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Soft solids in fluids find wide range of applications in science and engineering, especially

in the study of biological tissues and membranes. In this study, an Eulerian finite volume

approach has been developed to simulate fully resolved incompressible hyperelastic solids

immersed in a fluid. We have adopted the recently developed reference-map technique

(RMT) by Valkov et al. (2015) [122] and assessed multiple improvements for this approach.

These modifications maintain the numerical robustness of the solver and allow the

simulations without any artificial viscosity in the solid regions (to stabilize the solver).

This has also resulted in eliminating the striations (“wrinkles”) of the fluid-solid interface

that was seen before and hence obviates the need for any additional routines to achieve a

smooth interface. An approximate projection method has been used to project the velocity

field onto a divergence free field. Cost and accuracy improvements of the modifications on

the method have also been discussed.

 2019 Elsevier Inc. All rights reserved.

1. Introduction

Soft solids in fluids are ubiquitous in nature. Study of these systems is of practical relevance in science and engineer-

ing, especially in the field of biomedicine [119,131,3,17]. Some of such applications involve the study of the interaction

between micro-bubble collapse-induced shock waves with the tissue in an animal body [1], study of the electroporation

phenomenon [81], study of hemodynamics and suspension of blood cells [90,91].

Numerical methods to simulate a fluid-solid coupled system, also known as a fluid-structure interaction (FSI) problem can

be broadly classified into mesh-based methods and meshfree methods. Further, the mesh-based methods can be subdivided

into (a) fully-Eulerian approach, where both fluids and solids are solved on an Eulerian grid, (b) mixed Lagrangian Eulerian

approach, where typically fluids are solved on an Eulerian grid and solids are represented using a Lagrangian grid, (c) fully

Lagrangian approach, where both fluids and solids are solved using a Lagrangian grid. A detailed classification of various

methods used to study FSI problems is shown in the Fig. 1.

FSI has historically been studied using a partitioned-based mixed-Lagrangian-Eulerian approaches, where fluid and solid

regions are solved separately on different meshes using different methods (see, the arbitrary Lagrangian-Eulerian (ALE)

approach of Hu et al. [35]; Hirt et al. [30]; Nitikitpaiboon and Bathe [82]; Hughes et al. [38]; Belytschko [6], deforming-

spatial-domain/stabilized-space-time approach (DSD/SST) of Tezduyar et al. [107]; Hughes and Stewart [39]). These methods

have been widely used to study problems such as flapping wings [76,105], fluid-particle interaction (FPI) [75,45,47,46,48,

* Corresponding author.

E-mail addresses: sjsuresh@stanford.edu (S.S. Jain), kkamrin@mit.edu (K. Kamrin), alimani@stanford.edu (A. Mani).
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Fig. 1. A broad classification of widely used FSI methods in the literature. Methods with a yellow background color represents “non-conforming mesh

methods”, where the mesh does not comply with the shape of the solid structures and the methods with a blue background color represents “conforming

mesh methods”, where the mesh complies with the shape of the structures. Fully Eulerian approaches are also referred to as “interface-capturing methods”

and the partitioned-based mixed-Lagrangian-Eulerian methods are referred to as “interface-tracking methods” in the literature. (For interpretation of the

colors in the figure(s), the reader is referred to the web version of this article.)

44], patient-specific arterial modeling of cerebral aneurysms [108–117], parachute modeling [49,97,98] wind-turbine rotor

aerodynamics [106,104], moving hyperelastic particles [19] and modeling flow in the heart [128]. However, these methods

found success mostly in the stiff limit of the solids [34,46] and was found to be too cumbersome for highly deforming

solids, since it requires generating a new grid at each time step.

To overcome the cost of partitioned-based approaches for highly deforming solids, monolithic-based solvers were de-

veloped, where a single system of equations are solved simultaneously in a coupled manner [37,68,96]. To account for the

effect of presence of solids, a force term that is computed based on the structural configuration of the solid is added to the

fluid equations. These methods have been applied to study problems such as modeling rigid particles [134], modeling flexi-

ble bodies [78,136], red blood cell [78,14,25]. Further, monolithic-based solvers can be sub-divided into (i) fictitious domain

(FD) method / distributed Lagrange multiplier method [23,24,85], (ii) immersed-boundary methods, where the solid region

is represented as a boundary [72], (iii) immersed-domain method, where the solid region is represented as a body with a

finite volume, for example the immersed finite-element method [63,64,135,124] and the immersed continuum method of

[125–127]

Immersed-boundary methods are known to be the simplest of all the methods. For example, the classical immersed-

boundary (IB) method [86,87,89,52,36], the direct-forcing method [77,65,67,29], the penalization approach [54], the ghost-

cell method, the cut-cell finite volume approach [9] and the immersed-interface method [58,60,61,59,56] all use an Eulerian

grid for the fluid region and the boundary of the deforming solid is considered as a forcing term in the fluid equations either

in the continuous form (continuous forcing methods) or in discrete form (discrete forcing methods). Owing to its simplicity,

these methods have been used to study a wide variety of problems such as magnetohydrodynamics of liquid metals [28],

complex flows in irregular domains [15,120,57,53,40], turbulent flows [133], modeling cochlea [7], modeling flexible fibers

[99,123], rigid bodies [73], flow-induced vibration [71], biomimetic flight mechanism [74], flow past an airfoil [22], flexible

filaments [137], modeling mechanics of heart [88,27], sperm motility near boundaries [16], microswimmers [12] and ship

hydrodynamics [130,129] where it’s been coupled with two-fluid solvers. However, these methods are known to not capture

the realistic structural response of the solid and often use a linear theory (infinitesimal strain theory) to approximate the

stresses and the deformation of the solid.

On the other hand, relatively less popular class of methods to solve FSI problems are the fully Lagrangian approach

such as a particle-finite-element method (PFEM) and meshfree methods such as the reproducing kernel particle method

(RKPM) and smoothed-particle hydrodynamics (SPH). These methods have been used for applications such as large number

of floating bodies in fluid, bed erosion etc. [84].

Finally, the relatively newer class of methods are the fully Eulerian approaches. These methods typically use an interface-

capturing method that was initially developed to track material interfaces in two-fluid flows (see [70]). These approaches

are inherently cost effective due to a fixed mesh and results in a easily parallelizable computer programs and is particularly

very advantageous compared to other methods for highly deforming solids. Some of previous applications of these meth-

ods are modeling linear elastic materials [132], elasto-plastic materials [121,83] and neo-Hookean materials [62,32,13,101],
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Fig. 2. Schematic of a deforming solid in convective coordinate system. �0 represents the solid in reference configuration and EX the position vector of a

material particle in �0 . �t represents the solid in deformed configuration at time t and Ex the corresponding position vector of the same material particle

in �t .

modeling flow in complex domains [80]. One of the earliest known Eulerian approach that can solve solid regions using

“true nonlinear solid constitutive laws” coupled with fluid flow is the Eulerian Godunov method of Miller and Colella [69]. This

has been applied to study mostly elastic-plastic solids [5,20]. However, the main disadvantage of this method is that the

method is limited to unbounded domains.

Other well-known fully Eulerian approaches are the level-set method [11,10] and the volume-of-fluid (VOF) method

[102,42,41]. These methods have gained popularity recently and has been used to study problems such as modeling phos-

pholipidic vesicles and cardiomyocyte membrane [66], modeling large number of red blood cells (RBCs) and platelets in

a capillary vessel [100] and turbulent channel flow over hyperelastic walls [94]. A recent work by Kamrin et al. [50] in-

troduced the “reference map technique” (RMT), a fully Eulerian approach for the simulation of solids and an extension to

coupled fluid-solid problems [122]. In this work, visco-elastic solids were successfully simulated on a staggered grid cou-

pled with a Newtonian fluid in a compressible flow setting using hyperelastic constitutive laws. The main differences of

the RMT and VOF methods are (i) a reference-map vector field is transported to track the deformation of the solid in RMT

approach as opposed to a tensor field (left Cauchy-Green deformation tensor) in the VOF method. (ii) RMT method has been

extended to account for solid-solid contact conditions. We therefore adopt the RMT approach and extend this formulation

for incompressible settings [43,95] and assess multiple improvements to the original RMT method [122]. Other approaches

in the literature similar to RMT that is worth mentioning are Dunne [13]; Govindjee and Mihalic [26]. Further, we point the

readers towards excellent review articles by Hou et al. [33]; Takizawa et al. [105]; Takagi et al. [103]; Mittal and Iaccarino

[72] for additional details on the methods and many more applications of FSI problems which could not be included here

for the sake of brevity.

In the present paper, we describe a conservative and non-dissipative reference-map technique (RMT) for the simulation

of incompressible soft solids in fluids. We discuss the improvements made for this model in terms of the accuracy, cost,

ease of implementation, and robustness of the method and also discuss some of the best modeling practices. Some of the

important features of our approach compared to the state-of-the-art RMT [122] are (a) discrete momentum conservation,

(b) a least-squares extrapolation procedure that is accurate and cost-effective, (c) a modified advection equation for the

reference map field that improves robustness of the method, (d) a non-dissipative central-difference scheme that eliminates

any spurious dissipation of kinetic energy, and (d) projection method for incompressible flows. Rest of the paper is organized

into sections as follows: Section 2 describes the basic formulation of the reference-map technique, governing equations that

describe the motion of fluids and solids, and their respective constitutive laws. Section 3 describes the numerical method

and introduces the conservative formulation, discretizations, projection method algorithm, a strategy to reconstruct level-set

field, modifications to the reference-map advection equation, a new least-squares based extrapolation procedure and a

closure model. Section 4 presents the verification of the solver against the results from a Lagrangian approach, presents the

cost and accuracy improvements of the new extrapolation procedure, illustrates the importance of the use of a conservative

formulation, and presents more complex test cases involving solid-solid and solid-wall contact situations. Finally, section 5

presents the summary along with the concluding remarks.

2. Eulerian formulation for solids and fluids

2.1. Reference map technique

Consider a solid in convective coordinate system, as shown in Fig. 2. At time t = 0, the solid is in its initial configuration

(reference configuration), represented by �0 , and at time t > 0, the solid is in its deformed configuration, represented by

�t after being displaced and deformed by external forces. If, EX represents a position vector in �0 that points to a material

particle, then this material particle in �t has the same EX associated with it, since EX represents the initial coordinates of

the point in �0 . Hence EX acts as a tag for all the material particles in the solid. If Ex represents the corresponding position

vector in �t , then we can define a vector map Eξ :R4→R3 (a reference map) as

Eξ(Ex, t)= EX, (1)
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such that Eξ remains constant for a material particle in the solid (as long as the solid doesn’t deform plastically) but varies

from particle to particle. Hence the material derivative of Eξ field yields

DEξ(Ex, t)
Dt

= 0. (2)

Expressing this in terms of the local derivatives, we obtain an advection equation for the Eξ(Ex, t) field as

∂Eξ(Ex, t)
∂t

+ Eu. E∇Eξ(Ex, t)= 0. (3)

This equation can be integrated in time given the initial condition Eξ(Ex, t = 0) = Ex = EX . Thus, Eξ(Ex, t) acts as a tag for all

the points in the solid, and the kinematic condition in Eq. (3) can be used to track every point in the solid, given its

initial coordinates. Stress and strain in solid constitutive laws are typically expressed in terms of the material deformation

gradient F . Hence, relating F to Eξ(Ex, t) as

F( EX, t)= ∂Ex/∂ EX = [−→∇−→ξ (Ex, t)]−1, (4)

we can express the stress and strain tensors in terms of this new primitive variable Eξ(Ex, t). Eqs. (1)-(4) in combination give

rise to a novel approach to track all the material points in a solid and close the system of equations to model a solid on an

Eulerian grid.

2.2. Governing equations for solids and fluids

In an Eulerian formulation, momentum balance equation for both fluids and solids can be written as

∂(ρEu)
∂t
+ E∇.(ρEu⊗ Eu)= E∇.σ , (5)

where Eu is the global velocity field and σ is the Cauchy stress. Mass balance equation for fluids (continuity equation) can

be written as

∂ρ

∂t
+ E∇.(Euρ)= 0, (6)

which in the incompressible limit simplifies to E∇.Eu = 0. Similarly, the mass balance for solids can be written as ρ =
ρ0[det(F)]−1 , and in the incompressible limit it simplifies to det(F) = 1, implying that the density doesn’t change (ρ =
ρ0). Here, ρ and ρo are the density of the deformed and reference configurations, respectively. It can be shown that the

conditions E∇.Eu = 0 and det(F)= 1 are equivalent (see, Appendix A).

