∇ · un+1 = 0). Adaptive mesh refinement (AMR) is
performed using a cost function based on the local vorticity in the field and the gradient of the
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820

410

204

102

(a) ρ∗=50 (b) ρ∗=250

Figure 2: Comparison of the drop shapes for ρ∗ = 50 and 250 at t∗ = 1.98 and t∗ = 1.897 respectively,
from the simulations using the grid resolutions of d0/∆xmin = 102, 204, 410 and 820 .

void-fraction field, thus using a very fine refinement in the regions of high velocity gradient and
at the interface. We use four different grid resolutions for the refinement of the surrounding gas
flow (refined based on the local vorticity values in the flow) and the interface region - d0/∆xmin =
102, 204, 410 and 820 for our 2D axisymmetric simulations. These resolutions are more than that
employed in any of the previous studies in the literature. For example, Han and Tryggvason (2001)
used around 100 and (Kékesi et al., 2014) used 32 number of grid points per droplet diameter. Figure
2 shows the drop shapes at different grid refinements and density ratios.

Drop shapes for grid resolutions d0/∆xmin = 410 and 820 are very close (in a physically mean-
ingful way) and show clear convergence. Hence, we use the mesh refinement of d0/∆xmin = 410
for all the axisymmetric simulations presented in this study. We also perform a few 3D simulations
using a mesh refinement of d0/∆xmin = 412 in the interface region and d0/∆xmin = 102 in the
surrounding flow region (grid refinement in the surrounding gas flow region has a negligible effect
on the drop shape as long as the Rel is not too high) to show the validity of our axisymmetric
assumption. We found that the grid refinement depends on the liquid Reynolds number of the flow
Rel = ρlUgd0/µl and for Rel values of about 10000 and above, a grid refinement of at least d0/∆xmin
∼410 is required to avoid any unphysical surface fragmentation and corrugations at the interface.
Thus, in order to maintain high-fidelity of the simulations (and consistency between axisymmetric
and 3D simulations), we performed all the simulations with an Rel that is sufficiently smaller than
10, 000.

In order to perform high density ratio simulations, as discussed in (Jain et al., 2015), since a
sharp interface (single grid transtion region) results in an inexplicable spike in the kinetic energy,
we use a thin transition region for better convergence. We use a transition region of two cells for
ρ∗ ≥ 500 and one cell for 500 > ρ∗ ≥ 100 on either sides of the interface for smoothing the jump
in the physical properties. To test the efficacy of the numerical algorithm in capturing high density
ratios, mainly the use of a thin smoothing width at the interface, we had presented validation test
cases in (Jain et al., 2015) which show good agreement with the corresponding analytical results for
a density ratio of 1000. In the following section, we discuss the simulations for a wide range of liquid
to gas density ratio to study its effects on the dynamics of drop deformation.
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ρ∗ We Re M

10, 50, 100, 150,
200, 250, 500, 1000

20, 40, 60,
80, 100, 120

4000 100

1000 20 141, 500, 1414 100
1000 20 1414, 4000, 6000 1000

10
20, 40, 60,

80, 100, 120
20000 100

Table 2: Parameters for the different simulations presented in this study.

3 Results and discussion

In order to investigate the effects of density ratio, ρ∗, on the secondary breakup of a drop, we
perform a large set of well resolved simulations with different values of ρ∗, Reynolds number Re and
aerodynamic Weber number, We. Table 2 lists the parameter range covered in this study. For each
value of ρ∗ listed in the table, we vary the Weber number to study the effects of density ratio on the
drop breakup regimes namely, bag breakup, bag with stamen, multi-bag breakup and sheet-thinning
breakup which are observed experimentally (Guildenbecher, 2009) for the range of We chosen here
for the simulations. The liquid Ohnesorge number for all the simulations is ≤ 0.1 and therefore, the
critical Weber number based on the previous studies (Hsiang and Faeth, 1992; Krzeczkowski, 1980)
is not expected to vary significantly.

3.1 Validity of axisymmetric assumption

In this section, we show comparisons of 2D axisymmetric and 3D simulations, to validate the 2D
axisymmetric assumption that we make in the analysis throughout the article. Since 3D simulations
are more expensive, we use a mesh resolution of d0/∆xmin = 102 for the simulations presented
only in this section for both 2D axisymmetric and 3D simulations (only to show the validity of
axisymmetry assumption by making a one-to-one comparison). For more refined and grid converged
axisymmetric simulations of the same, refer to Figure 10. First, we present the case with density
ratio of ρ∗ = 10 and Weber number We = 60. The drop shapes in Figure 3a and 3b match very
well to first order for all times.

The comparison between 2D and 3D calculations for the density ratio of ρ∗ = 50 and Weber
number We = 60 are presented next. Here again, the drop shapes in Figures 4a and 4b agree very
well for all times. Hence, the validity of the axisymmetric assumption is well justified, atleast up to
the onset of breakup. After the onset of breakup, a daughter drop that breaks from the rim of the
parent drop in the 2D axisymmetric simulation representing a toroidal ligament (a ring) in 3D, and
the ring further undergoes breakup into multiple smaller droplets due to capillary instability. Thus,
the axisymmetric assumption is not valid after the onset of breakup.

We note here that although the axisymmetric simulations cannot be employed to study the
complete fragmentation of the drop, the axisymmetric assumption is valid for initial drop deformation
which essentially determines the final breakup mode. For example, for a drop breaking up via
the bag-stamen mode, the initial deformation, formation of the bag and the stamen are nearly
axisymmetric deformations, however, the rupture of the bag and subsequent breakup of the rim and
the stamen are clearly three dimensional features. In the present study, in order to perform a large
set of simulations, we have restricted ourselves to axisymmetric simulations.
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1.518 1.644 1.771 1.897 2.024 2.15 2.277 2.403 2.53

0 0.126 0.253 0.379 0.506 0.632 0.759 0.885 1.012 1.138 1.265 1.391

(a) 2D axisymmetric simulation.

(b) 3D simulation.

Figure 3: 2D axisymmetric and 3D simulations showing the evolution of the drop shape in time for
ρ∗ = 10 at We = 60. Time t∗ values are noted on top for each drop.
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0 0.057 0.113 0.17 0.226 0.283 0.396 0.566 0.622 0.679 0.735 0.7920.339 0.5090.453

0.849 0.905 0.962 1.018 1.075 1.131 1.3011.188 1.245

(a) 2D axisymmetric simulation.

(b) 3D simulation.

Figure 4: 2D axisymmetric and 3D simulations showing the evolution of the drop shape in time for
ρ∗ = 50 at We = 60. Time t∗ values are noted on top for each drop.
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3.2 Effect of density ratio

As discussed earlier in Sec.1, there are conflicting views on the effect of density ratio on the breakup
mechanism for a given We. Where Aalburg et al. (2003) reported that there is little effect of density
ratio (for ρ∗ > 32) on the breakup mechanism, Jing and Xu (2010) presented simulations for density
ratios 10, 100 and 1000 and showed that a change in the density ratio alters the critical Weber
numbers for the different breakup regimes. Several simulations have been reported for low density
ratios where for even a reasonably lower We, backward bag was observed (see, for example, Han and
Tryggvason (2001),Khosla et al. (2006)). In this section, we present simulations for a wide range of
density ratios and discuss the physical mechanisms that alter the breakup modes.

