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Scalar transport modeling for two-phase flows
with a diffuse-interface method

By S. S. Jain AND A. Mani

1. Motivation and objectives

Transport of scalars in a two-phase flow is an interesting problem that finds applica-
tions in nature such as environmental processes in the oceans (Craig et al. 1993), as well
as industrial processes such as electrochemical systems (Fernandez et al. 2014), and sys-
tems involving cavitation and boiling (Wasekar & Manglik 2000). Typically, this problem
involves very disparate length, and time scales and the scalar quantities often experience
very large and small diffusivities and mobilities in different phases. These disparate prop-
erties result in scalars effectively being confined to one of the phases in the time scales of
interest. Hence, it is a numerically challenging task to resolve the gradient of the scalar
concentration at the material interface, and it usually leads to numerical leakage and
negative values of the scalar concentration at the material interfaces.

To the best of our knowledge, still lacking are numerical methods with simulation
capabilities that can accurately capture the behavior of the scalar concentration fields
without any numerical leakage from one phase to the other while still maintaining the
positivity of the scalar concentration values. To address this deficiency, we have developed
a general scalar transport model for two-phase flows, particularly for material interfaces
modeled using a diffuse-interface method (phase-field method). Our newly developed
scalar transport model prevents the numerical leakage of scalars from one phase to the
other, even in challenging flow environments, such as in the presence of electrokinetic
effects, and in turbulent flows. We discretize the equation using the second-order central
scheme in space due to its non-dissipative nature that is crucial for the simulation of
turbulent flows (Mittal & Moin 1997), and we have proved that the resulting discrete
equations maintain the positivity of the scalar concentration, given that the parameters
in the equation are chosen based on the criterion provided.

The model is general enough that the scalar can represent soluble surfactants, elec-
trolytes, chemical species in combustion modeling, etc. In this article, a generic scalar
transport model along with the definition of the scalar concentration will be provided
in Section 3. The proposed scalar transport model that is solved in conjunction with
the conservative diffuse-interface method (Section 2) will be presented in Section 4. The
positivity criterion for the proposed model will be presented in Section 5. Later, the pro-
posed model will be applied towards the simulation of aqueous electrolytes by coupling
the scalar transport model, which can be thought of as a modified Nernst-Planck equation
(Kirby 2010) for two-phase flows, with the conservative diffuse-interface method (Mirjalili
et al. 2020; Jain et al. 2019), the Navier-Stokes equations and the Maxwell’s equations
(Griffiths 2005) in Section 6. Finally, we describe the choice of numerical discretization
in Section 7 and present our results in Section 8.
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2. Conservative diffuse-interface method

The first step towards simulating scalars in a two-phase flow is to choose an interface-
capturing method that can accurately simulate interfaces in complex flows. In this work,
we choose the recently developed conservative diffuse-interface method by Mirjalili et al.
(2020) (for incompressible flows) and Jain et al. (2019) (for compressible flows). In this
method, the volume-fraction advection equation is written as

∂φ

∂t
+ (~u · ~∇)φ = ~∇ ·

[
Γ
{
ε~∇φ− φ(1− φ)~n

}]
, (2.1)

where φ is the volume fraction field, Γ{ε~∇φ− φ(1− φ)~n} = ~a(φ) term on the right-hand

side is the flux of the interface regularization (diffusion-sharpening) term, ~n = ~∇φ/|~∇φ|
is the outward normal of the interface, and Γ and ε are the interface parameters, where Γ
represents an artificial regularization velocity scale and ε represents an interface thickness
scale. This equation satisfies both φ1 and φ2, where φ1 and φ2 = 1− φ1 are the volume
fraction fields for two phases 1 and 2. We can show that the interface regularization term
satisfies ~a(φ1) = −~a(φ2) for phases 1 and 2. The volume fraction field φ is said to be
bounded and total-variation diminishing (TVD) if Γ and ε are chosen such that they
satisfy the criterion

ε

∆x
≥ ( |u|max

Γ + 1)