For solids, the Cauchy stress can be expressed as a function of strain given by

σ s = (detF)−1F
∂ψ̄(E)

∂E
F

T − λ1= 2(detF)−1F
∂ψ̂(C)

∂C
F

T − λ1, (7)

where E= (1/2)(F T F −1) is the Green’s (or Lagrangian) finite strain tensor, C = F T F is the right Cauchy-Green’s deformation

tensor (or stretch tensor), ψ(F) = ψ̄(E) = ψ̂(C) is the strain energy density (Helmhotz free-energy density) function and

λ = P is the Lagrangian multiplier and is equal to pressure in the incompressible limit [31]. We use the incompressible

neo-Hookean constitutive model for solids, given by

ψ̂(C)=µs(trC − 3), (8)

where µs = E/2(1+ ν) is the shear modulus (Lame’s first parameter), E is the Young’s modulus and ν is the Poisson’s ratio.

Taking a partial derivative of this strain energy density function with respect to C yields

∂ψ̂(C)

∂C
=µs

1. (9)

Using this and the incompressibility condition for solids (det(F) = 1), the σ s reduces to a simple form given by σ s =
2µs

b− P1, where b= FF T is the left Cauchy-Green’s deformation tensor (or stretch tensor). Further more, expressing F in

terms of Eξ , Cauchy stress can be expressed in terms of this new primitive variable Eξ as

σ s = 2µs[( E∇Eξ)−1( E∇Eξ)−T ] − P1= 2µs[( E∇Eξ)T ( E∇Eξ)]−1 − P1. (10)

Nonlinearity in the stress-strain relationship is more evident when Eξ is expressed in terms of its components. For an

incompressible solid in two-dimensions, the Cauchy stress reduces to the form (Appendix B)
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Fig. 3. Schematic of a solid on an Eulerian grid. �S represents the solid region, ∂�S the boundary of the solid. �E ≈ 61x is the narrow band of extended

solid region around ∂�S .

σ s = 2µs




( ∂α
∂ y
)2 + ( ∂β

∂ y
)2 −

[

( ∂α
∂x
)( ∂α
∂ y
)+ ( ∂β

∂x
)(
∂β
∂ y
)
]

−
[

( ∂α
∂x
)( ∂α
∂ y
)+ ( ∂β

∂x
)(
∂β
∂ y
)
]

( ∂α
∂x
)2 + ( ∂β

∂x
)2



− P1, (11)

where α = Eξ .î and β = Eξ . ĵ are the components of Eξ . For fluids, the Cauchy stress can be expressed as a function of the rate

of strain. We use the Newtonian constitutive model given by

σ f =µ f

[
(

E∇Eu
)

+
(

E∇Eu
)T
]

− P1=µ






2 ∂u
∂x

∂u
∂ y
+ ∂v

∂x

∂v
∂x
+ ∂u

∂ y
2 ∂v
∂ y




− P1, (12)

where P is the pressure and the matrix form of the above system of equations is for a fluid in two-dimensions. Extension

to three-dimensions is not included here, but is straightforward. We solve a conservative variable-density formulation of the

above system of equations and to close the system of equations for fluid-solid coupled simulations, we use a mixture model

derived based on the one-fluid formulation [51] for two-phase flows (see, Section 3.6), or the so called “one-continuum

formulation” [102].

3. Discretization, numerical method and conservative implementation

3.1. Basic methodology

Consider a solid on an Eulerian grid, as shown in Fig. 3. Here, �S represents the region inside the solid, ∂�S represents

the boundary of the solid, ±�E ≈ 41x represents a narrow band region (an extended solid region) around ∂�S , and ±�T ≈
21x represents another narrow band region (a transition zone) around ∂�S (not shown in the Fig. 3). Since, both solid and

fluid regions are solved together in a coupled fashion, they share the same grid and a global velocity field. In the regions

of solid �S , solid Cauchy stress σ s is computed using the solid constitutive law (Eq. (11)), and outside this region, fluid

Cauchy stress σ f is computed using the fluid constitutive law (Eq. (12)). Once the stresses for solid and fluid regions

are evaluated, a level-set field φ and a smoothed Heaviside function H(x) is constructed using the reference map field
Eξ as illustrated in Fig. 4. This Heaviside function is used to appropriately blend the solid and fluid stresses around the

solid-fluid interface to compute the global Cauchy stress σ . Finally the velocity field is updated by solving the discretized

version of momentum equation and by projecting the velocity field onto a divergence-free field. Form of the equations used,

discretization techniques and algorithms used in this approach are explained in detail in the subsequent sections.

An important thing to note is that Eξ is a variable that contains the information of the origin of the material. This

field quickly becomes invalid in the region containing fluids due to the highly nonlinear deformation behavior of the flu-

ids. Hence, Eξ is defined only within the solid region, and to evaluate the solid stress in �T , the Eξ field is appropriately

extrapolated into the regions outside the solid (into �E ).

Valkov et al. [122], used the hyperbolic partial-differential equation (PDE) approach of Aslam [4] to extrapolate the Eξ
field. This approach assumes that a level-set field is known in the region of extrapolation. By contrast, we use a least-

squares-based extrapolation procedure (see, Section 3.5) that does not require a known level-set field in the region of

extrapolation. However, a local level-set field φ has to be defined in the �E region, which is used in defining the Heavi-

side function required for the mixture model (see, Section 3.6) and also in enforcing the solid-solid and solid-wall contact

boundaries. Hereafter, we refer to the approach by Valkov et al. [122] as the original RMT.

3.2. Conservative formulation and discretization

In the numerical solution of partial differential equations, divergence form of the equations is usually preferred over the

primitive form (non-conservative form), since it results in discrete conservation of the quantities being solved. We solve
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Fig. 4. Schematic showing the procedure to the compute global Cauchy stress σ . Darker shaded region enclosed by a solid line is the solid region �S

defined by the reference map field Eξ . Solid Cauchy stress σ is evaluated in this region. Fluid Cauchy stress σ is evaluated outside the solid region. φ and

H(φ) represents the constructed level-set and smoothed Heaviside field (Eq. (28)) using the ξ field.

the momentum equation in a conservative form as written in Eq. (5), where both the inertial term and the stress term are

in divergence form (see, Section 4.3 for the illustration of importance of the use of divergence form for the stress term).

We also use the conservative form of the equation for the advection of Eξ field. Though Eξ is not a physically conservative

field, volume enclosed in the solid region �S bounded by the fluid-solid interface ∂�S that is extracted using the Eξ field

should be conserved (see, Section 4.6.1 for a description on the volumetric error of the solid). Notice that the Eq. (3) can be

rewritten in a conservative form as

∂Eξ(Ex, t)
∂t

+ E∇ · [Eu Eξ(Ex, t)] = 0, (13)

in the incompressible limit, using the divergence-free condition ( E∇ · Eu = 0).

We use a finite-volume approach on a collocated uniform grid to discretize our system of equations. Hence, all our

primary variables (Eξ , Eu, p, ρ) are stored on the cell center. We modify the approximate projection method of Almgren et al.

[2] to incorporate the coupled solution of solid and fluid regions. The steps involved in our projection method are shown in

detail in Algorithm 1.

We split the momentum equation into an advection and diffusion part, since it allows us to use different time-stepping

schemes. A second-order central differencing scheme is used to compute convective fluxes in the advection part of the

momentum equation and the advection equation for Eξ , and they are solved using an RK4 time integration scheme. The use

of central-difference scheme for the advection of both Eξ and Eu fields not only yields a conservative and a non-dissipative

approach but also results in solving momentum equation and reference map advection equations consistently, which is cru-

cial for the simulation of high solid-to-fluid density-ratio flows (see Section 3.10 in [118]). A forward-Euler time integration

scheme is used to solve the diffusion part of the momentum equation (Eq. (15)). We use the second-order central-difference

approximation to evaluate the gradient tensor ( E∇Eξ ) in Eq. (10), unlike the one-sided differences used in the original RMT.

For example, in a Cartesian two-dimensional case, ∂α/∂x in Eq. (11) is approximated as

∂α

∂x
= αi+1, j − αi−1, j

21x
, (21)

where α = Eξ .î. The divergence of Cauchy stress in Eq. (15) is also computed using the second-order central-difference

scheme. The exact form of discretization of the stress terms is crucial in obtaining a consistent and conservative formulation,

hence the discretization used in the current work is presented in detail in Appendix C.

Finally, the use of collocated grid arrangement results in checkerboard pressure fields. To eliminate this, we use a “Rhie-

Chow like interpolation” for the intermediate velocity fields (Eu∗∗) after the update of advection and diffusion

Eu∗∗f =
〈Eu∗∗P

〉

P→ f
−
{

1t

ρn+1
f

[
(

E∇ P
)n

f
− Fn+1

f

]
}

, (22)

where subscript P represents cell-centered values, f represents face-centered values, 〈〉P→ f is an interpolation from cell

center to the cell face and F is the body force computed using the balanced-force approach of Francois et al. [18]. Interpo-

lation from cell center to the cell face (〈〉P→ f ) for a uniform Cartesian grid can be written as
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Algorithm 1 One full time-step iteration with the modified projection method.

1: Advect reference map Eξ and extrapolate using least-squares method (see Sections 3.4, 3.5).

2: Reconstruct level-set field φ and reinitialize using fast-marching method (see Section 3.3).

3: Compute solid stress σ s using Eq. (11), fluid stress σ f using Eq. (12) and update ρ and σ (see Section 3.6).

4: Solve advection and diffusion to obtain intermediate velocity Eu∗∗P

ρn+1Eu∗P − ρnEunP
1t

=−E∇.
(

ρEuP EuP

)n
, (14)

ρn+1Eu∗∗P − ρn+1Eu∗P
1t

= E∇.σ (µs,µ f , Eu∗P , Eξ), (15)

where subscript P represents cell-centered values, n and n+1 represents two consecutive time steps. Here, an Euler time-stepping scheme for advection

step is shown for representation only, however an RK4 time-stepping is used in the implementation to achieve numerical stability.

5: Interpolate to obtain face values (Rhie-Chow-like interpolation)

Eu∗∗f =
〈Eu∗∗P

〉

P→ f
−
{

1t

ρn+1
f

[
(

E∇ P
)n

f
− Fn+1

f

]
}

, (16)

where 〈〉P→ f is an interpolation from the cell center to the cell face, subscript f represents face-centered values and F is the body force computed

using the balanced-force approach of Francois et al. [18]).

6: Solve pressure Poisson equation

E∇.







(

E∇δP
)n+1

f

ρn+1
f






=−E∇.

( Eu∗∗
f

1t

)

, (17)

where δP is the correction for pressure.

7: Update the pressure

Pn+1 = Pn + δPn+1. (18)

8: Update the face velocity field —exactly divergence free (to be used in calculating convective fluxes in the next time step)

Eun+1
f
= Eu∗∗f −

[

1t

ρn+1
f

(

E∇δP
)n+1

f

]

. (19)

9: Update the cell center velocity field —approximately divergence free

Eun+1P = Eu∗∗P −1t

〈

( E∇ P ) f − F f

ρ f

〉n+1

f→P

, (20)

where 〈〉 f→P is an interpolation from the cell face to the cell center.

ui+1/2, j =
ui, j + ui+1, j

2
(23)

v i, j+1/2 =
v i, j + v i, j+1

2
(24)

where u and v are the x and y components of the velocity field. This Rhie-Chow like interpolation does not affect the

discrete conservation of momentum. However, it does add a small amount of conservation error in the transport of kinetic

energy which is of the order O (1t1x2). This has been previously shown to be of dissipative in nature, hence it does not

affect the stability of the method (see, Section 6.1 of Morinishi et al. [79]).