In what follows, we discuss the effect of density ratio on the deformation and motion of the
droplet. The time is non-dimensionalized with the characteristic time scale, t∗ = t/tc, where,

tc =
d0
√
ρl/ρg
Ug

. (8)

The characteristic time scale is defined by using the diameter of the drop as the characteristic length
scale and the velocity scale in the drop obtained by comparing the dynamic pressures in the gas and
the drop. Figure 5 shows the time evolution of the drop shape and the displacement for ρ∗ = 10 and
ρ∗ = 1000 at We = 20. The flow of the gas is from left to right. Centroid of the drop of ρ∗ = 10
moves a distance of 0.79d0, for the drop of ρ∗ = 200 it moves a distance of 0.48d0 (not shown in
the figure) and for the drop of ρ∗ = 1000 it moves a distance of 0.34d0 in t∗ = 1. The leeward side
of the drop for ρ∗ = 10 also moves downstream with time, whereas the leeward side of the drop for
ρ∗ = 1000 remains virtually stationary until t∗ ∼ 1, though the centroid is moving in the streamwise
direction in both the cases. The significant difference in the motion of the centroid is primarily due
to the differences in the velocity of the drop and the rate of momentum transmitted to the leeward
side of the drop, which depends on the kinematic viscosity, ν. The value of ν for ρ∗ = 10 is 100
times the ν for ρ∗ = 1000. We can also observe the formation and motion of the capillary waves
emanating from the rim of the drops in both the cases (more evidently for the drop with ρ∗=1000).
Capillary time-scale based on inertia, also called as the Rayleigh time-scale (Rayleigh, 1879), is given
by tR ∼

√
ρld3/σ. This is around 3 times the characteristic time scale tc of the drop in both the

cases, since both tc and tR are proportional to
√
ρl. Capillary time-scale based on viscous forces

is given by tM ∼ µd/σ. This is around 0.16 times tc for the drop with ρ∗ = 10 and around 0.016
times tc for the drop with ρ∗ = 1000, thus suggesting a lower resistance to the waves by the viscous
forces in the case of high density ratio relative to the low density ratio case, since the ν is smaller for
high density ratios. The stretching time-scale (for the rim) is obtained by the scaling ts ∼ d/urim.
This is around 0.76 times the tc for the drop with ρ∗ = 10 and 1.12 times the tc for the drop with
ρ∗ = 1000. Comparing these time scales, we expect the capillary reorganization to occur at a rapid
rate in the high-density ratio case in comparison with the low density ratio cases. However, when we
performed another simulation with a higher viscosity for ρ∗ = 1000 case (not shown here; this case
is similar to the one in Figure 5b but with µl increased by 10 times so that it would have the same
capillary time-scale based on viscous forces as the drop in Figure 5a when non-dimensionalized by
tc; this case would also have the same Ohnesorge number as the one in Figure 5a), we still observe
formation of a forward bag. Therefore, we note that capillary rearrangment timescales alone do not
result in the formation of bakcward or forward bag formation and resolution of this aspect of drop
deformation required further attention. Note that our definition of backward bag is the one where
the rim of the bag is stretched in the direction of the flow relative to the bag. This is different from
the one proposed by Han and Tryggvason (1999) but is consistent with the one used in Jain et al.
(2015).
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t*=0
t*=0.379

t*=0.506 t*=0.759
t*=1.138

(a) ρ∗ = 10

t*=0
t*=0.329

t*=0.531
t*=0.632

t*=0.734
t*=0.936

(b) ρ∗ = 1000

Figure 5: Time evolution of the drop movement for ρ∗ = 10 and ρ∗ = 1000 at We = 20.

=150 =1000=10 =50 =100 =200 =250 =500

Figure 6: Drop shapes at t∗ = 1 for ρ∗ =10, 50, 100, 150, 200, 250, 500 and 1000 (left to right) and
We = 20. Arrow denotes the direction of gas flow.
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Figure 7: Velocity components, non-dimensionalized using Ug, at certain points in and around the
drop. Red line represents the drop profile and the blue line represents the vortex behind the droplet.
Arrows represent the velocities and are drawn according to the direction but not to scale. Magnitude
of the velocity components is mentioned next to the arrows.

Figure 6 shows the drop shapes at t∗ = 1 for We = 20 and for different values of ρ∗. The flow
of the gas is from left to right. We note that the drops at high density ratios deform into a flat
disc at around t∗ = 1 from an initially spherical shape, whereas at low density ratios (ρ∗ = 10),
drop progressively deforms into a backward bag without achieving a proper flat disc shape (see
Fig.5a). Note that our definition of backward bag is the one where the rim of the bag is stretched
in the direction of the flow relative to the bag. This is different from the one proposed by Han and
Tryggvason (1999) but is consistent with the one used in Jain et al. (2015). For intermediate density
ratios, the extent of bending of the disc progressively decreases with increase in ρ∗ and a near flat
disc is obtained for ρ∗ = 1000. We would like to note here that although t∗ = 1 is same for all the
profiles shown in Fig.6, the dimensional time varies as

√
ρ∗. Hence the physical time corresponding

to t∗ = 1 is smaller for low density ratios when compared to higher density ratios. Drop shape for
ρ∗ = 10 is of nearly uniform thickness whereas for intermediate density ratios (50 < ρ∗ < 150),
the drops become thinner near the rim. The thickness at the center of the drop initially decreases
and beyond ρ∗ = 150 it increases slightly and saturates, whereas the diameter of the disc initially
increases and beyond ρ∗ = 150 it undergoes a sudden decrease and saturates (see Fig.6). The
variation in the curvature of the drop with increasing ρ∗ suggests a decreasing tendency of forming
a backward bag.

Figure 7 shows the non-dimensional (with respect to Ug) velocities of the drop and the surround-
ing gas at various locations for the drops with ρ∗ =10, 150 and 1000 at t∗ = 1. As expected (based

on the scaling relation Ul ∼
√

1
ρ∗Ug), the axial and radial components of the velocity at the center

(ucenter) and at the rim (urim) of the drop decrease with an increase in ρ∗. A vortex is formed
behind the drop due to the flow separation as shown in the Figure 7. We can see that the velocities
of the vortex (strength of the vortex) in the gas flow is increasing with an increase in ρ∗ due to the
higher relative velocity of the drop (ul−Ug) for higher ρ∗ values. Interestingly, the axial component
of the velocity at the rim of the drop is significantly higher than that at the center of the drop at
lower ρ∗. But this difference in velocity at the center and rim ucenter − urim is decreasing with
increase in ρ∗, and for ρ∗ = 1000, we can see that the velocities are almost the same at the rim and
that at the center. Percentage of the difference in the velocity at the rim and that at the center
(relative to the velocity at the center of the drop), (urim − ucenter)/ucenter, is 13.3% for ρ∗ = 10,
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(a) ρ∗ = 10,We = 20
0 0.379 0.632 0.885 1.265 1.518 1.897 2.15 2.403 2.656 2.783 3.036 3.2893.162 3.542

(b) ρ∗ = 10,We = 40
0 0.339 0.453 0.566 0.735 0.849 1.018 1.245 1.414 1.641 1.754 1.923 2.2062.093 2.263 2.319 2.376 2.489

(c) ρ∗ = 50,We = 20

Figure 8: Evolution of the drop shape in time for ρ∗ = 10 at We=20, 40 and ρ∗ = 50 at We = 20.
Non-dimensionalized time, t∗, values are mentioned on top for each drop shape. Arrows show the
direction of the gas flow and the dotted lines mark the axis of symmetry. Note that the distance
between consecutive droplet profiles plotted here does not represent the actual displacement of the
drop.