2
, (2.2)

where ∆x is the grid size and |u|max is the maximum value of the velocity in the domain.
Now, making an assumption that the flow is incompressible, Eq. (2.1) reduces to a

conservative form of the transport equation

∂φ

∂t
+ ~∇ · (~uφ) = ~∇ ·

[
Γ
{
ε~∇φ− φ(1− φ)~n

}]
, (2.3)

and can be solved in conjunction with the momentum balance equation

∂ρ~u

∂t
+ ~∇ · (ρ~u⊗ ~u+ p1) = ~∇ · τ + ~∇ · (~f ⊗ ~u), (2.4)

where ~f =
∑2
l=1 ρl~al is the net mass regularization flux, ρl is the density of the phase l,

and ρ =
∑2
l=1 ρlφl is the total density of the mixture. The Cauchy stress tensor is written

as τ = 2µD − 2µ(~∇ · ~u)1/3, where µ is the dynamic viscosity of the mixture evaluated

using the one-fluid mixture rule (Kataoka 1986) as µ =
∑2
l=1 φlµl, D = {(~∇~u)+(~∇~u)T }/2

is the strain-rate tensor, and p is the pressure. Since an incompressible flow assumption
is made, a pressure field p that satisfies the criterion of zero velocity divergence can be
computed using the fractional-step method of Kim & Moin (1985) adapted for two-phase
flows.

The advantages of this diffuse-interface method are that it maintains the bounded-
ness of the volume fraction field even with the use of a central-difference scheme for the
discretization of all the operators, which is a physical realizability requirement for the
simulation of two-phase flows. The transport of the volume fraction field also inherently
satisfies the TVD property without having to add any flux limiters that destroy the
non-dissipative nature of the scheme. Another advantage of all diffuse-interface meth-
ods is that the absence of geometric reconstruction of the interface (typical of sharp-
interface methods) results in a low-cost, load-balanced, and highly scalable method; see
Jain et al. (2019) for the scalability tests. For more discussion and comparison between
sharp-interface and diffuse-interface methods, see Mirjalili et al. (2017, 2019).
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3. Transport equation for scalar

Let c represent the local concentration (amount of scalar per unit volume) of any scalar
quantity of interest. If the scalar quantity is not being generated or destroyed, then it is
conserved, implying that ∫

Ω

c dV = constant, (3.1)

where Ω is the domain. If the scalar is now confined to only one of the phases, we can
then define another variable c̃ that represents the local concentration of the scalar in that
phase (amount of scalar per unit volume of the phase). Then, the relation between c and
c̃ is

c = φc̃, (3.2)

where φ represents the volume fraction of the phase (volume of the phase per total
volume) where the scalar is present. In the limit of the interface being infinitely sharp,
φ reduces to a Heaviside function that is 1 inside the phase and 0 outside. Hence, in the
infinitely sharp interface limit

c =

{
c̃ inside the phase where scalar is present

0 elsewhere.
(3.3)

Now, assuming that c̃ satisfies a generic transport (advection-diffusion) equation within
the phase

∂c̃

∂t
+ ~∇ · (~ucc̃) = ~∇ · (D~∇c̃), (3.4)

where ~uc = ~u+ ~ur represents the total convective velocity of the scalar, ~u represents the
fluid velocity, ~ur represents any effective velocity with which the scalar is being advected
relative to the fluid (e.g., electromigration velocity ~ur = ν ~E, where ν is the electrical

mobility and ~E is the electric field), and D represents the diffusivity of the scalar. Since
the scalar is confined to the phase and is not allowed to cross the phase boundary, the
no-flux boundary condition can be written as

(D∇c̃− ~ur c̃) · ~n = 0. (3.5)

Combining Eq. (3.4) and Eq. (3.5), we can arrive at the form

∂(φc̃)

∂t
+ ~∇ · (φ~ucc̃) = ~∇ · (Dφ~∇c̃). (3.6)

A similar form of the equation was used by Berry et al. (2013) along with a sharp-interface
method (coupled level-set and volume-of-fluid method) to simulate the electrokinetics of
liquid-liquid systems.

In the discrete limit, however, the interface is not infinitely sharp, and the smallest
interface thickness that can be handled on an Eulerian grid is ∼ O(∆x). The discrete
representation of c and c̃ are shown in Figure 1. In this discrete limit that is typical
of all numerical simulations, we can observe that c̃ is not a conserved quantity and
it does not satisfy the transport equation in Eq. (3.4), unless an equivalent discrete
implementation is derived. However, c is still a conserved quantity [Eq. (3.1)], and hence
we could instead write a transport equation for c and look for modifications that mimic
the no-flux boundary condition at the interface. In other words, the profile of the scalar
concentration field c must be consistent with the profile of the volume fraction field φ at
the interface (see Figure 3; we define consistency more rigorously in Section 4.1). With
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*Assuming uniform scalar concentration of 1 within phase 1 for illustration

Phase 1
Phase 2

        is not
conserved

             is 
conserved

*

Figure 1. Schematic representing the discrete c and c̃ quantities. Opacity of the color is pro-
portional to the field value in that particular cell. Here, “conc.” represents the local scalar
concentration, “vol. frac.” is the local volume fraction of the phase and cv represents a control
volume.