3.3. Level-set reconstruction

As explained in the section 3.1, a level-set field φ is required to be defined at every time step in the �E region. One

way to define φ(Ex, t) is to advect φ using the standard level-set advection equations given φ( EX, t = 0). This approach could

lead to a mismatch between the φ(Ex, t) = 0 and the boundary of the solid defined by Eξ(Ex, t) field, which in turn could

result in a wrinkled solid-fluid interface, affecting the overall quality of Eξ field in the extrapolated region (see Figures 9, 10

in [122]). In the original RMT approach, this issue was resolved by performing additional smoothing routines to eliminate

the striations in the extrapolated regions, which could potentially lead to additional mass conservation issues. To avoid this

problem, we propose a simpler, exact, conservative and also cost-effective way to define the level-set field φ(Ex, t) at any

time t . φ(Ex, t) can be reconstructed from the given φ( EX,0) field at t = 0, utilizing the known Eξ(Ex, t) field at time t using a

simple condition given by

φ(Ex, t)= φ[Eξ(Ex, t), t = 0]. (25)
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Fig. 5. Eξ field of a one-dimensional solid at an initial time t = 0 and at later time t after being advected with a velocity u, illustrating the failure of the

reference map technique solved without the use of modified advection equation. Circle 1 represents a location inside the solid and 2 outside the solid.

Since an analytical expression can be defined for φ( EX, t = 0) for simple-shaped solids, the above equation yields an exact

field for φ(Ex, t) for a given Eξ(Ex, t), thus maintaining a perfect match between the φ(Ex, t)= 0 surface and the boundary of

the solid defined by Eξ(Ex, t), which is crucial in developing a robust solver. If an analytical expression for φ( EX, t = 0) is not

available, then a bilinear interpolation (in two-dimensions) can be used to calculate φ(Eξ(Ex, t), t = 0).

3.4. Modified reference map advection

The reference map field Eξ is advected using Eq. (13). As explained in Section 3.1, Eξ is defined and advected only within

the �S . This can be conveniently achieved by modifying Eq. (13) into

∂Eξ(Ex, t)
∂t

+ H(Ex) E∇ · [Eu Eξ(Ex, t)] = 0, (26)

where H(Ex) is a Heaviside function defined as

H(Ex)=
{

1 �S

0 else.
(27)

This modification to the advection equation of Eξ has multiple advantages; the very obvious one is that this approach

effectively eliminates the high-frequency content in the Eξ field, resulting in an ability to use simple schemes such as

central-differences to compute the fluxes, without losing the accuracy of the solution to dispersion errors. To realize the

second advantage, which is more subtle, consider the Eξ field of a one-dimensional solid, as shown in Fig. 5.

At time t = 0, Eξ is a simple straight line (ξ = x) and is given as an input to the solver, as shown on the left. Let u denote

the velocity field; then after time t , an ideal solid would have advected to a new location, shown on the right, maintaining

the shape (solid line). If the modified equation shown in Eq. (26) is not used to advect, then a Total Variation Diminishing

(TVD) type scheme can be used to compute the fluxes, which artificially add diffusivity to the equation to stabilize the

solver. This results in a non-monotonic Eξ profile shown on the right with dotted lines. If this profile is obtained as a result

of advection, then the reconstruction step of the level-set field using Eq. (25) breaks down. To understand this, consider

two solid circles 1 and 2 in Fig. 5. Circle 1 is inside the solid in �S at t = 0, but circle 2 is outside the solid in �E . After

the advection step, circle 1 still represents a value of ξ inside the solid region, whereas circle 2 now represents a value of

ξ inside solid region �S due to numerical diffusion. To clip the values of ξ outside the solid region before extrapolating

ξ , the boundaries of the solid needs to be identified. This can be done using the level-set field constructed using Eq. (25)

(which takes ξ as the input). This procedure (without the modification to the advection equation Eq. (26)) typically creates

two boundaries for the solid, resulting in the failure of the method. Therefore using the modified advection equation for Eξ
effectively eliminates this issue by clipping the values of Eξ outside the solid right in the advection step. As a result, Eξ can

be extrapolated without any need for explicit clipping.

3.5. Least-squares-based extrapolation

The original RMT used a hyperbolic PDE approach to extrapolate the Eξ field outside the solid regions into �E . We

propose a simpler, more cost-effective approach to extrapolate the Eξ field based on the assumption that the Eξ field is locally

linear, even in the deformed state of the solid since the Eξ field represents a mapping from the current coordinates Ex to

the original coordinates EX of the solid, which is linear in x, y and z. This assumption relies on the fact that the solids do

not continuously deform under an applied stress. Unlike solids, liquids do not resist stress and continuously deform which

would violate this locally linear assumption of Eξ field. Therefore the Eξ field is only defined within the solid region. This

assumption of locally linear Eξ field was also used in the hyperbolic PDE based extrapolation of the original RMT approach

[122].
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Fig. 6. Schematic of the cell-traversal procedure for least-squares extrapolation. Numbers represent the passes. The left figure shows the state of the system

before the first pass, and the right figure is the state after the first pass. The stars represent cell-center locations, filled stars represent the cells where the

values are already known and the solid circle represents the cell where the extrapolated value is being computed.

Consider the solid represented by a square (in two-dimensions) in Fig. 6. Consider the dashed circle of radius 4r as the

stencil, where r =
√

1x2 +1y2 . Hence a plane of the form ξ = ax+ by + c can be fit for the known cell values, where x,

y and ξ represent the coordinate location and the reference map value of the cells and a, b and c are the coefficients to

be determined, thus forming an over-determined system that can be solved using the least-squares approach. The stencil’s

radius was chosen to make the system over-determined for all the possible configurations. Once the coefficients are calcu-

lated, the value of ξ at the solid circle can be computed. The procedure begins by repeatedly solving least-squares systems

for all the cells adjacent to the cells for which the value of ξ is already known. This is considered as the first pass. The

values computed in the first pass are considered as good as the values inside the solid for the second pass. This procedure

is repeated until the required width of the extrapolated region is obtained. This cell traversal procedure is summarized in

Algorithm 2.

Algorithm 2 Traversal algorithm.

1: For all the cells in the domain set f lag1 such that

f lag1=
{
1 �S

0 else

2: For all the cells in the domain set f lag2 such that

f lag2=
{
1 �S +�E

0 else

3: Let temp_ f lag = f lag1

4: for all cells with temp f lag = 0 do

5: if adjacent neighbor or corner neighbor has f lag1 == 1 then

6: Solve least-squares system.

7: Update temp_ f lag to 1.

8: Set f lag1 = temp_ f lag .

9: Repeat steps 5 to 9 until temp_ f lag → f lag2.

3.6. Closure model

The level-set field φ reconstructed using Eq. (25) should be reinitialized to restore its signed-distance property. We solve

the Eikonal equation by adopting the fast marching method (FMM) of Chopp [8] to reinitialize the φ field. The coupled

fluid-solid system of equations is closed by defining the mixture model inspired by the “one-fluid formulation” as

σ = Ĥ[φ̂(Ex, t)]σ f +
{

1− Ĥ[φ̂(Ex, t)]
}

σ s,

ρ = Ĥ[φ̂(Ex, t)]ρ f +
{

1− Ĥ(φ̂(Ex, t))
}

ρs,

where φ̂ is the reinitialized level-set field and Ĥ(x) represents a smoothed Heaviside function defined as
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Table 1

Comparison between the present method and the original RMT method by Valkov et al. [122].

The original RMT [122] Present approach

Grid Staggered Collocated

Nature of the solver Compressible Incompressible

Reference map extrapolation PDE based Least-squares based

Discrete momentum conservation (inertial terms) No Yes

Discretization stencil One-sided (artificial damping) Central

Smoothing routines Required (artificial damping) No

Global damping Needed (artificial damping) Not needed

Ĥ(x)=















0 x≤−wT

1
2

[

1+ x
wT
+ 1
π sin( πx

wT
)

]

|x|< wT

1 x≥ wT ,

(28)

where wT represents the width of the transition region �T . For n number of solids, this model can be extended accordingly

σ =
{ n
∑

i=1
H i[φ̂(Ex, t)] − n+ 1

}

σ f +
n
∑

i=1

{

1− H i[φ̂(Ex, t)]
}

σ s. (29)

When two solids collide in a fluid, a body force needs to be added to the momentum equation to keep them separated

and to avoid the inter-penetration of solids. We use a similar procedure as described in [122] to calculate the body force
Ef i, j for solid-solid contact and solid-wall contact conditions. A level-set field φ12 is defined as

φ12 =
φ(1) − φ(2)

2
(30)

where φ1 and φ2 are the level-set fields associated with two colliding solids, hence φ12 = 0 represents a mid-surface

between the two solids. The body force Ef i, j can then be defined as

Ef i, j =
{

γi, jn̂12i, j φ(1) < 0 or φ(2) < 0

0 otherwise
(31)

γi, j = krepδs(φ12i, j) (32)

where n̂12i, j is the unit vector normal to the level-sets of φ12 and pointing away from the mid-surface, krep is a prefactor

and δs(x) is a compactly supported influence function given by

δs(x)=







1+cos πx
wT

2wT
|x|<−wT

0 |x| ≥ wT .

(33)

Note that, we need to define a separate Eξ field and transport it for each object that undergoes collision in the simulation,

which is required to evaluate Eq. (30). However, if there are many objects in the domain and if we know that they do not

collide with each other beforehand (when they are sufficiently far away), we can use the same Eξ field for them to reduce

the cost and memory requirements.

Finally, the pressure Poisson equation (Eq. (17)) which results in a linear system of equations is solved using a conjugate-

gradient (CG) approach. Major differences and improvements to the original RMT method by Valkov et al. [122] are listed in

Table 1. We thus extended the original reference map technique (RMT) to solve for incompressible fluid-structure interac-

tion problems on an Eulerian collocated grid. Modifications proposed in the extrapolation procedure of the reference map,

reconstruction of the level-set field and consistent numerical discretization results in improved robustness, cost effectiveness

and conservation properties of the approach.

4. Results and discussion

In this section, we first present some basic validation test cases to assess the accuracy and cost of our fluid and coupled

fluid-solid solver. This is then followed by more complex cases involving solid-solid and fluid-solid contact conditions. Since

the fluid-solid coupled problem involves multiple time scales, and an explicit time integration is adopted for solving the

system of equations, care must be taken to satisfy all the time step constraints involved in the problem. Time step restriction

due to CFL criterion from the advection can be written (for forward Euler in one dimension) as 1t ≤ C1x/u, where C

represents the Courant number. Time step restriction from the diffusion equation for fluids yields 1t ≤ 0.5ρ f (1x)2/µ f .
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Fig. 7. Classical lid-driven cavity test case at Re = 1000. (a) The x component of velocity Eu · î along a vertical line through the center of the domain. (b) The

y component of velocity Eu · ĵ along a horizontal line through the center of the domain.

Fig. 8. Pseudo-color plots of velocity and pressure computed in the lid-driven cavity test case on a 100× 100 grid at t = 100 showing smooth fields free of

checkerboard oscillations.

Similarly, shear waves in the solids need to be resolved, and the speed of this shear wave is given by, u =√µs/ρs . Hence

a time constraint based on this shear wave speed can be defined as 1t ≤ P1x
√
ρs/µs , where P represents an appropriate

pre-factor that depends on the numerical method. If the ratio of µs/ρs is high, traveling shear waves in the solid typically

imposes the most restrictive time constraint of all. Hence, in the stiff solid limit such as in the metals, imposed time step

constraints are so strict that the simulation time close to solid length scales is virtually impossible with the explicit time

stepping approach. Therefore, this formulation is best suited for the simulation of soft solids in fluids.

4.1. Validation of the fluid solver

The incompressible Navier-Stokes solver on a collocated grid was validated for the lid-driven cavity case against the

benchmark results from Ghia et al. [21]. A 100 × 100 grid was used for the simulation, and the results are reported for

Re= 1000. Fig. 7 shows a good match of the u and v velocities along the vertical and horizontal lines through the center

of the domain with the results from Ghia et al. [21].

Since the equations are solved on a collocated grid, to eliminate the checkerboard fields a Rhie-Chow-like interpolation

was performed, as described in Section 3.2. Fig. 8 presents pseudocolor plots of the velocity and pressure fields from the

lid-driven cavity case, illustrating the smoothness of the solution fields obtained.