6.5% for ρ∗ = 150 and ∼ 1.2% for ρ∗ = 1000. Hence, there is more stretching of the rim in the
direction of the flow for lower ρ∗ values. This explains the bending of the drop for lower ρ∗ values
and the formation of flat disc for higher ρ∗ values.

Figure 8 shows the time evolution of the drop shapes for the cases where drops do not breakup.
Drop with ρ∗ = 10 at We = 20 deforms into a concave-disc facing downstream and then bends
in the opposite direction and finally collapses without breakup, encapsulating a bubble within it.
For We = 40 and ρ∗ = 10, it deforms into a backward-bag and again collapses onto itself before it
could break. For ρ∗ = 50 at We = 20, the drop deforms into a concave-disc facing downstream and
then into the shape of a canopy-top. Subsequently, with further deformation of the drop, the rim
tends to pinch-off from the core drop, but before it could pinch-off, the drop relaxes back collapsing
onto itself without breakup. This also shows the highly complicated unsteady behavior of evolution
of the drop shapes. To understand this behaviour of no-breakup, we calculate the instantaneous
Weber number (based on the velocity of the gas relative to the drop velocity) at the onset of breakup
using Weinst = ρg(Ug − udrop)2d0/σ. Estimating the centroid velocity of the drop udrop from the
simulations at We = 20, we find that the Weinst = 3.69 for ρ∗=10, Weinst = 8.91 for ρ∗=50 and
Weinst = 11.1 for ρ∗=100, and Weinst increases further with increase in ρ∗ value. Clearly for ρ∗ = 10
and ρ∗ = 50, Weinst is below the Wecrit ∼ 10 − 12, implying that the drop would not breakup.
Similarly, at We = 40, Weinst = 8.92 for ρ∗=10 and Weinst = 18.31 for ρ∗=50. Here again for
ρ∗=10, Weinst is below the Wecrit whereas, for ρ∗=50, Weinst > Wecrit for an initial aerodynamic
Weber number We = 40, and thus we observe breakup of the drop. These predictions based on the
criterion Weinst > Wecrit for the breakup of drop are in good agreement with our numerical results
(as also shown in Figure 8). Thus, we can conclude that the breakup of a drop not only depends
on the initial We value but also on the instantaneous dynamics of the drop. More importantly, for
low density ratio, for the same momentum transfer the relative velocity decreases much faster in
comparison to the rates of deformation of the drop, thus, the instantaneous We decreases sharply
and vibrational modes, without breakup, are observed.

In order to study the morphology of the drops during the breakup, typical shapes of the drops
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Table 3: Typical shapes of the drop at the onset of breakup for ρ∗ = 10− 1000 at We = 20− 120,
Reg = 4000, M = 100 and Oh = 0.003− 0.9. The time t∗b where the profiles are taken is plotted in
the Figure 11a.
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at the onset of the breakup have been tabulated in Table 3 for all the conditions listed in Table
2. Again, for the cases presented in Figure 8, no breakup is observed. Comparing the drop shapes
for different ρ∗ values (for the same We) in Table 3 reveals that at We = 20, a forward-bag (bag
opening facing the gas flow) is seen for ρ∗ = 10, transient drop shapes (canopy-top which can also
be seen as a shape in between forward-bag and backward-bag) for ρ∗ = 50 and 100, and a forward-
bag (bag facing the flow) with stamen for ρ∗ ≥ 150. For ρ∗ =50 and 100, the drop shapes are
similar, but for ρ∗ =50 the rim does not pinch-off from the core drop whereas, for ρ∗ =100, the rim
eventually pinches-off from the drop breaking into a toroidal ring and a smaller drop. There seems
to be a progressive change with increase in ρ∗, from canopy shaped drop for ρ∗ = 50 to a drop with
a bag and not-so-clear stamen for ρ∗ = 100 and very prominent stamen with a bag for ρ∗ > 150.
Interestingly, the stamen is very long for ρ∗ = 150 and it decreases in size with increase in ρ∗. This
can be understood by studying the velocities at the tip of the stamen. The non-dimensional velocity
at the tip of the stamen (with respect to the centroid velocity of the drop), ustamen/udrop = 0.74 for
ρ∗ = 150, ustamen/udrop = 0.85 for ρ∗ = 250 and ustamen/udrop = 0.9047 for ρ∗ = 1000. This clearly
implies that there is a higher relative velocity between the stamen and the drop for lower ρ∗ which
results in more stretching of the stamen for lower ρ∗ values and hence results in the formation of
a longer stamen. This forward-bag with stamen mode of breakup at We = 20 was observed before
in Jain et al. (2015) at We = 40. This difference in We may be due to the significantly different
values of Oh in Jain et al. (2015) and in the present simulations, though in both cases Oh < 0.1
was maintained. For example, the Oh used in Jain et al. (2015) was 0.1 for ρ∗ = 1000 in all the
simulations, whereas here we use Oh = 0.0035 for a similar case of ρ∗ = 1000 at We = 20. Gas
Reynolds number used for ρ∗ = 1000 discussed above is 4000, whereas Jain et al. (2015) performed
the simulations at Reg = 1414. This effect of Oh on the drop deformation and breakup will be
discussed in detail later.

At We = 40 and higher, a backward-bag is seen for ρ∗ = 10 (as also observed by Han and
Tryggvason (2001) for ρ∗ = 10 at Re = 242 and We ≥ 37.4), for ρ∗ = 50 a transient form of sheet-
thinning, where the thin rim oscillates like a whiplash (ensuing the motion from the vortex shedding
in the surrounding gas flow) and for ρ∗ = 100 and higher, drop deforms into a concave-disc (facing
downstream) and eventually breaks up due to sheet-thinning. For ρ∗ = 200− 1000 at We = 40 and
for ρ∗ = 200 − 250 at We = 60, we see an interesting “cowboy-hat” shape of the drop. A similar
drop shape was observed by Khosla et al. (2006). For ρ∗ = 10, the length of the rim increases with
an increase in We value, whereas for higher ρ∗ (ρ∗ =100-1000), the length of the rim decreases with
increase in We and at the bottom-right corner of the table for ρ∗ = 500 and 1000 at We = 100 and
120, the drops at the onset of breakup are essentially flat discs without any discernible rim. The
length and the thickness of the rim is very small and as a result very fine drops are formed during
sheet-thinning breakup. Another interesting observation is that the rim is thicker for drops of lower
ρ∗. This is possibly due to higher Taylor-Culick velocity utc for lower ρ∗, where utc =

√
2σ/ρlh.