this notion, we could start with a generic form of the transport equation for c as

∂c

∂t
+ ~∇ · (~ucc) = ~∇ · (D~∇c). (3.7)

A straightforward modification (a naive approach) to this equation could be to multiply

φ to ~ur and D, such that the flux D~∇c− ~urc goes to zero as φ goes to zero outside the
phase as

∂c

∂t
+ ~∇ · (~uc+ φ~urc) = ~∇ · (Dφ~∇c). (3.8)

Though this simple modification to achieve no-flux boundary condition sounds promis-
ing, the scalar concentration field c that we obtain by solving Eq. (3.8) will not be consis-
tent with the volume fraction field φ, and in the long run, it results in predicting a lower
value of c with an O(1) error due to the numerical leakage of scalar as shown in Figure
2, thus affecting the overall accuracy of the solution. In problems with two-way coupling
between the flow and the transport of scalar, the local concentration of the scalar field is
crucial in predicting accurate flow fields. For example, the transport of reacting species
in combustion modeling and ion transport in electrokinetics both modify the flow field
depending on the local concentration of the scalar being transported, and the spurious
leakage of the scalar and the resulting O(1) error could be detrimental to the overall
accuracy of the simulation. In the worst case scenario, the numerical solution for the
scalar concentration field can admit unphysical negative values near the interface and
often within the phase with lower diffusivity, which might result in unrealizable scalar
concentration fields.

Common ways to address this issue of unphysical negative values is to use flux limiters
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Figure 2. Simulation results obtained by solving Eq. (3.8), showing the one-dimensional drop
(φ field) and the scalar concentration (c field) at (a) initial time and (b) later times. Parameters
used in this simulation are D = 0.01, ∆x = 0.01, u = 0, and ur = 0. The arrow denotes the
time evolution of the scalar concentration field.

and positivity-preserving limiters (Laney 1998). However, the numerical diffusivity asso-
ciated with these schemes inevitably adds to the unphysical leakage of the scalar across
the interface and into the impermeable phase. Hence, in the current work, we present a
modified equation for the transport of scalars in two-phase flows, along with a consistent
numerical discretization scheme that overcomes the challenges that were presented here.

4. Proposed model equation for scalar transport in two-phase flows

With the objective of developing a scalar transport model that does not admit negative
values for the scalar concentration field, nor permit unphysical leakage of the scalar across
the interface, we propose a model of the form

∂c

∂t
+ ~∇ · (~uc+ φ~urc) = ~∇ ·

[
D

{
~∇c− (1− φ)~nc

ε

}]
, (4.1)

where ~n is the outward normal vector to the phase where the scalar is assumed to
be present, ε is the same interface parameter that is present in Eqs. (2.1)-(2.3). The
proposed model equation in Eq. (4.1) is a modification to Eq. (3.8), which failed to
prevent numerical leakage of the scalar and maintain the no-flux boundary condition for
the scalar at the interface (Figure 2). The proposed model equation in Eq. (4.1) is valid
for both incompressible and compressible flows. However, in this brief, the focus will be
on the incompressible regime.

Away from the interface, in the bulk region where the scalar is assumed to be present
(φ→ 1), the proposed model in Eq. (4.1) reduces to

∂c

∂t
+ ~∇ · (~uc+ ~urc) = ~∇ ·

(
D~∇c

)
, (4.2)

which is a generic transport equation (advection-diffusion) for scalars in the bulk region.
Hence, the model has no effect on the transport of scalars away from the interface.

4.1. Equilibrium solutions

As described in Section 3, consistency of the scalar concentration field c and the volume
fraction field φ is crucial in preventing the unphysical numerical leakage of the scalar
across the interface, when the scalar is confined to only one of the phases. To present this
consistency of the scalar concentration field obtained by solving the proposed model in
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Figure 3. Equilibrium solutions for φ and c, showing consistency between the scalar
concentration field and the volume fraction field. Here, c0 is chosen to be equal to 5 for

illustration.