4.2. Cost and accuracy of the extrapolation procedure

We compared the accuracy of our least-squares extrapolation procedure with that of the hyperbolic partial differential

equation (PDE) approach used in RMT (using a RK2-minmod scheme to solve the hyperbolic PDEs). Fig. 9 shows the results

of the Zalesak disk test case, wherein a slotted disk (a Eξ field) that is placed off-center is advected with a given background

rotational velocity field and compared against the initial conditions after one full rotation. Three solid lines in (a) represent

the initial and final φ fields of ∂�S (fluid-solid interface), +∂�E and −∂�E (boundaries of the extended solid region). Solid

lines in (b) and (c) represents ∂�S and the shaded region represents α = Eξ · î and β = Eξ · ĵ fields.
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Fig. 9. Rotation of the Zalesak disk. Disk is initialized at an off-center location as shown. (a) Three solid lines represent the initial and final φ fields of ∂�S ,

+∂�E and −∂�E . Color represents the background velocity magnitude. Vector field represents the velocity. (b) Solid line represents ∂�S and the shaded

region represents α = Eξ · î field (c) Solid line represents ∂�S and the shaded region represents β = Eξ · ĵ field.

Table 2

Comparison of the error in the cost effective least-square

extrapolation procedure vs the hyperbolic PDE extrapolation

procedure of Aslam [4]. EEξ ·î , EEξ · ĵ represents the L2 norm

error of the x and y components of Eξ field computed after

one full rotation of the Zalesak disk on a 100× 100 grid.

Least-squares approach PDE approach

EEξ .î 6.72× 10−9 8.32× 10−4

EEξ . ĵ 7.34× 10−9 4.67× 10−4

The initial and final φ fields in Fig. 9 (a) are exactly on top of each other, showing that the extrapolation procedure

by itself is very accurate. One should be careful in interpreting this result, and should not relate this with the rotation of

Zalesak disk usually presented in the literature that is obtained as a result of direct advection of φ field. Here φ field is

reconstructed using the condition in the Eq. (25) and the high accuracy of this φ field could only be achieved due to the

advection of Eξ that was linear and smooth using a second-order central scheme. This clearly shows the advantage of using

the compatibility condition in the Eq. (25) as opposed to the advection of the φ field.

Further, since the errors in the extrapolation procedure manifests as the error in the advection of the Eξ field, we com-

puted the L2 norm error Eξ = || Eξi − Eξ f ||2 for the advection, where Eξi and Eξ f are the initial and final fields obtained after

one full rotation, and report them in Table 2. It is evident that our least-squares procedure is considerably more accurate

when compared to the PDE approach.

The above test case was performed on a 100 × 100 grid. Moreover, we also compared the cost of the extrapolation

procedure using both the approaches and found that on an average the least-squares procedure required ≈ 100 ms per

extrapolation, whereas the PDE approach required ≈ 1550 ms per extrapolation on this grid (close to the time taken by

a Poisson solver), for an extrapolation band region of 51x. This also proves that our least-squares procedure is extremely

cost-effective when compared to the PDE approach.

Additionally, to demonstrate that the use of compatibility condition in the Eq. (25) to reconstruct φ field is not limited

to simple shapes that have analytical expression, we considered an asymmetric star-looking object that has sharp regions

and repeated the exercise above. Fig. 10 shows the results of the one full rotation of the star-looking object advected with

a given background rotational velocity field. Three solid lines represent the initial and final φ fields of ∂�S (fluid-solid

interface), +∂�E and −∂�E (boundaries of the extended solid region). The initial and final φ fields in Fig. 10 (a) are again

exactly on top of each other, showing the high accuracy of the method even for objects with sharp regions. Further to

quantify the error, we computed the L2 norm error Eξ = || Eξi − Eξ f ||2 , where Eξi and Eξ f are the initial and final fields obtained

after one full rotation. The error values are EEξ .î = 6.39× 10−9 and EEξ .î = 6.77× 10−9 , which are of the same order as the

ones reported in Table 2 for a grid of size 100× 100.

Finally to study the effect of grid size on the sharp corners, we repeated the same test case for various grids of sizes

50 × 50,100 × 100,200 × 200 and 400 × 400. The final shape of the object for various grid sizes is shown in Fig. 11,

along with close-up views around a sharp corner and a smooth corner showing the grid convergence. We also computed a

normalized L2 norm error Eξnorm = || Eξi − Eξ f ||2/(Nx × N y), where Nx and N y are the number of grid points along x and y

directions, and report them in Table 3. Normalization is done in such a way that the error quantity Eξnorm being compared

is grid-size independent and that it represents the error incurred per grid cell in the domain. Clearly, the error per grid cell

is very close to machine accuracy for all grid sizes and are roughly independent of the grid size.
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Fig. 10. Rotation of an asymmetric star-looking object simulated on a grid of size 100×100. Three solid lines represent the initial and final φ fields of ∂�S ,

+∂�E and −∂�E . Color represents the background velocity magnitude. Vector field represents the velocity.

Fig. 11. Final shape of the asymmetric star-looking object simulated on various grids.

Table 3

Comparison of the normalized L2 norm error Eξnorm for the

case of asymmetric star-looking object for various grid sizes.

Grid size EEξ .înorm EEξ . ĵnorm

50× 50 1.28× 10−12 1.35× 10−12

100× 100 6.39× 10−13 6.77× 10−13

200× 200 3.53× 10−13 3.70× 10−13

400× 400 4.52× 10−13 4.59× 10−13

4.3. Conservative vs non-conservative implementation

Here we would like to highlight that a careful implementation of the blending of fluid and solid Cauchy stresses is

crucial in obtaining a discretely conservative momentum formulation. For example, one approach is to compute fluid and

solid Cauchy stresses (σ s,σ f ), combine them to obtain a global Cauchy stress (σ ), and then calculate the divergence of this

stress to obtain the force per unit volume (Ef ) due to stresses as

σ ← Blend(Ĥ(φ̂),σ s,σ f ), (34)

Ef = E∇ · σ . (35)

The second approach is to compute the divergence of the solid and fluid Cauchy stresses ( E∇ · σ s, E∇ ·σ f ) and combine them

to obtain the force per unit volume as

Ef ← Blend(Ĥ(φ̂), E∇ · σ s, E∇ · σ f ). (36)
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Fig. 12. Initial state of a circular solid placed in a Taylor-Green vortex field.

Fig. 13. Time evolution of the interface of the solid placed in an initially Taylor-Green vortex field, showing the comparison between the results obtained

using a conservative formulation and a non-conservative formulation. Radius along the y direction r is also plotted as a function of time t for both the

formulations.

The first approach is the one that leads to a conservative formulation, due to the presence of divergence outside the blending

operation. This divergence operator, when summed up over adjacent control volumes, leads to an exact cancellation of the

terms (analogous to a telescoping series). Hence, we use the conservative formulation in our solver.

A simulation of a solid placed in a Taylor-Green vortex was performed to qualitatively study the differences between

these two formulations. Consider Fig. 12, which shows the initial state of a solid placed in a Taylor-Green vortex field.

Initial flow field should stretch the solid to a certain extent, beyond which the internal stresses developed in the solid

should retract it back resulting in an oscillating motion of the solid that stretches and retracts back and forth until all the

energy is lost in the viscous dissipation of the fluid. Fig. 13 shows the result of the simulation performed using both the

non-conservative formulation and conservative formulation described above. Clearly, the results are completely unphysical

for the non-conservative formulation wherein the solid extends indefinitely with no signs of retraction. By contrast, the

conservative formulation for the exact same problem resulted in a more physically meaningful calculation. This simple

demonstration illustrates the importance of a conservative numerical implementation, very much similar to the one in

compressible flows to achieve correct shock speeds [55] and in high-density ratio two-phase flows (see Figure 7 in [92]).

4.4. Convergence study

Above demonstrated test case of a solid placed in a Taylor-Green vortex field was repeated for the values used in [136,93]

to validate our solver against the results from a mixed Eulerian-Lagrangian based approach. A solid of radius r = 0.2 is placed

in an initially imposed Taylor-Green vortex field given by the streamfunction ψ = ψ0sin(kxx)sin(ky y) where ψ0 = 5× 10−2

and kx = ky = 2π . Domain size used is 1 × 1 and is discretized into a 128 × 128 grid. Other parameters used in the

simulation are fluid viscosity µ f = 10−3 , shear modulus µs = 0.5, solid density ρs = 1 and fluid density ρ f = 1. For the

sake of consistency with the results of Robinson-Mosher et al. [93]; Zhao et al. [136], a small amount of viscosity equal

to the fluid viscosity of µ f = 10−3 is added in the solid regions. But in general our solver is stable without any viscous

damping in the solid regions (see section 4.6 for simulations without any viscosity in the solid regions). Time evolution

of kinetic energy (ke) and strain energy (se) is plotted in Fig. 14 for various grid size and also compared against previous

studies, where

ke =
∫

1

2
uiui d�, (37)

and

se =
∫

µs(tr(F T
F)− 2) d�. (38)
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Fig. 14. Time evolution of the kinetic energy (ke) and strain energy (se) for the case of a solid placed in an initially Taylor-Green Vortex field. (a) Results

are plotted for various grid sizes from 32× 32 to 512× 512. (b) Comparison with previous studies by Robinson-Mosher et al. [93]; Zhao et al. [136] for the

simulation on a grid size of 128× 128.

Fig. 15. Errors for the kinetic energy (Eke ), strain energy (Ese ), pressure (E p ), velocity (Ev ) and (Eξ ) fields computed at t = 0.25. Dashed line represents an

O (1x2) convergence rate.

Clearly the results are independent of the grid for sizes 128×128 and above. Further, the viscous dissipation (ε) in the fluid

and solid regions combined was computed using the expression

ε =
∫

µ f ∂ui

∂x j

∂ui

∂x j

d�, (39)

and the conservation of total energy E was assessed at the final time of t = 1 and was found to decrease less than 1% of

the initial time value, where E is given by

E = ke+ se+
t∫

0

ε(t′) dt′. (40)

Frequency of oscillation of the solid matches well with the results of Robinson-Mosher et al. [93]; Zhao et al. [136]. The

time evolution of the kinetic energy in the present work matches well with that of Robinson-Mosher et al. [93] during

the first period of oscillation, but eventually the kinetic energy decays faster in the simulations by Robinson-Mosher et al.

[93]; Zhao et al. [136] compared to the current results. Similarly, the strain energy is under-predicted and decays faster in

the previous works compared to the current results. This highlights the non-dissipative nature of central-difference scheme

used in the current work. Further, using the same test case we also assessed the order of convergence of all the primitive

variables (Eu, p, Eξ ), the kinetic energy (ke) and the strain energy (se) of the solid used in our solver against a refined case on

a 1024× 1024 grid. Fig. 15 shows that the order of convergence is roughly O (1x2) for all the variables. Errors are defined

as

Eke = |ke/N2 − keref /1024
2|, (41)

Ese = |se/N2 − seref /1024
2|, (42)

Ev = |||Ev| − |Ev|ref ||∞, (43)

E p = ||p − pref ||∞, (44)

Eξ = |||Eξ | − |Eξ |ref ||∞, (45)

where the subscript ref refers to the most refined case on a 1024× 1024 grid.



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E
D

 P
R

O
O

F

Please cite this article in press as: S.S. Jain et al., A conservative and non-dissipative Eulerian formulation for the simulation of soft solids in fluids, J.

Comput. Phys. (2019), https://doi.org/10.1016/j.jcp.2019.108922

JID:YJCPH AID:108922 /FLA [m3G; v1.261; Prn:6/09/2019; 6:00] P.16 (1-26)

16 S.S. Jain et al. / Journal of Computational Physics ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Fig. 16. Comparison of the interface of a deforming solid placed in a driven cavity obtained using the present method with that of the results by Sugiyama

et al. [102] for various time instances. The black solid line represents current method and the red dashed line represents the results by Sugiyama et al.

[102]. Colored thin lines represents the flow streamlines.

Fig. 17. Comparison of the centroid of the solid placed in a driven cavity obtained using the present method on a grid of size 128× 128 with that of the

results by Sugiyama et al. [102] on grids of size 128× 128 and 1024× 1024.