Hence, a higher utc (retraction velocity) and a higher stretching velocity us at the rim (equal to
the values of urim in Figure 4, and is of the order of the velocity given by

√
1/ρ∗Ug and acts in

the opposite direction to utc) results in the formation of a swollen rim for the drops with lower ρ∗.
Consequently, the stretching of the fluid in this swollen rim takes more time resulting in the delayed
breakup/pinch-off of the rims of the drops for low ρ∗ values. This is also in agreement with our
observed breakup time, t∗b , for ρ∗ = 10 case as shown later in the Figure 11a.

To summarize the breakup modes presented in Table 3, we draw a phase plot of ρ∗ vs We
shown in Figure 9. Typical shapes for each of the breakup mode is shown beside the plot. We
characterize the drop shapes as following, from top to bottom: forward-bag no-breakup, transient
no-breakup, transient, forward-bag with stamen, backward-bag, backward-bag with sheet-thinning,
whiplash with sheet-thinning and finally the bottom most is sheet-thinning. Hatched region marks
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Figure 9: Phase plot ρ∗ −We along with the typical drop shapes for breakup modes shown on the
right. Hatched region shows the transition regime. The ρ∗− axis is scaled to the logarithm base of
2.

the transition regime indicating transition from bag(forward/backward) to sheet-thinning. Note,
the differences between the drop shapes for backward-bag with sheet thinning (for E.g. ρ∗ = 250 at
We = 40), whiplash with sheet-thinning (for E.g. ρ∗ = 50 at We = 60) and sheet-thinning (for E.g.
ρ∗ = 500 at We = 120) are not very evident from the instantaneous shapes of the drop presented
in Table 3 at the onset of the breakup. However, the temporal evolution of these drop shapes (see
Figure 10) suggest the classification shown in Figure 9. Figure 10a shows the time evolution of the
drop for ρ∗ = 10 and We = 60. The whiplash of the rim of the drop for ρ∗ = 10 is clearly very
different from that for ρ∗ = 50 shown in Figure 10b. For ρ∗ = 50 and We = 60, time evolution
in figure 10b shows the whiplash action of the drop rim along with the sheet-thinning at the edges
of the drop. Figure 10c, for ρ∗ = 250 and We = 40, shows the formation of a backward bag and
subsequent detachment of its rim. Sheet-thinning sets up only after the detachment of the rim.
Figure 10d, for ρ∗ = 500 and We = 120, shows the sheet-thinning mode of breakup. To make
the differences between these breakup modes and the backward bag even more clearer, the time
evolution of the drop for the backward bag case for ρ∗ = 10 and We = 60 has also been included in
Figure 10a.

In addition to these differences in the deformation, breakup morphologies and breakup modes,
the breakup mechanism is also different for higher and lower ρ∗ values. We note here that the
final fragmentation is determined by the mode of deformation the droplet undergoes and as will be
discussed in the subsequent section, the axisymmetric assumption for drop deformation are valid
up to near fragmentation point before rupture of the bag/rim starts. The breakup is due to the
Rayleigh-Taylor (RT) instability at higher ρ∗ values (ρ∗ ≥ 150) (Zhao et al., 2010; Jain et al.,
2015), whereas the breakup is due to the dynamics of the rim at lower ρ∗ values and is significantly
influenced by the surrounding gas flow (Section 3.5). Hence, drops for roughly ρ∗ ≥ 150 behave
similarly at similar values of We. This difference in breakup for different ρ∗ values (with Reg, M
being constant and Oh < 0.1) makes “Density Ratio” a crucial parameter in characterizing the
secondary breakup of drops.

Figures 11a, 11b and 11c show the drop breakup time t∗b (defined here as the time when the
fragmentation begins), the drop displacement, xl/d0, and the relative velocity of the centroid of the
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(a) ρ∗ = 10,We = 60
0 0.283 0.396 0.509 0.622 0.792 0.905 1.018 1.075 1.131 1.188 1.301 1.5271.414 1.584

(b) ρ∗ = 50,We = 60
0 0.253 0.405 0.557 0.658 0.835 0.987 1.138 1.265 1.417 1.543 1.594 1.67

(c) ρ∗ = 250,We = 40

0 0.179 0.286 0.358 0.447 0.555 0.644 0.716 0.769 0.823 0.948 1.002

(d) ρ∗ = 500,We = 120

Figure 10: Evolution of the drop shape in time for ρ∗ = 10 at We=60, ρ∗ = 50 at We=60, ρ∗ = 250
at We=40 and ρ∗ = 500 at We = 120. Non-dimensionalized time, t∗, values are mentioned on
top for each drop shape. Arrows show the direction of gas flow and the dotted lines mark the axis
of symmetry. Note that the distance between consecutive droplet profiles plotted here does not
represent the actual displacement of the drop.

drop, ur = (Ug − ul)/(Ug), respectively, at the onset of breakup for the conditions listed in the
first row of Table 3. Clearly, t∗b and xl/d0 are quite different for the drops with ρ∗ = 10 and for
the drops with ρ∗ = 50 − 1000. With an increase in We, both t∗b and xl/d0 decrease following a
power-law given by t∗b = 9.5We−0.5 and xl/d0 = 17We−0.25, respectively. Relative velocity ur on
the other hand has a continuous variation from ρ∗ = 50 to ρ∗ = 1000 following a general power-law
given by 4(10−4ρ + 0.1)We(0.13−10−4ρ) with average values increasing from 0.76 to 0.95, though it
is significantly different for ρ∗ = 10 with an average value of 0.36. Zhao et al. (2010) reported an
average value of 0.9 for ethanol and water drops combined, which are in good agreement with the
simulations presented here (also shown in the figure as a line) and Dai and Faeth (2001) reported
0.87 for water drops. Relative velocity, ur, increases with an increase in ρ∗ value indicating that the
drops for lower ρ∗ would attain higher velocity at the onset of breakup. Here, we note that the drops
for ρ∗ = 10 at We = 20 and 40 and for ρ∗ = 50 at We = 20, do not breakup at all. This is in good
agreement with the observations of Han and Tryggvason (2001). The values corresponding to these
values of ρ∗ and We reported in Figure 11 indicate only a point where the drops show a tendency
to breakup. This tendency to breakup is based on the criteria that the drop could have pinched-off
at the thinnest section attained during the deformation process. However, when the simulations are
run for a longer duration, the rim retracts and the breakup does not occur.
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(c) Relative velocity at the onset of breakup. Solid line
represents the results by Zhao et al. (2010). Dotted
lines shows the general power law fit for ρ∗ = 1000
and ρ∗ = 200 case.

Figure 11: Relative velocities, time taken and the distance travelled by the drop at the onset of
breakup for the parameters listed in the Table 3.