Eq. (4.1) and the volume fraction field obtained by solving the diffuse-interface model in
Eq. (2.1), we look at the steady-state equilibrium solutions to the corresponding equa-
tions. In steady state, for ~u = 0 and ~ur = 0 and in one dimension, the volume-fraction
advection equation in Eq. (2.1) reduces to the form

0 = ~∇ ·
[
Γε
{
~∇φ− (1− φ)~nφ

ε

}]
⇒ d2φ

dx2
− 1

ε

d{(1− φ)φ}
dx

= 0, (4.3)

for ~n = +1 and the proposed scalar-transport equation in Eq. (4.1) reduces to the form

0 = ~∇ ·
[
D
{
~∇c− (1− φ)~nc

ε

}]
⇒ d2c

dx2
− 1

ε

d{(1− φ)c}
dx

= 0. (4.4)

Now, assuming that the interface is at the origin as shown in Figure 3, and integrating
the Eq. 4.3 along with the boundary conditions

φ =

{
0 x→ −∞
0.5 x = 0,

(4.5)

we obtain

φ =
e(x/ε)

1 + e(x/ε)
=

1

2

{
1 + tanh

( x
2ε

)}
. (4.6)

Using the equilibrium solution for φ in Eq. (4.6) and solving for c by integrating the Eq.
(4.4) and using the boundary conditions

c =

{
0 x→ −∞
c0 x = 0,

(4.7)

we obtain

c = 2c0
e(x/ε)

1 + e(x/ε)
= c0

{
1 + tanh

( x
2ε

)}
. (4.8)

Hence, the equilibrium profiles of c and φ are both a hyperbolic tangent functions of the
spatial coordinate x, and are consistent at the interface, which represents a constant c̃
(see Figure 1). If we choose c0 to be equal to 0.5, the c and φ profiles are identical. For
other values of c0, c is only scaled by a constant factor, but still retains a hyperbolic
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tangent shape as illustrated in Figure 3. Here, c0 was chosen to be equal to 5, for the
sake of illustration. Hence, the scalar concentration and volume fraction fields are con-
sistent, which results in the transport of scalar within the phase with an effective no-flux
boundary condition at the interface.

5. Positivity of scalars

Positivity of the scalar concentration field is a crucial realizability criterion that needs
to be satisfied at all times in the simulation. A common approach to achieve this is to
use flux limiters and positivity-preserving limiters (Laney 1998). However, these limiters
add artificial dissipation to the scheme and also lead to unphysical leakage of the scalar
across the interface. Hence, we use a central-difference scheme to discretize the operators
in our system of equations because of its well-known non-dissipative property (Moin &
Verzicco 2016), and derive a criterion [Eq. (5.1); Figure 4] for the choice of grid size to
be used in the simulation. We propose in Theorem 5.1 that the criterion in Eq. (5.1) is a
sufficient condition for the proposed model transport equation in Eq. (4.1) to maintain
the positivity of scalar concentration field c at all times during the simulation.

Theorem 5.1. If φk is bounded between 0 and 1 ∀k ∈ Z+ on a uniform one-dimensional
grid, then cki ≥ 0 holds ∀k ∈ Z+, where k is the time-step index and i is the grid index,
provided

∆x ≤
(

2D

|u|max + |ur|max + D
ε

)
, (5.1)

where |u|max and |ur|max are the maximum fluid velocity and relative velocity of the scalar
in the domain, and

∆t ≤ ∆x2

2D
(5.2)

are satisfied.

Proof of Theorem 5.1 is deferred to a future article. Note that φ is assumed to be
bounded throughout the simulation. This boundedness of φ can be achieved by choosing
appropriate values for the interface parameters Γ and ε such that they satisfy the criterion
in the Eq. (2.2). For more details on the boundedness of φ, see Mirjalili et al. (2020) for
incompressible flows and Jain et al. (2019) for compressible flows.

The criterion on the time-step size in the Eq. (5.2) is a Courant-Friedrich-Levy (CFL)
condition for the scalar diffusion process, and is typically already satisfied in an explicit
time-marching scheme to achieve temporal stability. Hence, the only additional crite-
rion that needs to be satisfied to maintain the positivity of the evolution of the scalar
concentration field is the restriction on the grid size given in the Eq. (5.1).

It was shown in Section 4 that the proposed model transport equation in Eq. (4.1)
reduces to a generic transport equation [Eq. (4.2)] for scalars in the bulk region away
from the interface. Now, repeating the analysis in Theorem 5.1 for the scalar transport
equation for the bulk region [Eq. (4.2)], we can show that the criterion that needs to be
satisfied to maintain the positivity of evolution of the scalar concentration field is the
restriction on the grid size given by

∆x ≤
(

2D

|u|max + |ur|max

)
. (5.3)
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Figure 4. Graphical representation of the positivity criteria. The solid line is the positivity
criterion in Eq. (5.4) for the proposed scalar transport model [Eq. (4.1)], and the dashed line is
the positivity criterion in Eq. (5.5) for the reduced scalar transport model for the bulk region
away from the interface [Eq. (4.2)]. The dots represent the positivity criteria for the choice of
ε = ∆x and the arrow represents the additional restriction imposed on the grid size due to the
effective no-flux boundary condition for the scalar at the interface compared to the bulk region
away from the interface.