4.5. Solid in a driven cavity

To further validate the fluid-solid coupling of the solver, we simulated a deformable solid in a lid-driven cavity. This test

case was previously simulated using mixed-Lagrangian-Eulerian based approach by Zhao et al. [136] and using a VOF based

Eulerian approach by Sugiyama et al. [102]. Fig. 16 (a) shows the initial configuration of the solid in the domain. Domain

used for this simulation is [0,1]×[0,1] and is discretized into a 128×128 grid. The solid is initially circular in shape with a

radius of r = 0.2 and is placed at (0.6,0.5) location. Other parameters used in the simulation are fluid viscosity µ f = 10−2 ,
solid viscosity 10−2 , shear modulus µs = 0.05, solid density ρs = 1 and fluid density ρ f = 1. Time evolution of the interface

of two solids are shown in Fig. 16, where the black solid line represents the current method and the dashed red represents

results by Sugiyama et al. [102], which shows a pretty good match. Further, we also plot the centroid of the solid in space

in Fig. 17 against the results by Sugiyama et al. [102]. This shows that the centroid obtained using the present conservative

Reference-Map-Technique on a grid of 128× 128 is very close to the centroid obtained using a VOF based Eulerian method

of Sugiyama et al. [102] on a grid of 1024× 1024.
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Fig. 18. Collision of two solids placed in a Taylor-Green vortex, showing the smoothness of the interface and the absence of any striations. Color represents

the normal stress = (σ
11
+ σ

22
)/2 in the solid.

Fig. 19. Time evolution of the interface of two solids placed in an initially Taylor-Green vortex field, showing the collision and subsequent rebounce of both

the solids obtained from the simulation on a grid of size 100×100. A plot of centroids of both the solids (solid lines) as a function of time is also included.

Dashed line represents the axis.

4.6. Simulations of solids in a fluid

In this section we present the simulations of more complex configurations of incompressible solid(s) in a fluid domain

such as solid-solid contact, solid-wall contact situations. First, a case of solid-solid contact is considered. Fig. 18 shows

a configuration of two solids placed in an initially imposed Taylor-Green vortex field given by the streamfunction ψ =
ψ0sin(kxx)sin(ky y) where ψ0 = 1 and kx = ky = 1. Domain used for this simulation is [−π ,π ] × [−π ,π ] and is discretized

into a 100 × 100 grid. Two solids are initially circular in shape with radii r1 = r2 = π/3 and are placed at (π ,1.4π )

and (π ,0.6π ) locations respectively. Other parameters used in the simulation are fluid viscosity µ f = 1, shear moduli

µs
1 =µs

2 = 100, solid densities ρs
1 = ρs

2 = 100 and fluid density ρ f = 100. Time evolution of the interface of two solids are

shown in Fig. 19. Solids collide and subsequently rebounce due to the internal stresses developed in them as a result of

deformation. Centroid of both the solids are also plotted as a function of time.

The deformed configuration of the solids along with the normal stresses σ
n
= (σ

11
+σ

22
)/2 are shown in Fig. 18 for the

time t = 0.024. Since the solids are in the rebouncing stage, formation of the four symmetric counter-rotating vortices can

be clearly seen around the solids. A zoomed-in view of the solid is also shown in this Figure to illustrate the smoothness

of the interface obtained in our approach even at such coarse resolution of 100× 100 grid points (due to the exact match

between the level-set field φ and Eξ fields at all times; see Section 3.3). We also do not see any striations in the extrapolated
Eξ fields that was observed in the original RMT (see Figure 10 in [122]), thus eliminating the requirement of the artificial

smoothing routines that were used to remove the striations in the extrapolated region. This test case shows the robustness

of our solver in handling the solid-solid contact situations. Further, the time evolution of the centroid of the colliding solids

are plotted in Fig. 20 for the grid sizes 100× 100, 200× 200 and 400× 400, which shows that the results (including the

collision model) converge with the increase in grid size.

4.6.1. Deviation of det(F) from 1 (volumetric error)

In compressible flows, the conservative form of the momentum equation results in inconsistency between density ad-

vected using Eq. (6) and density computed using ρ0[det(F)]−1 . To alleviate this, Kamrin et al. [50] proposed an alternative

approach for the computation of density in a one-dimensional setting, where the density is always defined in terms of

the motion as opposed to solving the continuity equation. However, in the incompressible limit, density is constant within

the solid. Therefore the Eq. (6) reduces to E∇.Eu = 0, which is satisfied discretely using the projection method. Hence the

inconsistency is only in maintaining ρ = ρ0 within the solid region, i.e., det(F) equal to 1. This condition is satisfied in

the continuous limit (see, Appendix A), and is generally not satisfied discretely. However, a good numerical implementation

holds the value of det(F) close to 1. From Eq. (53) we can write
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Fig. 20. Time evolution of centroids of colliding solids placed in an initially Taylor-Green vortex field. Results from the simulation using grid sizes of

100× 100, 200× 200 and 400× 400 are plotted.

Fig. 21. Volumetric error at two different time instances for the case of two solids initially placed in a Taylor-Green vortex (see, Section 4.6). The error is

only shown for the top solid here.

det(F)= dv/dV . (46)

Hence det(F)− 1= (dv − dV )/dV represents the local volumetric error in an incompressible solid due to the numerical

discretization. Here, we present the volumetric error in the solid obtained using the present approach for the test case of

two solids placed in an initially Taylor-Green vortex, described in Section 4.6. Fig. 21 shows the error for the top solid at

two different time instances (t = 2.4,5.6). Evidently, the volumetric error in the solid at t = 5.4 is lower compared to that

at t = 2.4. Hence, the error (det(F)− 1) does not seem to be accumulating with time, instead it is roughly proportional to

the deformation of the solid. Moreover, the error is localized within the transition zone (�T ) of the solid and the max value

is around 0.14(14%) and is independent of the grid size chosen. This error occurs due to the presence of mixture region

where the stress is computed as a weighted average of the fluid and solid stresses and is typical of any Eulerian approach

that uses a diffuse-interface approach. However, since this error is localized to the transition zone, the total error in the

mean sense is negligible.

Additionally, to quantify the local volumetric error incurred throughout the solid the normalized L2 norm of det(F) from

1 can be computed. This quantity is defined as ||det(F)i − 1||2/n, where i is the cell index and n is the number of cells

inside the solid and is plotted as a function of time in Fig. 22 (b) for three different grid sizes. Another similar measure

that could be used to evaluate the deviation of det(F) from 1 is the net volumetric error of the solid, which represents the

total volume loss or gain of the solid during the simulation. This quantity is defined as the normalized discrete summation

of the det(F)− 1 quantity, i.e.,
∑n

i=0(det(F)i − 1)/n and is plotted as a function of time in Fig. 22 (a). On a uniform grid

this quantity can be expressed as

n
∑

i=0

(det(F)i − 1)

n
=

n
∑

i=0

(dv i − dV i)

(n dV i)
= (V f in − V init)

V init

(47)

where V f in and V init are the final and initial volumes of the solid. Fig. 22 (a) shows the net volumetric error and Fig. 22 (b)

shows the normalized L2 norm error as a function of simulation time for the top solid in the test case of two solids placed

in an initially Taylor-Green vortex for various grid sizes. As the solid deforms, det(F) deviates from 1 and the volumetric

error reaches a value of roughly 1% and the L2 norm error reaches a value of roughly 0.1% for the 100 × 100 grid case,

however when the solid retracts back, det(F) gets closer to 1 and the volumetric error reduces down to 0.25% and the L2
norm error reduces to a value of roughly 0.02%. Therefore, there is no increase in error det(F)− 1 or accumulation with
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Fig. 22. (a) Net volumetric error and (b) L2 norm error, as a function of simulation time for the top solid in the test case of two solids placed in an initially

Taylor-Green vortex.

Fig. 23. Time evolution of the interface of a solid colliding with a rigid wall in a microgravity condition. A plot of centroid of the solid (solid line) as a

function of time is also included. Dashed line represents the axis.

Fig. 24. Time evolution of the interface of a solid (more stiff µs = 1000) colliding with a rigid wall under a non-zero gravity condition. A plot of centroid

of the solid (solid line) as a function of time is also included. Dashed line represents the axis.

time in the present approach. Furthermore, both volumetric and L2 norm errors reduce significantly with increase in the

grid size. Hence, the inconsistency does not pose a critical problem in the present method.

4.6.2. Simulations of solid-wall contact

Next, a sequence of three test cases named (a) collision, (b) bounce (µs = 100) and (c) bounce (µs = 1000) that involve

solid-wall contact situations are considered. These classic test cases involving the collision of elastic solids with a rigid wall

can be very useful and are of practical relevance in many engineering fields of research. In all the three cases, a domain of

[0,2π ] × [0,2π ] is used and a circular shaped solid of radius π/3 is placed at (π ,π ) in an initially quiescent surrounding

fluid. Case (a) is simulated in a microgravity condition (g = 0) and the values of other simulation parameters used in this

case are ρs = 100,ρ f = 100,µs = 100,µ f = 1. Solid is given an initial velocity of Eu =−1 ĵ and since this initial condition

is fictious and doesn’t satisfy incompressibility condition, the solver adjusts the velocity to achieve incompressibility in the

first time step. Hence the effective velocity of the solid after one time step was Eu = 0.48 ĵ. Time evolution of the interface

of the solid is plotted as a function of time as shown in Fig. 23. Solid encounters the rigid wall and bounces back and goes

to a state of rest after losing all its kinetic energy to the surrounding fluid.

Case (b) is simulated in a gravity condition with g = 0.0981 and the values of other simulation parameters used in this

case are ρs = 1000,ρ f = 100 hence a density ratio of ρs/ρ f = 10, µs = 1000,µ f = 10. Solid is driven by the gravity and

is initialized with a zero velocity. Time evolution of the interface of the solid is plotted as a function of time as shown in

Fig. 24. Solid encounters the rigid wall and bounces back and forth until it goes to a state of rest after losing all its kinetic

and potential energy to the surrounding fluid. Case (c) is similar to case (b), but with parameters µs = 100,µ f = 1. Solid is

initialized with zero velocity and the time evolution of the interface of the solid is plotted as a function of time in Fig. 25.

Similar to case (b), here the solid bounces back and forth until it goes to a state of rest, but loses most of its energy to the
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Fig. 25. Time evolution of the interface of a solid (less stiff µs = 100) colliding with a rigid wall under a non-zero gravity condition. Dashed line represents

the axis.

Fig. 26. A plot of centroid of the solid as a function of time for all three cases (a) collision, (b) bounce (µs = 100), and (c) bounce (µs = 1000), that tests

the implementation of solid-wall contact conditions.

fluid at its first encounter with the rigid wall due to a large deformation. The energy transferred to the fluid is eventually

dissipated due to the action of viscosity. Though the strain energy stored in the solid in the event of a deformation is

fully reversible/recoverable (non-viscous solid), energy spent in moving the surrounding fluid is large in the case of large

deformations and hence the solid in the case (c), where the shear modulus is µs = 100, goes to rest much quicker when

compared to the case (b) where the shear modulus is µs = 1000, with other parameters such as density ratio and gravity

being identical. The centroid of the solid plotted as a function of the time for all three cases (a), (b) and (c) are shown in

Fig. 26.

5. Summary and conclusions

We have presented an Eulerian formulation for the simulation of incompressible soft solids in a fluid. Methods that han-

dle solids in a Lagrangian fashion are known to be too expensive for highly deforming solids due to large grid deformations

and severe time step restrictions. On the other hand an Eulerian approach appears to be a more natural choice for such sit-

uations. Hence we have adopted the recently proposed “reference map technique” (RMT) by Valkov et al. [122] to simulate

solids and fluid-solid problems on an Eulerian grid. We extended this formulation for incompressible settings with the use

of an approximate Projection method by Almgren et al. [2] to achieve divergence-free velocity condition.

Our formulation discretely conserves momentum and is very cost-effective. Furthermore, we introduced (a) a least-

squares extrapolation procedure that is more accurate and cost-effective, (b) a modified advection equation for the reference

map field that improves the robustness of the method, (c) a simple, cost-effective way to reconstruct the level-set field that

removes any inconsistencies between the reference map field and the level-set field at all times and thereby eliminating

the need to have more subroutines to fix the issue of striations of the interface (d) use of simple central-difference schemes

to compute the fluxes that improves the stability of the numerical method and to eliminate any spurious dissipation of the

kinetic energy.