3.3 Rayleigh-Taylor instability

The role of Rayleigh-Taylor instability in the breakup of a drop in catastrophic regime has been
extensively discussed in the last decades (Harper et al., 1972; Simpkins and Bales, 1972; Joseph
et al., 1999; Patel and Theofanous, 1981; Lee and Reitz, 2000; Guildenbecher, 2009). Harper et al.
(1972) showed that, at high Bond numbers (above 105), Rayleigh-Taylor instability dominates the
algebraic aerodynamic deformation and leads to the formation of waves on the windward side of
the drops. However, the bag formation is mostly considered as blowing out of a thin liquid sheet
due to large stagnant pressure. Nevertheless, formation of stamen and multibag at a higher Weber
number suggests the role of instability in the formation of bag with a decrease in the wavelength of
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Figure 12: Representation of RT waves on the drop for ρ∗ = 1000 at Reg = 1414, M = 1000,
We = 20 and at different t∗ values mentioned in the figure. Red thin-lines beside the drop represent
the RT waves on the windward surface of the drop.

the instability as the acceleration of the droplet increases. Theofanous et al. (2004) showed that the
Rayleigh-Taylor based theoretical predictions of number of waves agreed well with the experimental
observations for drops with a wide range of viscosity values. Experimental observations of Zhao
et al. (2010) also showed good agreement with the theoretical expression for the number of expected
waves (1 for bag and 2 for bag-with-stamen) proposed by Theofanous et al. (2004).

In our numerical simulations, we also observe the formation and growth of RT waves on the
windward surface of the drop as shown in Figure 12. Shapes of the drop for ρ∗ = 1000 at Reg = 1414,
M = 1000, We = 20 are shown for four different times, t∗ = 1.006, 1.028, 1.341 and 1.565. It is quite
evident from these figures that the amplitude, A, of the wave grows with time. The drop eventually
deforms into a forward-bag and then breaks. We assume this wave on the surface of the drop as an
RT wave (highlighted in the Figure 12 using thin red lines) and calculate the non-dimensional RT
wavenumber in the maximum cross-stream direction of the drop at t∗ ∼ 1.3 (breakup initiation time
at We = 20 (Xiao et al., 2014)) as,

NRT =
Dmax

λmax
=

0.1754

0.18
= 0.97 (9)

This value of NRT = 0.97 lies in the range of 1/
√

3 < NRT < 1.0, which implies that the
drop should deform into a forward-bag (Zhao et al., 2010) and then breakup. This is in very good
agreement with what we observe in our simulations. Growth rate of the RT wave obtained from the
numerical simulations, ωn, can be calculated by comparing the amplitude of the wave, A (shown
in the Figure 12) at two different time instances; assuming normal mode growth of the waves,
A = A0e

ωnt. Considering the surface tension effects to be negligible, theoretical growth rate, ωt,
can be calculated using the following expression,

ωt =

√
ka

(
ρl − ρg
ρl + ρg

)
. (10)

We calculated the growth rate of these RT waves at two time instances (a)t∗1 = 1.006 to t∗2 = 1.028
and (b)t∗1 = 1.341 to t∗2 = 1.565. Note that the acceleration of the drop changes over time due to
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the change in the drag force with the change in shape and velocity. Therefore, the corresponding
growth rate of the instability is expected to change. Nevertheless, we verify here that the dependency
of the growth rate of the instability on the instantaneous Bond number (Bo = ρlad

2
0/4σ) remains

unchanged (see the relation in Appendix A). For the case (a), the non-dimensional numerical growth

rate, ω∗
n, is found to be ω∗

n = 2.31Bo
3
4 /
√
We and the non-dimensional theoretical growth rate is

found to be ω∗
t = 0.7598Bo

3
4 /
√
We, where the instantaneous Bond number is 7.48, and for the case

(b), ω∗
n = 2.54Bo

3
4 /
√
We, where the instantaneous Bond number is 10.73. Interestingly, for both

the cases, ω∗
n is ∼ 3 times that of ω∗

t . These significantly different, yet consistent growth rate values,
could be due to the end-effects associated with the growth of RT waves on the surface of the drop.

3.4 Flow around the drop and the effect of Reynolds number

In this section, we study the flow field around the drop to identify the effects of the flow structures on
the deformation and breakup of the drops. Although, some attempt has been made to comprehend
this through experimental and numerical observations (see Flock et al. (2012); Strotos et al. (2016)),
a more systematic analysis is required to completely characterize the flow field. Figures 13 and 14
show the flow field around the drop at t∗ = 1.52 for ρ∗ = 1000, M = 1000 and We = 20 at two
different gas Reynolds numbers, Reg = 4000 and 1414, obtained from the 3D and 2D axisymmetric
simulations. We observe the formation of a Hill’s spherical vortex in the wake region for the drop in
axisymmetric simulations (Figures 13a and 14a), whereas in 3D simulations (Figures 13b and 14b),
a three-dimensional vortex shedding is seen in the wake region for both the cases. At very early
stages of the drop deformation we also observed the formation of vortex ring in the 3D simulations
(not shown here). This vortex ring starts to shed at around t∗ ∼ 0.15 for the drop with ρ∗ = 1000
value and subsequently at t∗ = 1.52, we see a three-dimensional eddy formation and stretching
resulting in a highly unsteady complex flow in the wake region of the drop. Though, the formation
of a vortex and its shedding behind the drop need not be similar to the flow past a cylinder, a
qualitative comparison could help us in better understanding the flow. Jeon and Gharib (2004)
performed a comparative study of the the vortex in the wake of the cylinder and the formation
of a vortex ring and reported that the shedding of the vortex starts at the non-dimensional time,
t/tcv = 4, expressed in terms of the characteristic time tcv = d0/U , where U is the average velocity
of the vortex generator (relative velocity of the drop with respect to gas, Ug−udrop in our case) and
d0 is its diameter. For the present case, we find that the relative velocity, (Ug − udrop)/Ug is 0.92
from our simulations. Hence the vortex shedding is expected to start at t∗ = 0.14, which is in very
good agreement with our observations of t∗ ∼ 0.15 in our simulations.

Although, the flow around the drops in 2D is significantly different from that in 3D, the shapes
of the drops are surprisingly the same, and both the 2D and 3D simulations predict the formation
of stamen and a forward-bag, for two different Reynolds numbers, as shown in Figure 15. This
indicates that the flow structures in the wake do not significantly affect the drop morphology and
breakup for the drops with higher ρ∗ values (lower ρ∗ values are investigated in later sections).
Flock et al. (2012) also reported a similar conclusion based on the differences in the observations
of the PIV realized instantaneous flow fields, showing alternating vortices in the wake region, and
the ensemble-averaged of the flow fields, showing a symmetric twin vortex pair in the wake region
around the drop.

Another interesting observation from Figures 13-15 is that the drop shapes are different for
different Re (4000 and 1414) values for the same M = 1000, ρ∗ = 1000 and We = 20. Figure 15
clearly shows the tendency of the drop to form a stamen at Re = 4000, whereas there is no sign of
formation of stamen for Re = 1414. Further, Table 4 lists the drop breakup modes along with the
non-dimensional RT wavenumber, NRT , and Table 5 lists the corresponding breakup shapes of the
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(a) 2D axisymmetric simulation. Blue line
represents the drop and lines with the ar-
rows are the streamlines of the velocity rel-
ative to the centroid velocity of the drop.