5.1. Spatial resolution requirements

Now, rewriting the positivity criterion for the proposed scalar transport model in Eq.
(5.1) in terms of the non-dimensional groups [ε/∆x] and [D/{(u+ ur)ε}] as

[ ε

∆x

]
≥

1 +
[

D
(u+ur)ε

]

2
[

D
(u+ur)ε

] (5.4)

and the positivity criterion in Eq. (5.3) for the bulk region away from the interface as

[ ε

∆x

]
≥ 1

2
[

D
(u+ur)ε

] , (5.5)

where u = |u|max and ur = |ur|max, symbol [·] represents a non-dimensional group. By
plotting [ε/∆x] vs [D/{(u+ur)ε}] in Figure 4, we can see that any grid size ∆x for a given
ε and D that lies above the lines maintains the positivity of the scalar concentration field
throughout the simulation. The solid line in Figure 4 is for the proposed model transport
equation in Eq. (4.1) and the dashed line is for the reduced transport equation in Eq.
(4.2) for the bulk region away from the interface. Because the proposed model transport
equation imposes a more restrictive condition on the grid size ∆x for a given ε and D
than the reduced transport equation, the criterion in Eq. (5.1) should be used to choose
the grid size throughout the domain.

In the conservative diffuse-interface method, ε is typically chosen to be equal to ∆x
(Jain et al. 2019). With this choice of ε, and recognizing that the non-dimensional group
[D/{(u+ ur)ε}] = [D/{(u+ ur)∆x}] is the inverse of Peclet number (Pe), the positivity
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criterion for the proposed model in Eq. (5.1) reduces to

1 ≥
1 +

[
1
PeI

]

2
[

1
PeI

] ⇒ PeI ≤ 1, (5.6)

where the subscript I in PeI is used to denote that the criterion is for the region at the
material interface, and the positivity criterion in Eq. (5.3) for the bulk region away from
the interface reduces to

1 ≥ 1

2
[

1
PeB

] ⇒ PeB ≤ 2, (5.7)

where the subscript B in PeB is used to denote that the criterion is for the bulk re-
gion. This criterion is consistent with the boundedness criterion (Pe ≤ 2) for a generic
scalar transport equation first proposed by Patankar (1980) and Versteeg & Malalasekera
(2007). Hence, the presence of a material interface and the effective no-flux boundary
condition for the scalar at the interface has introduced an additional restriction in terms
of the cell Peclet number (PeI ≤ 1), which otherwise would have been PeB ≤ 2 in the
absence of any interface, which is also graphically shown (arrow) in Figure 4. Therefore,
assuming a uniform grid throughout the domain, the grid size for the simulation of scalars
with material interfaces (two-phase flow) should be twice as small compared to the grid
size for the simulation of scalars in the absence of material interfaces (single-phase flow).

6. Modeling electrokinetics in two-phase flow systems

In this section, the proposed scalar transport equation will be recast into a modified
Nernst-Planck equation that can be used for the simulation of ion transport in two-phase
media. If c+ and c− represent the cationic and anionic concentration fields, respectively;
D+ and D− represent the cationic and anionic diffusion coefficients, respectively; and ~ur
the electromigration velocity ~ur = ν ~E, where ν is the electrical mobility and ~E is the
electric field; then the proposed scalar transport model in Eq. (4.1) can be written as a
modified Nernst-Planck equation

∂c±

∂t
+ ~∇ · (~uc± ± φν ~Ec±) = ~∇ ·

[
D±

{
~∇c± − (1− φ)~nc±

ε

}]
. (6.1)

Combining this equation with the Gauss’s law

~∇ · (ε ~E) = ρf , (6.2)

where ρf = z+ec+ − z−ec− is the free charge density; z+ and z− represent the cationic
and anionic valences, respectively; e is the elementary charge; and ε is the electrical
permittivity of the electrolyte. Making an electrostatic approximation, i.e., assuming that
the time variation of the magnetic field is much slower compared to that of the electric
field, the electric field can be shown to be irrotational using Faraday’s law (Griffiths
2005). Hence it can be written as