We evaluated our solver on a variety of test cases involving solid-wall and solid-solid contact situations and showed that

it is stable for all the cases. Furthermore, the test cases that we formulated can serve as a reference for future developers

to compare and evaluate their models. Overall, this novel approach opens up a new pathway for the high fidelity numerical

simulations of complex, large scale, coupled fluid-solid problems involving large deformations at lower costs compared to

the Lagrangian or ALE methods.
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Fig. 27. Elementary volume before and after deformation.
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Appendix A. Equivalence of E∇ · Eu = 0 and det(F) = 1 relations

We can relate the divergence of velocity to the normal strain rate as

E∇ · Eu = ∂ui

∂xi
= ǫii (48)

where ǫ represents the strain rate. Therefore, the normal strain rate / total dilatation (ǫii = 0) is zero because of the

divergence free condition ( E∇ · Eu = 0). Now, relating the total dilation to the rate of change of elementary volume with

respect to a unit volume as

ǫii =
1

V

D(V)

Dt
= 0 (49)

we can therefore show that the rate of change of elementary volume ( D(V)
Dt

) is zero. This implies that the elementary volume

V remains constant. Now rewriting this condition in a convective coordinate system, we obtain

dv = dV (50)

where dv is the elementary volume after deformation and dV is the elementary volume before deformation as shown in

Fig. 27. These two elementary volumes dv and dV can be re-expressed in terms of vectors Er1 , Er2 and Er3 that form the

undeformed elementary volume dV as

dV = ( Er1 × Er2) · Er3 = ( ENdA) · Er3 (51)

dv = (F Er1 × F Er2) · F Er3 = (Enda) · F Er3 (52)

where ENdA represents the area vector of the face of the elementary volume dV formed by the vectors Er1 and Er2 and Enda
represents the area vector of the face of the elementary volume dv formed by the vectors FEr1 and FEr2 . Now making use

of the Nanson’s formula (Enda= det(F)F−T ENdA) that relates these two area vectors, and making use of the relations in the

Eqs. (51)-(52), we can show that

dv = det(F)dV ⇒ det(F)= 1 (53)

Appendix B. Derivation of the incompressible solid Cauchy stress σ s in terms of components of the reference map Eξ

As described in Section 2.2, we can write the Cauchy stress in terms of the left Cauchy-Green’s deformation tensor (or

stretch tensor, b= FF T ) for an incompressible neo-Hookean solid as
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σ s = 2µs
b− P1 (54)

Now, expressing b in terms of Eξ using the relation in Eq. (4), we obtain

b= ( E∇Eξ)−1( E∇Eξ)−T = (( E∇Eξ)T ( E∇Eξ))−1. (55)

Further, rewriting Eξ in terms of its components α = Eξ .î and β = Eξ . ĵ for a 2D system, we obtain

b=
[[ ∂α

∂x
∂α
∂ y

∂β
∂x

∂β
∂ y

]T [ ∂α
∂x

∂α
∂ y

∂β
∂x

∂β
∂ y

]]−1

=
[

( ∂α
∂x
)2 + ( ∂β

∂x
)2 ( ∂α

∂x
)( ∂α
∂ y
)+ ( ∂β

∂x
)(
∂β
∂ y
)

( ∂α
∂x
)( ∂α
∂ y
)+ ( ∂β

∂x
)(
∂β
∂ y
) ( ∂α

∂ y
)2 + ( ∂β

∂ y
)2

]−1

which can be further simplified by evaluating the inverse of the matrix as

b= det(( E∇Eξ)T ( E∇Eξ))
︸ ︷︷ ︸

C




( ∂α
∂ y
)2 + ( ∂β

∂ y
)2 −

{

( ∂α
∂x
)( ∂α
∂ y
)+ ( ∂β

∂x
)(
∂β
∂ y
)
}

−
{

( ∂α
∂x
)( ∂α
∂ y
)+ ( ∂β

∂x
)(
∂β
∂ y
)
}

( ∂α
∂x
)2 + ( ∂β

∂x
)2



 . (56)

We can further simplify the coefficient C in the Eq. (56) using standard linear algebra identities and show that it is equal

to 1 with the use of the incompressibility condition for solids (det(F)= 1) as

C = det(( E∇Eξ)T ( E∇Eξ))= det( E∇Eξ)2 =
( 1

det(F)

)2

= 1. (57)

Finally, substituting the expression for b in Eq. (56) into the Eq. (54), we obtain the final expression for Cauchy stress σ s in

terms of the components of the reference map field Eξ as

σ s = 2µs




( ∂α
∂ y
)2 + ( ∂β

∂ y
)2 −

{

( ∂α
∂x
)( ∂α
∂ y
)+ ( ∂β

∂x
)(
∂β
∂ y
)
}

−
{

( ∂α
∂x
)( ∂α
∂ y
)+ ( ∂β

∂x
)(
∂β
∂ y
)
}

( ∂α
∂x
)2 + ( ∂β

∂x
)2



− P1 (58)

Appendix C. Discretization of the stress terms in the momentum equation

As shown in Appendix B, we can express the Cauchy stress in terms of the components of the reference map field Eξ as

σ s = 2µs




( ∂α
∂ y
)2 + ( ∂β

∂ y
)2 −

{

( ∂α
∂x
)( ∂α
∂ y
)+ ( ∂β

∂x
)(
∂β
∂ y
)
}

−
{

( ∂α
∂x
)( ∂α
∂ y
)+ ( ∂β

∂x
)(
∂β
∂ y
)
}

( ∂α
∂x
)2 + ( ∂β

∂x
)2



− P1 (59)

where, α = Eξ .î and β = Eξ . ĵ for a 2D system. We use the second-order central difference scheme for the discretization of the

gradients of α and β , which results in a conservative and non-dissipative formulation. If i, j represents the cell index along

x and y directions, we can write the discrete form of σ s as

σ s
i, j,11 = 2µs

[

(
αi, j+1 − αi, j−1

21y
)2 + (βi, j+1 − βi, j−1

21y
)2
]

− P i, j (60)

σ s
i, j,12 = σ s

i, j,21 =−2µs
[

(
αi+1, j − αi−1, j

21x
)(
αi, j+1 − αi, j−1

21y
)+ (βi+1, j − βi−1, j

21x
)(
βi, j+1 − βi, j−1

21y
)
]

(61)

σ s
i, j,22 = 2µs

[

(
αi+1, j − αi−1, j

21x
)2 + (βi+1, j − βi−1, j

21x
)2
]

− P i, j (62)

where σ s
i, j,11 , σ

s
i, j,12 , σ

s
i, j,21 and σ s

i, j,22 are the components of the tensor σ s

i, j
. Notice that we use a wider stencil that uses

i + 1 and i − 1 points to obtain the gradient at i as opposed to a compact stencil that uses i + 1/2 and i − 1/2. Once σ s

i, j

is evaluated at i, j, we evaluate the fluid Cauchy stress σ f

i, j
in a similar fashion using the same stencil. We then obtain the

total Cauchy stress at i, j as

σ
i, j
= Ĥ[φ̂(Ex, t)i, j]i, jσ f

i, j
+
{

1− Ĥ[φ̂(Ex, t)i, j]i, j
}

σ s

i, j
. (63)

Further, to evaluate the divergence of σ at i, j, we use the same stencil as

E∇ · σ
i, j
=
{

(
σ11,i+1, j − σ11,i−1, j

21x
)+ (σ12,i, j+1 − σ12,i, j−1

21y
), (
σ21,i+1, j − σ21,i−1, j

21x
)+ (σ22,i, j+1 − σ22,i, j−1

21y
)
}

(64)

which results in a conservative and consistent discretization of the stress terms that results in correct physical behavior of

the solid as described in Section 4.3.



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E
D

 P
R

O
O

F

Please cite this article in press as: S.S. Jain et al., A conservative and non-dissipative Eulerian formulation for the simulation of soft solids in fluids, J.

Comput. Phys. (2019), https://doi.org/10.1016/j.jcp.2019.108922

JID:YJCPH AID:108922 /FLA [m3G; v1.261; Prn:6/09/2019; 6:00] P.23 (1-26)

S.S. Jain et al. / Journal of Computational Physics ••• (••••) •••••• 23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

References

[1] S. Adami, J. Kaiser, N.A. Adams, I. Bermejo-Moreno, Numerical modeling of shock waves in biomedicine, in: Center for Turbulence Research, Proceed-

ings of the Summer Program, 2016, pp. 15–24.

[2] A.S. Almgren, J.B. Bell, W.Y. Crutchfield, Approximate projection methods: part I. Inviscid analysis, SIAM J. Sci. Comput. 22 (2000) 1139–1159, https://

doi.org/10.1137/S1064827599357024.

[3] D.A. Andrews, P.S. Low, Role of red blood cells in thrombosis, Curr. Opin. Hematol. 6 (1999) 76.

[4] T.D. Aslam, A partial differential equation approach to multidimensional extrapolation, J. Comput. Phys. 193 (2004) 349–355, https://doi.org/10.1016/

j.jcp.2003.08.001.

[5] P.T. Barton, D. Drikakis, E. Romenski, An Eulerian finite-volume scheme for large elastoplastic deformations in solids, Int. J. Numer. Methods Eng. 81

(2010) 453–484.

[6] T. Belytschko, Fluid-structure interaction, Comput. Struct. 12 (1980) 459–469.

[7] R.P. Beyer Jr., A computational model of the cochlea using the immersed boundary method, J. Comput. Phys. 98 (1992) 145–162.

[8] D.L. Chopp, Some improvements of the fast marching method, SIAM J. Sci. Comput. 23 (2001) 230–244, https://doi.org/10.1137/S106482750037617X.

[9] D.K. Clarke, H.A. Hassan, M.D. Salas, Euler calculations for multielement airfoils using Cartesian grids, AIAA J. 24 (1986) 353–358, https://doi.org/10.

2514/3.9273.

[10] G.H. Cottet, E. Maitre, A semi-implicit level set method for multiphase flows and fluid–structure interaction problems, J. Comput. Phys. 314 (2016)

80–92.

[11] G.H. Cottet, E. Maitre, T. Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction, ESAIM: Math. Model. Numer.

Anal. 42 (2008) 471–492.

[12] R. Dillon, L. Fauci, D. Gaver III, A microscale model of bacterial swimming, chemotaxis and substrate transport, J. Theor. Biol. 177 (1995) 325–340.

[13] T. Dunne, An Eulerian approach to fluid–structure interaction and goal-oriented mesh adaptation, Int. J. Numer. Methods Fluids 51 (2006) 1017–1039.

[14] C.D. Eggleton, A.S. Popel, Large deformation of red blood cell ghosts in a simple shear flow, Phys. Fluids 10 (1998) 1834–1845.

[15] E. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simu-

lations, J. Comput. Phys. 161 (2000) 35–60.

[16] L.J. Fauci, A. McDonald, Sperm motility in the presence of boundaries, Bull. Math. Biol. 57 (1995) 679–699.

[17] A.L. Fogelson, R.D. Guy, Platelet–wall interactions in continuum models of platelet thrombosis: formulation and numerical solution, Math. Med. Biol.

21 (2004) 293–334.

[18] M.M. Francois, S.J. Cummins, E.D. Dendy, D.B. Kothe, J.M. Sicilian, M.W. Williams, A balanced-force algorithm for continuous and sharp interfacial

surface tension models within a volume tracking framework, J. Comput. Phys. 213 (2006) 141–173, https://doi.org/10.1016/j.jcp.2005.08.004.

[19] T. Gao, H.H. Hu, Deformation of elastic particles in viscous shear flow, J. Comput. Phys. 228 (2009) 2132–2151.

[20] N.S. Ghaisas, A. Subramaniam, S.K. Lele, A unified high-order Eulerian method for continuum simulations of fluid flow and of elastic–plastic deforma-

tions in solids, J. Comput. Phys. 371 (2018) 452–482.

[21] U. Ghia, K.N. Ghia, C.T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys.

48 (1982) 387–411, https://doi.org/10.1016/0021-9991(82)90058-4.

[22] R. Ghias, R. Mittal, T. Lund, A non-body conformal grid method for simulation of compressible flows with complex immersed boundaries, in: 42nd

AIAA Aerospace Sciences Meeting and Exhibit, 2004, p. 80.