Rim

Gas flow

Stamen

(b) Cross-section view of the 3D simulation. Blue line represents
the drop, black lines represents the vorticity contour plot. Arrow
represents the direction of gas flow.

Rim

Stamen

Wake

Gas flow

(c) 3D simulation in rendered view, showing the drop and the
vorticity isosurfaces. Arrow represents the direction of gas flow.

Figure 13: Comparison of flow field around the drop for ρ∗ = 1000 at Reg = 4000, M = 1000,
We = 20 and at t∗ = 1.52 obtained from a 3D and 2D axisymmetric simulation.
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(a) 2D axisymmetric simulation. Blue line
represents the drop and lines with the ar-
rows are the streamlines of the velocity rel-
ative to the centroid velocity of the drop.

Gas flow

Flat disc

(b) Cross-section view of the 3D simulation. Blue line represents
the drop, black lines represents the vorticity contour plot. Arrow
represents the direction of gas flow.

Flat disc

Wake
Gas flow

(c) 3D simulation in rendered view, showing the drop and the
vorticity isosurfaces. Arrow represents the direction of gas flow.

Figure 14: Comparison of flow field around the drop for ρ∗ = 1000 at Reg = 1414, M = 1000,
We = 20 and at t∗ = 1.52 obtained from a 3D and 2D axisymmetric simulation.
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3D

Reg=4000 Reg=1414 

stamen no stamen

Figure 15: Comparison of drop shapes for ρ∗ = 1000 at Reg = 1414 and 4000, M = 1000, We = 20
and at t∗ = 1.52 obtained from a 3D and 2D axisymmetric simulation showing a good match between
2D and 3D results.

M = 100 M = 1000

Re

4000 Bag-Stamen (1.196)

Re

6000 Bag-Stamen (0.8729)
1414 Bag-Stamen (1.084) 4000 Bag-Stamen (1.092)
500 Bag (0.71004) 1414 Bag (0.97)
141 Bag (0.4548)

Table 4: Breakup modes at different Re values for a drops with ρ∗ = 1000 at We = 20 and M = 100
and 1000. Values in the bracket denotes the NRT values.

drop for ρ∗ = 1000 at We = 20, M = 100 and 1000 and at different Re values. It can be seen that
with an increase in Re value for the same viscosity ratio M , the drop deformation and hence the
breakup mode is changing, effectively altering the breakup transition value of We, that is with an
increase in Re the breakup transition value of We is decreasing.

Non-dimensional RT wavenumber, NRT , listed in Table 4 also shows an evident increase with
increase in Re value, thus reinforcing the argument that the RT-instability is the mechanism of
the breakup of drops for high ρ∗ values. For different M values, the value of Re for which the the
breakup mode changes is also different. Therefore, Ohnesorge number, Oh, which varies with M and
Re values when everything else is kept constant, is a better parameter to represent this behavior.
In terms of Ohnesorge number, a decrease in Oh, shifts the transition We to lower values. We note
that, although the values of Oh are less than 0.1 (a value below which it is considered that there
are no effects of viscous forces on the breakup mechanism), changing the value of Oh still affects
the breakup of drops but not to the extent for the values of Oh > 0.1. This possibly explains the
discrepancy in breakup transitional value of We observed by different authors in their experimental
results (Table 1).
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M = 100 M = 1000

Re

4000

2.15

Re

6000
2.28

1414
1.92

4000

2.02

500 2.21 1414
2.46

141

2.24

Table 5: Breakup shapes at different Re values for the drops with ρ∗ = 1000 at We = 20 and
M = 100 and 1000 along with the time t∗ beside them.

3.5 Rim dynamics

For the drops with high ρ∗, flow around the drop has relatively low effect on the drop deformation,
morphology and the breakup. Hence the drops deform into a flat disc and further the RT-instability
governs the breakup as already explained in Sections 3.3 and 3.4. But for the drops of lower ρ∗,
the flow field has a greater impact on the drop morphology, deformation and the breakup due to
the higher velocities induced in the drops by the surrounding gas flow, as explained in the Section
3.2, and the flow patterns around the rim guide the direction of alignment of the rim and hence we
conclude that “rim dynamics” govern the breakup.

Figures 16 and 17 show the 2D axisymmetric and 3D simulations of the drop for ρ∗ = 10, M = 100
at We = 20, Reg = 4000, t∗ = 2.02 and at t∗ = 2.53. Interestingly, turbulent vortex shedding is
not seen in the wake of the drop even in the 3D simulations, unlike the drops with high ρ∗ values.
Instead, undisturbed vortex rings are seen in both 3D and 2D axisymmetric simulations. Since a
2D axisymmetric simulation predicts drop shape as well as the flow around the drop accurately, the
initial phase of the deformation of the drop during the secondary breakup for low ρ∗ values can
indeed be considered axisymmetric.

The primary vortex ring, seen in Figures 16a and 17a, is formed on the leeward surface of the drop
due to the separation of an initially attached boundary layer on the surface of the drop. This vortex
ring pulls the rim of the drop along, resulting in the formation of a backward-bag. Eventually this
vortex ring pinches-off from the boundary layer and moves downstream with respect to the drop and
a pair of secondary counter-rotating vortex rings are formed at the rim (Figures 16a and 17a) due to
the flow separation behind the rim. This counter-rotating vortex rings induce opposite directional
velocity in the rim of the drop and deflects it more towards the upstream direction, eventually
turning the drop into a forward-bag.

At later times, this primary vortex ring becomes strongly asymmetrical and eventually sheds
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Primary vortexSecondary counter-rotating
vortices

(a) 2D axisymmetric simulation. Blue line
represents the drop and lines with the ar-
rows are the streamlines of velocity relative
to the centroid velocity of the drop.

Gas flow

Rim

(b) Cross-section view of the 3D simulation. Blue line represents
the drop, black lines represents the vorticity contour plot. Arrow
represents the direction of gas flow.

Rim

Wake

Gas flow

(c) 3D simulation in rendered view, showing the drop and the
vorticity isosurfaces. Arrow represents the direction of gas flow.

Figure 16: Comparison of flow field around the drop for ρ∗ = 10 at Reg = 4000, M = 100, We = 20
and at t∗ = 2.02 obtained from a 3D and 2D axisymmetric simulation.26
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Primary vortexSecondary counter-rotating
vortices

(a) 2D axisymmetric simulation. Blue line
represents the drop and lines with the ar-
rows are the streamlines of velocity relative
to the centroid velocity of the drop.

Gas flow

Rim

(b) Cross-section view of the 3D simulation. Blue line represents
the drop, black lines represents the vorticity contour plot. Arrow
represents the direction of gas flow.

Rim

Wake

Gas flow

(c) 3D simulation in rendered view, showing the drop and the
vorticity isosurfaces. Arrow represents the direction of gas flow.