~E = −~∇ψ, (6.3)

where ψ is the electrostatic potential. Electrostatic phenomena and hydrodynamics are
coupled through the Maxwell stress tensor (Saville 1997), and the electrohydrodynamic

force on the fluid can be written as ρf ~E − ( ~E · ~E)~∇ε/2. Thus, rewriting the volume
fraction advection equation in Eq. (2.3), momentum balance equation in Eq. (2.4) with
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the electrohydrodynamic force, continuity equation, Nernst-Planck equation in Eq. (6.1)
and Gauss’s law in Eq. (6.2) along with the electrostatic approximation in Eq. (6.3), the
system of equations that models the transport of charged ionic species in two-phase flows
with incompressible Newtonian immiscible fluids can be written as

∂φ

∂t
+ ~∇ · (~uφ) = ~∇ ·

[
Γ
{
ε~∇φ− φ(1− φ)~n

}]
,

∂ρ~u

∂t
+ ~∇ · (ρ~u⊗ ~u+ p1) = ~∇ · τ + ~∇ · (~f ⊗ ~u)− ρf ~∇ψ − 1

2
(~∇ψ · ~∇ψ)~∇ε,

~∇ · ~u = 0,

∂c±

∂t
+ ~∇ ·

{
~uc± ∓ φν(~∇ψ)c±

}
= ~∇ ·

[
D±

{
~∇c± − (1− φ)~nc±

ε

}]
,

−~∇ ·
(
ε~∇ψ

)
= ρf .

(6.4)

7. Numerical discretization

In this work, we use the fourth-order Runge-Kutta (RK4) time-stepping scheme and
second-order central-differencing scheme for the discretization of all spatial operators.
This choice of numerical scheme has some advantages, particularly for the simulation
of turbulent flows due to its (a) non-dissipative nature, (b) low aliasing error, (c) easy
boundary treatment, (d) low cost, and (e) improved stability (Moin & Verzicco 2016).
With the appropriate choice of ∆x, Γ, and ε, we can achieve the positivity for the scalar
concentration field (Section 5), and boundedness and TVD properties for the volume
fraction field (Section 2) even with the use of a central-difference scheme for all the
spatial operators which would otherwise admit oscillatory solutions due to the associated
dispersion errors.

A finite-volume staggered discretization strategy has been employed wherein φ, p,
ψ, and c± are stored at cell centers, and components of ~u are stored at the cell faces
where all the fluxes are evaluated. This choice of discretization is to avoid the spurious
checkerboarding of the pressure field in incompressible flows (Patankar 1980).

8. Results

In this section, multiple verification tests are presented that are used to assess the newly
proposed model, the numerical discretization, and the implementation. The verification
tests used in this work can be broadly classified into (a) positivity test cases, that test
the positivity of the scalar concentration field for various choices of parameters in the
positivity map (Figure 4) to test the validity of the positivity criterion. These test cases
also evaluate the effective no-flux boundary condition for the scalar at the interface, with
and without the relative velocity of the scalar with respect to the fluid; (b) charge-in-a-
drop test, that evaluates the no-flux boundary condition for the charged ions when the
Nernst-Planck equation is coupled with Gauss’s law and hydrodynamics.

8.1. Positivity test

In this test case, four different choices of parameters are made as shown in Figure 5(a) in
terms of the Peclet number (Pe = (u+ur)∆x/D), such that two of the four choices (Pe =
1, 0.8) satisfy the positivity criterion in Eq. (5.6) and the other two (Pe = 2, 4) violate
the criterion. To test this validity of the positivity criterion, a one-dimensional domain of
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Figure 5. (a) Four different choices of parameters to test the validity of the positivity criterion.
(b) Initial condition for the volume fraction field φ and the scalar concentration field c for the
positivity tests.

range [0, 1] is chosen with periodic boundary conditions. The domain is discretized into
a uniform grid of size ∆x = 0.01. A drop of radius R = 0.25 is initially placed in the
domain centered at x0 = 0.5, with a uniform scalar concentration of 1 inside the drop
and 0 outside as shown in Figure 5(b). Interface parameters are chosen as Γ = 100 and
ε = ∆x. This test case is repeated for zero and non-zero relative velocity for the scalar
with respect to the fluid, as further described in the subsequent Sections 8.1.1 and 8.1.2.