[23] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, J. Périaux, A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid

bodies: application to particulate flow, Int. J. Numer. Methods Fluids 30 (1999) 1043–1066.

[24] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, J. Periaux, A fictitious domain approach to the direct numerical simulation of incompressible viscous

flow past moving rigid bodies: application to particulate flow, J. Comput. Phys. 169 (2001) 363–426.

[25] X. Gong, K. Sugiyama, S. Takagi, Y. Matsumoto, The deformation behavior of multiple red blood cells in a capillary vessel, J. Biomech. Eng. 131 (2009)

074504.

[26] S. Govindjee, P.A. Mihalic, Computational methods for inverse finite elastostatics, Comput. Methods Appl. Mech. Eng. 136 (1996) 47–57.

[27] B.E. Griffith, Simulating the Blood-Muscle-Valve Mechanics of the Heart by an Adaptive and Parallel Version of the Immersed Boundary Method, Ph.D.

thesis, New York University, Graduate School of Arts and Science, 2005.

[28] D. Grigoriadis, S.C. Kassinos, E. Votyakov, Immersed boundary method for the mhd flows of liquid metals, J. Comput. Phys. 228 (2009) 903–920.

[29] R.D. Guy, D.A. Hartenstine, On the accuracy of direct forcing immersed boundary methods with projection methods, J. Comput. Phys. 229 (2010)

2479–2496.

[30] C. Hirt, A.A. Amsden, J. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys. 14 (1974) 227–253.

[31] G. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering. 2000, Wiley & Sons, Ltd., West Sussex, England, 2000.

[32] P.A. van Hoogstraten, P.M. Slaats, F.P. Baaijens, A Eulerian approach to the finite element modelling of neo-Hookean rubber material, Appl. Sci. Res. 48

(1994) 193–210.

[33] G. Hou, J. Wang, A. Layton, Numerical methods for fluid-structure interaction—a review, Commun. Comput. Phys. 12 (2012) 337–377.

[34] H.H. Hu, Direct simulation of flows of solid-liquid mixtures, Int. J. Multiph. Flow 22 (1996) 335–352.

[35] H.H. Hu, N. Patankar, M. Zhu, Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian–Eulerian technique, J. Comput. Phys.

169 (2001) 427–462, https://doi.org/10.1006/jcph.2000.6592.

[36] W.X. Huang, H.J. Sung, An immersed boundary method for fluid–flexible structure interaction, Comput. Methods Appl. Mech. Eng. 198 (2009)

2650–2661.

[37] B. Hübner, E. Walhorn, D. Dinkler, A monolithic approach to fluid–structure interaction using space–time finite elements, Comput. Methods Appl.

Mech. Eng. 193 (2004) 2087–2104.

[38] T.J. Hughes, W.K. Liu, T.K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. Methods Appl.

Mech. Eng. 29 (1981) 329–349.

[39] T.J. Hughes, J.R. Stewart, A space-time formulation for multiscale phenomena, J. Comput. Appl. Math. 74 (1996) 217–229.

[40] G. Iaccarino, G. Kalitzin, C.J. Elkins, Numerical and Experimental Investigation of the Turbulent Flow in a Ribbed Serpentine Passage, Technical Report,

Stanford Univ. CA Dept. of Mechanical Engineering, 2003.

[41] S. Ii, X. Gong, K. Sugiyama, J. Wu, H. Huang, S. Takagi, A full Eulerian fluid-membrane coupling method with a smoothed volume-of-fluid approach,

Commun. Comput. Phys. 12 (2012) 544–576.

[42] S. Ii, K. Sugiyama, S. Takeuchi, S. Takagi, Y. Matsumoto, An implicit full Eulerian method for the fluid–structure interaction problem, Int. J. Numer.

Methods Fluids 65 (2011) 150–165.

[43] S.S. Jain, A. Mani, An incompressible Eulerian formulation for soft solids in fluids, in: Center for Turbulence Research, Annual Research Briefs, 2017,

pp. 349–362.

[44] A. Johnson, T. Tezduyar, Methods for 3D computation of fluid–object interactions in spatially periodic flows, Comput. Methods Appl. Mech. Eng. 190

(2001) 3201–3221.



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E
D

 P
R

O
O

F

Please cite this article in press as: S.S. Jain et al., A conservative and non-dissipative Eulerian formulation for the simulation of soft solids in fluids, J.

Comput. Phys. (2019), https://doi.org/10.1016/j.jcp.2019.108922

JID:YJCPH AID:108922 /FLA [m3G; v1.261; Prn:6/09/2019; 6:00] P.24 (1-26)

24 S.S. Jain et al. / Journal of Computational Physics ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

[45] A.A. Johnson, T.E. Tezduyar, Simulation of multiple spheres falling in a liquid-filled tube, Comput. Methods Appl. Mech. Eng. 134 (1996)

351–373.

[46] A.A. Johnson, T.E. Tezduyar, 3D simulation of fluid-particle interactions with the number of particles reaching 100, Comput. Methods Appl. Mech. Eng.

145 (1997) 301–321.

[47] A.A. Johnson, T.E. Tezduyar, Parallel computation of incompressible flows with complex geometries, Int. J. Numer. Methods Fluids 24 (1997)

1321–1340.

[48] A.A. Johnson, T.E. Tezduyar, Advanced mesh generation and update methods for 3D flow simulations, Comput. Mech. 23 (1999) 130–143.

[49] V. Kalro, T.E. Tezduyar, A parallel 3D computational method for fluid–structure interactions in parachute systems, Comput. Methods Appl. Mech. Eng.

190 (2000) 321–332.

[50] K. Kamrin, C.H. Rycroft, J.C. Nave, Reference map technique for finite-strain elasticity and fluid-solid interaction, J. Mech. Phys. Solids 60 (2012)

1952–1969, https://doi.org/10.1016/j.jmps.2012.06.003.

[51] I. Kataoka, Local instant formulation of two-phase flow, Int. J. Multiph. Flow 12 (1986) 745–758.

[52] D. Kim, H. Choi, Immersed boundary method for flow around an arbitrarily moving body, J. Comput. Phys. 212 (2006) 662–680.

[53] J. Kim, D. Kim, H. Choi, An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Comput. Phys. 171 (2001)

132–150.

[54] Y. Kim, C.S. Peskin, Penalty immersed boundary method for an elastic boundary with mass, Phys. Fluids 19 (2007) 053103.

[55] C.B. Laney, Computational Gasdynamics, Cambridge University Press, 1998.

[56] A.T. Layton, Using integral equations and the immersed interface method to solve immersed boundary problems with stiff forces, Comput. Fluids 38

(2009) 266–272.

[57] D. Le, B. Khoo, K. Lim, An implicit-forcing immersed boundary method for simulating viscous flows in irregular domains, Comput. Methods Appl.

Mech. Eng. 197 (2008) 2119–2130.

[58] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal.

31 (1994) 1019–1044, https://doi.org/10.1137/0731054.

[59] Z. Li, K. Ito, The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, vol. 33, SIAM, 2006.

[60] Z. Li, M.C. Lai, The immersed interface method for the Navier-Stokes equations with singular forces, J. Comput. Phys. 171 (2001) 822–842.

[61] Z. Li, et al., An overview of the immersed interface method and its applications, Taiwan. J. Math. 7 (2003) 1–49.

[62] C. Liu, N.J. Walkington, An Eulerian description of fluids containing visco-elastic particles, Arch. Ration. Mech. Anal. 159 (2001) 229–252.

[63] W.K. Liu, Y. Liu, D. Farrell, L. Zhang, X.S. Wang, Y. Fukui, N. Patankar, Y. Zhang, C. Bajaj, J. Lee, et al., Immersed finite element method and its

applications to biological systems, Comput. Methods Appl. Mech. Eng. 195 (2006) 1722–1749.

[64] W.K. Liu, S. Tang, et al., Mathematical foundations of the immersed finite element method, Comput. Mech. 39 (2007) 211–222.

[65] K. Luo, Z. Wang, J. Fan, A modified immersed boundary method for simulations of fluid–particle interactions, Comput. Methods Appl. Mech. Eng. 197

(2007) 36–46.

[66] E. Maitre, T. Milcent, G.H. Cottet, A. Raoult, Y. Usson, Applications of level set methods in computational biophysics, Math. Comput. Model. 49 (2009)

2161–2169.

[67] A. Mark, B.G. van Wachem, Derivation and validation of a novel implicit second-order accurate immersed boundary method, J. Comput. Phys. 227

(2008) 6660–6680.

[68] C. Michler, S. Hulshoff, E. Van Brummelen, R. De Borst, A monolithic approach to fluid–structure interaction, Comput. Fluids 33 (2004) 839–848.

[69] G.H. Miller, P. Colella, A high-order Eulerian Godunov method for elastic-plastic flow in solids, J. Comput. Phys. 167 (2001) 131–176, https://doi.org/

10.1006/jcph.2000.6665.

[70] S. Mirjalili, S.S. Jain, M. Dodd, Interface-capturing methods for two-phase flows: an overview and recent developments, in: Center for Turbulence

Research, Annual Research Briefs, 2017, pp. 117–135.

[71] R. Mittal, C. Bonilla, H. Udaykumar, Cartesian grid methods for simulating flows with moving boundaries, in: Computational Methods and Experimen-

tal Measurements-XI, 2003, pp. 557–566.

[72] R. Mittal, G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37 (2005) 239–261.

[73] R. Mittal, V. Seshadri, H.S. Udaykumar, Flutter, tumble and vortex induced autorotation, Theor. Comput. Fluid Dyn. 17 (2004) 165–170.

[74] R. Mittal, Y. Utturkar, H. Udaykumar, Computational modeling and analysis of biomimetic flight mechanisms, in: 40th AIAA Aerospace Sciences

Meeting & Exhibit, 2002, p. 865.

[75] S. Mittal, T.E. Tezduyar, Massively parallel finite element computation of incompressible flows involving fluid-body interactions, Comput. Methods

Appl. Mech. Eng. 112 (1994) 253–282.

[76] S. Mittal, T.E. Tezduyar, Parallel finite element simulation of 3D incompressible flows: fluid-structure interactions, Int. J. Numer. Methods Fluids 21

(1995) 933–953.

[77] J. Mohd-Yusof, For simulations of flow in complex geometries, in: Annual Research Briefs, 1997, p. 317.

[78] Y. Mori, C.S. Peskin, Implicit second-order immersed boundary methods with boundary mass, Comput. Methods Appl. Mech. Eng. 197 (2008)

2049–2067.

[79] Y. Morinishi, T.S. Lund, O.V. Vasilyev, P. Moin, Fully conservative higher order finite difference schemes for incompressible flow, J. Comput. Phys. 143

(1998) 90–124.

[80] N. Nagano, K. Sugiyama, S. Takeuchi, S. II, S. Takagi, Y. Matsumoto, Full-Eulerian finite-difference simulation of fluid flow in hyperelastic wavy channel,

J. Fluid Sci. Technol. 5 (2010) 475–490.

[81] E. Neumann, M. Schaefer-Ridder, Y. Wang, P. Hofschneider, Gene transfer into mouse lyoma cells by electroporation in high electric fields, EMBO J. 1

(1982) 841–845.

[82] C. Nitikitpaiboon, K. Bathe, An arbitrary Lagrangian-Eulerian velocity potential formulation for fluid-structure interaction, Comput. Struct. 47 (1993)

871–891.

[83] S. Okazawa, K. Kashiyama, Y. Kaneko, Eulerian formulation using stabilized finite element method for large deformation solid dynamics, Int. J. Numer.

Methods Eng. 72 (2007) 1544–1559.

[84] E. Onate, S.R. Idelsohn, M.A. Celigueta, R. Rossi, Advances in the particle finite element method for the analysis of fluid–multibody interaction and

bed erosion in free surface flows, Comput. Methods Appl. Mech. Eng. 197 (2008) 1777–1800.

[85] N. Patankar, A formulation for fast computations of rigid particulate flows, in: Center for Turbulence Research Annual Research Briefs 2001, 2001,

pp. 185–196.

[86] C.S. Peskin, Flow patterns around heart valves: a numerical method, J. Comput. Phys. 10 (1972) 252–271.