Figure 17: Comparison of flow field around the drop for ρ∗ = 10 at Reg = 4000, M = 100, We = 20
and at t∗ = 2.53 obtained from a 3D and 2D axisymmetric simulation.27
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vortex at the vortex formation time of t/tcv = 4 (as discussed earlier in Section 3.4). For example,
(Ug − udrop)/ug = 0.45 for the case shown in Figure 16 and hence the asymmetric vortex formation
is expected to occur at t∗ ∼ 3.04. But according to our observations, based on our simulations,
vortex ring never reaches an asymmetrical state because the relative velocity between the drop and
the gas, Ug − udrop, which feeds into the circulation of the vortex ring reduces substantially with
time, and hence the critical circulation required for asymmetry in the vortex rings is never achieved
for the drops with low ρ∗ values. In contrast, for high density ratios Ug − udrop reduces relatively
slowly with time and hence the critical circulation is quickly achieved at very early stages of the
deformation of the drop that leads to asymmetric vortex rings and eventually a turbulent wake is
observed.

4 Summary and Conclusions

In the present study, we performed fully resolved numerical simulations of a drop in a high speed
gas flow to investigate the effect of density ratio and Reynolds number on the secondary breakup of
the drops. These simulations were performed for a moderate Weber number range (20-120), where
bag breakup, multi-mode and sheet-thinning breakup modes have been observed in experiments.

Previous studies reported conflicting views on the effect of density ratio on the breakup modes
and drop morphology (Aalburg et al., 2003; Kékesi et al., 2014; Yang et al., 2016). To resolve these
discrepancies, we performed a large set of simulations with different values of ρ∗ from 10 to 1000,
and We from 20 to 120. Further, we vary Re and M independently to delineate their effects on
drop morphology. As discussed in previous sections, in this study we primarily present axisymmetric
simulations along with a few 3D simulations to support the axisymmetric approximations. We would
like to emphasize here that although the final fragmentation of the drop is a 3D phenomenon, the
initial deformation of the drop into the breakup modes, bag, bag-with-stamen and shear-stripping
mode is essentially an axisymmetric phenomenon.

In what follows, we present the important conclusions from this study.

1. For high ρ∗ values, drops deform into a flat disc, whereas for low ρ∗ values the drops do not
deform into a flat disc at all, instead they bend towards the downstream direction and for
intermediate ρ∗ values, there is a gradual variation in the bend.

2. Axial and radial components of the velocities at the center of the drop, ucenter, and at the rim,
urim, decrease with an increase in ρ∗ values, which also follows from the scaling relation based
on momentum transfer Ul ∼

√
1/ρ∗Ug. Further, the difference in axial velocity, (ucenter −

urim), decreases with an increase in the ρ∗ values, which explains the higher stretching and
bending of the drops for low ρ∗ values.

3. Displacement of the drops decreases with increase in ρ∗ values. This is due to the differences
in the centroid velocity of the drop, udrop, and the momentum transferred to the leeward side
of the drops, which depends on the kinematic viscosity of the drop, νl.

4. Breakup time, t∗b , and the distance travelled in the streamwise direction, xl/d0, at the onset of
breakup are higher for the drops with ρ∗ = 10 than for the drops with ρ∗ = 50−1000 and they
decrease with an increase in We, whereas relative velocity, ur = (ug−ul)/ug has a continuous
variation from ρ∗ = 50 − 1000 and for high density ratios the values are in good agreement
with the experimental observations of Dai and Faeth (2001); Zhao et al. (2010).

5. Drops for ρ∗ = 10 at We = 20 and 40 and for ρ∗ = 50 at We = 20 do not breakup at all,
which is also in agreement with the simulations of Han and Tryggvason (2001). We explain
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this using the instantaneous Weber number, Weinst = ρg(Ug − udrop)2d0/σ. The values of
Weinst for these conditions are less than Wecrit at the onset of breakup or the time where
there could have been a pinch-off at the thinnest section of the drop, whereas Weinst > Wecrit
at the onset of breakup for all other cases where breakup is observed.

6. Interesting drop shapes are observed with varying ρ∗ values keeping We constant. At We = 20,
a forward-bag is seen at ρ∗ = 10, transient canopy-top shape for ρ∗ = 50 and 100 and forward-
bag with stamen for ρ∗ ≥ 150. The size of the stamen decreases with increase in ρ∗ value.
At We = 40 and higher, backward-bag is seen for ρ∗ = 10, whiplash with sheet-thinning for
ρ∗ = 50 and sheet-thinning for ρ∗ ≥ 100. The rim is thicker for low ρ∗ values, which could be
due to higher Taylor-Culick velocity for low ρ∗ values.

7. In addition to the differences in deformation, breakup morphology and breakup modes, the
breakup mechanism is also different for higher and lower ρ∗ values. At higher ρ∗ values, the
formation of bag is due to the Rayleigh-Taylor instability. The non-dimensional RT wavenum-
ber, NRT in the cross-stream direction of the drop agrees very well with the range proposed
by Zhao et al. (2010). Numerically calculated non-dimensional growth rates, ω∗, on the other
hand are not in direct quantitative agreement with the theoretical estimates for the instability
on a planar surface; but they are proportional to the theoretical growth rate, implying that
there could be “end-effects” associated with the growth of RT wave.

8. Study of the flow around the drop, in 3D simulations, shows that the vortex ring formed due
to flow separation in the wake region of the drop, develops asymmetries and sheds leading to
the formation of turbulent wake region and the time taken to form these asymmetries agrees
very well with the vortex formation time scales. However, the vortex ring observed in 2D
axisymmetric simulations is stable and never develops any asymmetries. Nevertheless, the
drop shapes are same in 2D and 3D cases, implying that the flow has only a weak effect on
the drop shape for higher ρ∗ values, which is in agreement with the experimental observations
of Flock et al. (2012).

9. Increasing gas Reynolds number, Re alters the breakup and we see that the drop breakup mode
transitions from a bag to bag-with-stamen for an increase of Re from 1414 to 4000 at viscosity
ratio M = 1000. Non-dimensional RT wavenumber, NRT , also increases with an increase in
Re, and the NRT values again conform to the range given by Zhao et al. (2010), indicating
that the RT-instability is indeed the breakup mechanism at higher ρ∗ values. The effect of M
is that it shifts the value of transition value of Re (critical Re across which there is a change
in the breakup mode for a given We). Hence, combining the effect of M and Re, Ohnesorge
number, Oh, is a better parameter to represent this behavior. This explains the discrepancy
in breakup transitional values of We observed by different authors in their experiments (Table
1).

10. For lower ρ∗ values, breakup is governed by the dynamics of the rim. Flow around the drop
has a greater impact (in comparison to high ρ∗ drops) on the drop shape, deformation and
breakup due to higher velocity induced in the drop by the surrounding gas flow. For low ρ∗,
unlike for higher ρ∗ values, the vortex ring formed at the rim never develops asymmetries until
the breakup of the drop.