8.1.1. No relative velocity (~ur = 0)

Here, the uniform fluid velocity is chosen to be ~u = 100, the relative velocity of the
scalar with respect to the fluid is ~ur = 0 and the total integration time is tend = 10.
The diffusivity of the scalar is chosen based on the required Peclet number. The drop
advects to the right due to the imposed fluid velocity and returns to its original position
at t = 0.01 due to the periodic boundary condition, and this process repeats 1000 times
until the time t = 10. The final state of the drop and the scalar concentration field at time
t = 10 is shown in Figure 6 along with the minimum value of the scalar concentration
for all four choices of parameters shown in Figure 5. Clearly, for cases with Pe = 1 and
0.8 that satisfy the positivity criterion in Eq. (5.6), the scalar concentration c is positive
throughout the domain, and for cases with Pe = 2 and 4 that violate the positivity
criterion, the scalar concentration c admits negative values close to the interface, as
expected, which verifies the proposed scalar transport model and the positivity criterion.
Comparing the results in Figure 6 with those in Figure 2, where the scalar was found to
leak outside the drop resulting in an O(1) error of the scalar concentration, it is easy to
see the role and importance of the effective no-flux boundary condition embedded in the
proposed scalar transport model in Eq.(4.1).

8.1.2. With relative velocity (~ur 6= 0)

Here, the uniform fluid velocity is chosen to be ~u = 50, the relative velocity of the
scalar with respect to the fluid is ~ur = 50, and the total integration time is tend = 10.
The diffusivity of the scalar is chosen based on the required Peclet number. The drop
advects to the right due to the imposed fluid velocity and returns to its original position at
t = 0.02 due to the periodic boundary condition, and this process repeats 500 times until
time t = 10. The scalar also advects relative to the drop to the right and accumulates on
the right of the drop. It reaches a steady state when the diffusion balances the advection
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Figure 6. Final state of the drop and scalar at time t = 10 for (a) Pe = 1, (b) Pe = 0.8, (c)
Pe = 2, and (d) Pe = 4 with ur = 0.
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Figure 7. Final state of the drop and scalar at time t = 10 for (a) Pe = 1, (b) Pe = 0.8, (c)
Pe = 2, and (d) Pe = 4 with ur 6= 0.

due to the relative velocity. The final state of the drop and the scalar concentration
field at time t = 10 are shown in Figure 7 along with the minimum value of the scalar
concentration for all four choices of parameters shown in the Figure 5. Clearly, for the
cases with Pe = 1 and 0.8 that satisfy the positivity criterion in Eq. (5.6), the scalar
concentration c is positive throughout the domain and for the cases with Pe = 2 and
4 that violate the positivity criterion, the scalar concentration c admits negative values
for Pe = 4, as expected. However the positivity is still maintained for Pe = 2 though
the criterion is violated. This is because the criterion is only a sufficient, not a necessary
condition for the scalar concentration field to remain positive and therefore presents the
most restrictive condition such that the positivity of the scalar is satisfied even in some
situations when the criterion is violated. This shows the robustness of the positivity
criterion that is crucial in maintaining the realizable values of the scalar concentration
field throughout the duration of the simulation. This again verifies the positivity criterion
for the proposed scalar transport model.

8.1.3. Nonuniform scalar concentration within the drop

The results up to here all had initial conditions with uniform scalar concentration field
within the drop. However, in reality, the scalar concentration can be nonuniform inside
the drop. To evaluate the model for this scenario, a one-dimensional domain of range [0, 5]
is chosen with periodic boundary conditions. The domain is discretized into a uniform
grid of size ∆x = 0.01. A drop of radius R = 0.25 is initially centered at x0 = 0.5, with
a nonuniform scalar concentration field inside the drop given by the compact support
function

c =

{
Ae

{
1

(4x−2)2−1

}
x ∈ [0.25, 0.75]

0 else,
(8.1)

as shown in Figure 8(a), where A is a factor chosen to make
∫

Ω
c dV and

∫
Ω
φ dV equal

discretely, such that as the scalar diffuses and reaches a steady state within the drop, the
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Figure 8. The time evolution of the scalar with a nonuniform initial concentration within the
drop. (a) Initial conditions for φ and c. (b) The time evolution of c. (c) The final states of φ and
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Figure 9. Reorganization of the charged ions in a stationary drop. (a) Initial conditions for φ
and c. (b) The final states of φ and c. (c) The electrostatic potential in the domain at the final
state due to the charge distribution.

scalar concentration reaches a uniform value of 1 within the drop. Interface parameters
are chosen as Γ = 100 and ε = ∆x. The uniform fluid velocity is chosen to be ~u = 100, the
relative velocity of the scalar with respect to the fluid is ~ur = 0, and the total integration
time is tend = 0.05. The diffusivity of the scalar is chosen such that the Peclet number
is 1. Initial conditions for φ and c, the time evolution of c, and the final state are shown
in Figure 8(a,b,c), respectively. Clearly, the scalar diffuses within the drop without any
numerical leakage, and at the final time, the scalar concentration is uniform within the
drop as expected, which illustrates the robustness of the proposed model.