[87] C.S. Peskin, The fluid dynamics of heart valves: experimental, theoretical, and computational methods, Annu. Rev. Fluid Mech. 14 (1982) 235–259,

https://doi.org/10.1146/annurev.fl.14.010182.001315.

[88] C.S. Peskin, The fluid dynamics of heart valves: experimental, theoretical, and computational methods, Annu. Rev. Fluid Mech. 14 (1982)

235–259.

[89] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517.



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E
D

 P
R

O
O

F

Please cite this article in press as: S.S. Jain et al., A conservative and non-dissipative Eulerian formulation for the simulation of soft solids in fluids, J.

Comput. Phys. (2019), https://doi.org/10.1016/j.jcp.2019.108922

JID:YJCPH AID:108922 /FLA [m3G; v1.261; Prn:6/09/2019; 6:00] P.25 (1-26)

S.S. Jain et al. / Journal of Computational Physics ••• (••••) •••••• 25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

[90] C. Pozrikidis, Modeling and Simulation of Capsules and Biological Cells, CRC Press, 2003.

[91] C. Pozrikidis, Computational Hydrodynamics of Capsules and Biological Cells, CRC Press, 2010.

[92] M. Raessi, H. Pitsch, Consistent mass and momentum transport for simulating incompressible interfacial flows with large density ratios using the

level set method, Comput. Fluids 63 (2012) 70–81.

[93] A. Robinson-Mosher, C. Schroeder, R. Fedkiw, A symmetric positive definite formulation for monolithic fluid structure interaction, J. Comput. Phys.

230 (2011) 1547–1566.

[94] M.E. Rosti, L. Brandt, Numerical simulation of turbulent channel flow over a viscous hyper-elastic wall, J. Fluid Mech. 830 (2017) 708–735.

[95] C.H. Rycroft, C.H. Wu, Y. Yu, K. Kamrin, Reference map technique for incompressible fluid-structure interaction, arXiv preprint arXiv:1810.03015,

2018.

[96] P. Ryzhakov, R. Rossi, S. Idelsohn, E. Oñate, A monolithic Lagrangian approach for fluid–structure interaction problems, Comput. Mech. 46 (2010)

883–899.

[97] K. Stein, R. Benney, V. Kalro, T.E. Tezduyar, J. Leonard, M. Accorsi, Parachute fluid–structure interactions: 3-D computation, Comput. Methods Appl.

Mech. Eng. 190 (2000) 373–386.

[98] K. Stein, R. Benney, T. Tezduyar, J. Potvin, Fluid–structure interactions of a cross parachute: numerical simulation, Comput. Methods Appl. Mech. Eng.

191 (2001) 673–687.

[99] J.M. Stockie, S.I. Green, Simulating the motion of flexible pulp fibres using the immersed boundary method, J. Comput. Phys. 147 (1998)

147–165.

[100] K. Sugiyama, S. Ii, K. Shimizu, S. Noda, S. Takagi, A full Eulerian method for fluid-structure interaction problems, Proc. IUTAM 20 (2017) 159–166.

[101] K. Sugiyama, S. Ii, S. Takeuchi, S. Takagi, Y. Matsumoto, Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow, Comput.

Mech. 46 (2010) 147–157.

[102] K. Sugiyama, S. Ii, S. Takeuchi, S. Takagi, Y. Matsumoto, A full Eulerian finite difference approach for solving fluid–structure coupling problems, J.

Comput. Phys. 230 (2011) 596–627.

[103] S. Takagi, K. Sugiyama, S. Ii, Y. Matsumoto, A review of full Eulerian methods for fluid structure interaction problems, J. Appl. Mech. 79 (2012) 010911.

[104] K. Takizawa, B. Henicke, D. Montes, T.E. Tezduyar, M.C. Hsu, Y. Bazilevs, Numerical-performance studies for the stabilized space–time computation of

wind-turbine rotor aerodynamics, Comput. Mech. 48 (2011) 647–657.

[105] K. Takizawa, B. Henicke, A. Puntel, T. Spielman, T.E. Tezduyar, Space-time computational techniques for the aerodynamics of flapping wings, J. Appl.

Mech. 79 (2012) 010903.

[106] K. Takizawa, B. Henicke, T.E. Tezduyar, M.C. Hsu, Y. Bazilevs, Stabilized space—time computation of wind-turbine rotor aerodynamics, Comput. Mech.

48 (2011) 333–344.

[107] T.E. Tezduyar, M. Behr, S. Mittal, J. Liou, A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-

spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput. Methods

Appl. Mech. Eng. 94 (1992) 353–371.

[108] R. Torii, M. Oshima, T. Kobayashi, K. Takagi, T.E. Tezduyar, Influence of wall elasticity on image-based blood flow simulations, Nippon Kikai Gakkai

Ronbunshu, A Hen/Trans. Jpn. Soc. Mech. Eng., Part A 70 (2004) 1224–1231.

[109] R. Torii, M. Oshima, T. Kobayashi, K. Takagi, T.E. Tezduyar, Computer modeling of cardiovascular fluid–structure interactions with the deforming-

spatial-domain/stabilized space–time formulation, Comput. Methods Appl. Mech. Eng. 195 (2006) 1885–1895.

[110] R. Torii, M. Oshima, T. Kobayashi, K. Takagi, T.E. Tezduyar, Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood

pressures, Comput. Mech. 38 (2006) 482–490.

[111] R. Torii, M. Oshima, T. Kobayashi, K. Takagi, T.E. Tezduyar, Influence of wall elasticity in patient-specific hemodynamic simulations, Comput. Fluids 36

(2007) 160–168.

[112] R. Torii, M. Oshima, T. Kobayashi, K. Takagi, T.E. Tezduyar, Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—

dependence of the effect on the aneurysm shape, Int. J. Numer. Methods Fluids 54 (2007) 995–1009.

[113] R. Torii, M. Oshima, T. Kobayashi, K. Takagi, T.E. Tezduyar, Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of

structural modeling, Comput. Mech. 43 (2008) 151.

[114] R. Torii, M. Oshima, T. Kobayashi, K. Takagi, T.E. Tezduyar, Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of

artery and aneurysm shapes, Comput. Methods Appl. Mech. Eng. 198 (2009) 3613–3621.

[115] R. Torii, M. Oshima, T. Kobayashi, K. Takagi, T.E. Tezduyar, Influence of wall thickness on fluid–structure interaction computations of cerebral

aneurysms, Int. J. Numer. Methods Biomed. Eng. 26 (2010) 336–347.

[116] R. Torii, M. Oshima, T. Kobayashi, K. Takagi, T.E. Tezduyar, Role of 0D peripheral vasculature model in fluid–structure interaction modeling of

aneurysms, Comput. Mech. 46 (2010) 43–52.

[117] R. Torii, M. Oshima, T. Kobayashi, K. Takagi, T.E. Tezduyar, Influencing factors in image-based fluid–structure interaction computation of cerebral

aneurysms, Int. J. Numer. Methods Fluids 65 (2011) 324–340.

[118] G. Tryggvason, R. Scardovelli, S. Zaleski, Direct Numerical Simulations of Gas–Liquid Multiphase Flows, Cambridge University Press, 2011.

[119] V.T. Turitto, A.M. Benis, E.F. Leonard, Platelet diffusion in flowing blood, Ind. Eng. Chem. Fundam. 11 (1972) 216–223.

[120] H. Udaykumar, W. Shyy, M. Rao, Elafint: a mixed Eulerian–Lagrangian method for fluid flows with complex and moving boundaries, Int. J. Numer.

Methods Fluids 22 (1996) 691–712.

[121] H. Udaykumar, L. Tran, D. Belk, K. Vanden, An Eulerian method for computation of multimaterial impact with eno shock-capturing and sharp inter-

faces, J. Comput. Phys. 186 (2003) 136–177.

[122] B. Valkov, C.H. Rycroft, K. Kamrin, Eulerian method for multiphase interactions of soft solid bodies in fluids, J. Appl. Mech. 82 (2015) 041011, https://

doi.org/10.1115/1.4029765, arXiv:1409.6183.

[123] J. Wang, A. Layton, Numerical simulations of fiber sedimentation in Navier-Stokes flows, Commun. Comput. Phys. 5 (2009) 61.

[124] X. Wang, L.T. Zhang, Modified immersed finite element method for fully-coupled fluid–structure interactions, Comput. Methods Appl. Mech. Eng. 267

(2013) 150–169.

[125] X.S. Wang, From immersed boundary method to immersed continuum methods, Int. J. Multiscale Comput. Eng. 4 (2006).

[126] X.S. Wang, An iterative matrix-free method in implicit immersed boundary/continuum methods, Comput. Struct. 85 (2007) 739–748.

[127] X.S. Wang, Immersed boundary/continuum methods, in: Computational Modeling in Biomechanics, Springer, 2010, pp. 3–48.

[128] H. Watanabe, S. Sugiura, H. Kafuku, T. Hisada, Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite

element method, Biophys. J. 87 (2004) 2074–2085.

[129] G.D. Weymouth, Physics and Learning Based Computational Models for Breaking Bow Waves Based on New Boundary Immersion Approaches, Ph.D.

thesis, Massachusetts Institute of Technology, 2008.

[130] G.D. Weymouth, D.G. Dommermuth, K. Hendrickson, D.K.P. Yue, Advancements in Cartesian-Grid Methods for Computational Ship Hydrodynamics,

2006.

[131] D.M. Wootton, D.N. Ku, Fluid mechanics of vascular systems, diseases, and thrombosis, Annu. Rev. Biomed. Eng. 1 (1999) 299–329.

[132] F. Xiao, Computation of complex flow containing rheological bodies, Comput. Fluid Dyn. J. 8 (1999) 43–49.



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E
D

 P
R

O
O

F

Please cite this article in press as: S.S. Jain et al., A conservative and non-dissipative Eulerian formulation for the simulation of soft solids in fluids, J.

Comput. Phys. (2019), https://doi.org/10.1016/j.jcp.2019.108922

JID:YJCPH AID:108922 /FLA [m3G; v1.261; Prn:6/09/2019; 6:00] P.26 (1-26)

26 S.S. Jain et al. / Journal of Computational Physics ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

[133] J. Yang, E. Balaras, An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries, J. Comput.

Phys. 215 (2006) 12–40.

[134] Y. Yuki, S. Takeuchi, T. Kajishima, Efficient immersed boundary method for strong interaction problem of arbitrary shape object with the self-induced

flow, J. Fluid Sci. Technol. 2 (2007) 1–11.

[135] L. Zhang, M. Gay, Immersed finite element method for fluid-structure interactions, J. Fluids Struct. 23 (2007) 839–857.

[136] H. Zhao, J.B. Freund, R.D. Moser, A fixed-mesh method for incompressible flow–structure systems with finite solid deformations, J. Comput. Phys. 227

(2008) 3114–3140.

[137] L. Zhu, C.S. Peskin, Interaction of two flapping filaments in a flowing soap film, Phys. Fluids 15 (2003) 1954–1960.



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E
D

 P
R

O
O

F

Please cite this article in press as: S.S. Jain et al., A conservative and non-dissipative Eulerian formulation for the simulation of soft solids in fluids, J.

Comput. Phys. (2019), https://doi.org/10.1016/j.jcp.2019.108922

JID:YJCPH AID:108922 /FLA [m3G; v1.261; Prn:6/09/2019; 6:00] P.27 (1-26)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Sponsor names

Do not correct this page. Please mark corrections to sponsor names and grant numbers in the main text.

Office of Naval Research, country=United States, grants=119675



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E
D

 P
R

O
O

F

Please cite this article in press as: S.S. Jain et al., A conservative and non-dissipative Eulerian formulation for the simulation of soft solids in fluids, J.

Comput. Phys. (2019), https://doi.org/10.1016/j.jcp.2019.108922

JID:YJCPH AID:108922 /FLA [m3G; v1.261; Prn:6/09/2019; 6:00] P.28 (1-26)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Highlights

• An Eulerian formulation for the simulation of fluid-solid incompressible flows.

• Least-square procedure for extrapolation of reference-map results in higher accuracy at lower costs.

• Modified reference-map advection equation results in improved robustness of the method.

• Wrinkle free solid-fluid interface has been achieved with no artificial damping/smoothing.