To conclude, the drops for ρ∗ < 150 behave differently from ρ∗ ≥ 150 at the same We, making
“Density ratio” an important parameter in characterizing the secondary breakup of drops and also in
the study of liquid jets in gas crossflow. The present study, describes the differences in the behavior of
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the drops for different ρ∗ values, such as in the air-water system in atmospheric conditions, where the
ρ∗ ∼ 1000, and in high pressure applications where ρ∗ can be ∼ 100, and also in the manufacturing
of pellets by quenching molten metal in a pool of cold water where ρ∗ ∼ 1− 10.

In the present work, we have essentially focused on the drop deformation and breakup modes
in the moderate Weber number regime. Based on our results, we believe that a similar systematic
study on vibrational mode of breakup as well as high Weber number breakup would reveal interesting
effects of the density ratio on the deformation and breakup mechanisms.

Supplementary material

The data and videos from the simulations can be accessed from the following link: goo.gl/7qVEKF
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Appendix A: Relation between non-dimensional growth rate
and instantaneous Bond number

Non dimensional growth rate is given by,

ω∗ = ω
d
√
ρ∗

Ug
(11)

From equation 10,

ω∗ =

√
ka
(ρ∗ − 1

ρ∗ + 1

)d√ρ∗
Ug

(12)

Substituting for wavenumber, k =
√
ρla/3σ and rearranging,

ω∗ =
1

3
1
4

At
1
2Bo

3
4

√
We

(13)

Here At is the Atwood number. Hence the ω∗ scales as Bo
3
4 for a given ρ∗ and We.
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T Kékesi, G Amberg, and L Prahl Wittberg. Drop deformation and breakup. International Journal
of Multiphase Flow, 66:1–10, 2014. doi: 10.1016/j.ijmultiphaseflow.2014.06.006.

Sachin Khosla, Clifford E Smith, and Ryan P Throckmorton. Detailed understanding of drop
atomization by gas crossflow using the volume of fluid method. In ILASS Americas, 19th Annual
Conference on Liquid Atomization and Spray Systems, Toronto, Canada, 2006.

Stefan A. Krzeczkowski. Measurement of liquid droplet disintegration mech-
anisms. International Journal of Multiphase Flow, 6(3):227 – 239, 1980.
ISSN 0301-9322. doi: http://dx.doi.org/10.1016/0301-9322(80)90013-0. URL
http://www.sciencedirect.com/science/article/pii/0301932280900130.

32



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

C. H. Lee and Rolf D. Reitz. An experimental study of the effect of gas density on the distortion
and breakup mechanism of drops in high speed gas stream. Int. J. Multiphase Flow, 26:229–244,
2000.

A. B. Liu and Rolf D. Reitz. Mechanisms of air-assisted liquid atomization. Atomization and Sprays,
3(1):55–75, 1993. ISSN 1044-5110.

Z. Liu and R.D. Reitz. An analysis of the distortion and breakup mechanisms of
high speed liquid drops. International Journal of Multiphase Flow, 23(4):631 – 650,
1997. ISSN 0301-9322. doi: http://dx.doi.org/10.1016/S0301-9322(96)00086-9. URL
http://www.sciencedirect.com/science/article/pii/S0301932296000869.

Shahab Mirjalili, Suhas S Jain, and Micheal Dodd. Interface-capturing methods for two-phase flows:
An overview and recent developments. Annual Research Briefs, pages 117–135, 2017.

P. D. Patel and T. G. Theofanous. Hydrodynamic Fragmentation of Drops. J. Fluid Mech., 103:
207–223, 1981.

M. Pilch and C.A. Erdman. Use of breakup time data and velocity history data
to predict the maximum size of stable fragments for acceleration-induced breakup
of a liquid drop. International Journal of Multiphase Flow, 13(6):741 – 757,
1987. ISSN 0301-9322. doi: http://dx.doi.org/10.1016/0301-9322(87)90063-2. URL
http://www.sciencedirect.com/science/article/pii/0301932287900632.

Stphane Popinet. Gerris: a tree-based adaptive solver for the incompressible euler equa-
tions in complex geometries. Journal of Computational Physics, 190(2):572 – 600,
2003. ISSN 0021-9991. doi: http://dx.doi.org/10.1016/S0021-9991(03)00298-5. URL
http://www.sciencedirect.com/science/article/pii/S0021999103002985.

Stphane Popinet. An accurate adaptive solver for surface-tension-driven in-
terfacial flows. Journal of Computational Physics, 228(16):5838 – 5866,
2009. ISSN 0021-9991. doi: http://dx.doi.org/10.1016/j.jcp.2009.04.042. URL
http://www.sciencedirect.com/science/article/pii/S002199910900240X.

L. Rayleigh. On the capillary phenomena of jets. Proceedings of the Royal Society 1., 29(196-199):
71–97, 1879. doi: doi: 10.1098/rspl.1879.0015.

P. G. Simpkins and E. L. Bales. Water-drop response to Sudden Accelerations. J. Fluid Mech., 55:
629–639, 1972.

George Strotos, Ilias Malgarinos, Nikos Nikolopoulos, and Manolis Gavaises. Predicting droplet
deformation and breakup for moderate Weber numbers. International Journal of Multi-
phase Flow, 2016. ISSN 03019322. doi: 10.1016/j.ijmultiphaseflow.2016.06.001. URL
http://linkinghub.elsevier.com/retrieve/pii/S0301932215302135.

T G Theofanous, G J Li, and T N Dinh. Aerobreakup in rarefied supersonic gas flows. J. Fluid
Eng.-T ASME, 126:516527, 2004.

Gaurav Tomar, Daniel Fuster, Stephane Zaleski, and Stphane Popinet. Multiscale
simulations of primary atomization. Computers & Fluids, 39(10):1864 – 1874,
2010. ISSN 0045-7930. doi: http://dx.doi.org/10.1016/j.compfluid.2010.06.018. URL
http://www.sciencedirect.com/science/article/pii/S0045793010001490.

33



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

F. Xiao, M. Dianat, and J.J. McGuirk. A robust interface method for drop formation and breakup
simulation at high density ratio using an extrapolated liquid velocity. Computers & Fluids, 136:
402 – 420, 2016. ISSN 0045-7930. doi: http://dx.doi.org/10.1016/j.compfluid.2016.06.021. URL
http://www.sciencedirect.com/science/article/pii/S0045793016302067.

F Xiao, ZG Wang, MB Sun, N Liu, and X Yang. Simulation of drop deformation and breakup in
supersonic flow. Proceedings of the Combustion Institute, 36(2):2417–2424, 2017.

Feng Xiao, M. Dianat, and James J. McGuirk. Large eddy simulation of single droplet and liquid
jet primary breakup using a coupled level set/volume of fluid method. Atomization and Sprays,
24(4):281–302, 2014. ISSN 1044-5110.

Wei Yang, Ming Jia, Kai Sun, and Tianyou Wang. Influence of density ratio on the
secondary atomization of liquid droplets under highly unstable conditions. Fuel, 174:25
– 35, 2016. ISSN 0016-2361. doi: http://dx.doi.org/10.1016/j.fuel.2016.01.078. URL
http://www.sciencedirect.com/science/article/pii/S0016236116000995.
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