8.2. Charge in a drop: one-way coupled case

In this test case, the system of equations for the volume fraction advection equation,
the Nernst-Planck equation, and Gauss’s law along with the electrostatic approximation
in Eq. (6.4) are solved together to simulate the transport of charged ions in a drop.
Hydrodynamics is decoupled from the ion transport to study only the behavior of flow
of ions due to unbalanced charge. Only cations are assumed to be present. Here, a one-
dimensional domain with range [0, 1] is chosen with periodic boundary conditions. The
domain is discretized into a uniform grid of size ∆x = 0.01. A drop of radius R = 0.25 is
initially centered at x0 = 0.5, with a uniform cation concentration of 1 inside the drop
and 0 outside as shown in Figure 9(a). Interface parameters are chosen as Γ = 100 and
ε = ∆x. Here, initially the system is at rest and the simulation is integrated until the
steady state. As the system is allowed to evolve, the charged ions migrate to the sides
of the drop and accumulate at the interface from an initial uniform distribution due to
Coulombic repulsion, thus reducing the potential energy of the system as shown in Figure
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9(b). The resulting electrostatic potential in the domain due to the charge redistribution
can also be seen in Figure 9(c).

8.3. Charge in a perturbed two-dimensional drop

In this test case, the full coupled system of equations in Eq. (6.4) are solved together to
simulate the transport of cations in a drop that is two-way coupled with the hydrody-
namics. Here, a two-dimensional domain of range [−0.5, 0.5]× [−0.5, 0.5] is chosen with
Neumann boundary conditions. The domain is discretized into a uniform grid with 12002

grid points. A circular drop of radius R = 0.15 is initially perturbed to form an ellipse
with semi-major and semi-minor axes 0.16 and 0.14, respectively, and is centered at (0, 0).
The initial setup has a uniform cation concentration of 1 inside the drop and 0 outside.
The mobility of the scalar is chosen to be ν = 2.5; the diffusivity as D = 0.01; the density
of the drop and the surrounding fluid as 10 and 1, respectively; the viscosity of the drop
and the surrounding fluid are 8.9 × 10−4 and 1.81 × 10−5, respectively; and the surface
tension between the drop and the surrounding fluid as σ = 1. Interface parameters are
chosen as Γ = |u|max and ε = ∆x. The simulation is run for up to a time of tend ≈ 0.06
and snapshots at various time instances are shown in Figure 10.

The ions in the drop start migrating towards the surface of the drop, as can be seen
at t = 0.0125 due to the electrostatic repulsive forces. Further, the forces exerted by
the repelling ions start to deform the drop and deform it into an elongated drop at
t = 0.0375. Since the drop is assumed to be incompressible, extension of the drop in
one direction creates a dimple in the other and therefore the drop cannot undergo a
volumetric oscillation mode, which might be seen if it was assumed to be compressible.
Later, the drop breaks up into two daughter drops, as can be seen at t = 0.05371 along
with ligaments and satellite drops.

Further theoretical analysis on the behavior of breakup of a drop due to the addition
of ions with unbalanced charge is currently underway and will be in discussed in a future
article.

9. Conclusions

In this work, we proposed a novel scalar transport model for two-phase flows suitable
for the modeling of scalars that are confined to one phase in a two-phase flow. The
confinement of the scalar to one phase is due to the disparate values of diffusivity and
mobility in the phases, and this typically poses a challenge for any numerical method in
resolving the gradient of the scalar at the material interface.

We therefore developed and verified a general scalar transport model for two-phase
flows, particularly for interfaces represented using a diffuse-interface method (phase-field
method) and showed that our newly proposed model equation prevents any numerical
leakage from one phase to the other, while maintaining the positive value for the scalar
concentration throughout the simulation, which is a crucial realizability condition for the
simulation of scalars.

Finally, we recast the proposed scalar transport model for two-phase flows into a
Nernst-Planck equation and coupled it with the volume fraction advection equation,
momentum balance equation with the electrohydrodynamic force, continuity equation,
Gauss’s law along with the electrostatic approximation and solved the resulting system
of equations to simulate the transport of cations in a drop. We observed the breakup of a
two-dimensional drop due to the addition of ions with unbalanced charge. In this article,
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Figure 10. Time evolution of the breakup of a perturbed drop due to the addition of ions
with unbalanced charge.

results are presented for one and two-dimensional domains. However, it is straightforward
to extend this to three dimensions, and the results for these are deferred to a future article.
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