0 Preliminaries

(1) **Focus:** the placement of primary and non-primary (secondary/tertiary/etc.) stress in standalone words, compounds, and clitic-host combinations. (Not considered: segmental phonology, syllabification, clitic structure, fine-grained stress prominence, phrasal stress.)

(2) **Data:**

- existing: drawn from the literature;
- novel: rare real words and constructed compounds sourced from a native speaker of Polish (AG), with judgments from that speaker and another (KG).

(3) Data are annotated for morphophonological structure and properties as follows:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1V</td>
<td>primary stress</td>
</tr>
<tr>
<td>2V</td>
<td>non-primary stress</td>
</tr>
<tr>
<td>·</td>
<td>derivational boundary</td>
</tr>
<tr>
<td>-</td>
<td>inflectional boundary</td>
</tr>
<tr>
<td>+</td>
<td>compound boundary</td>
</tr>
<tr>
<td>=</td>
<td>clitic boundary</td>
</tr>
<tr>
<td>σ</td>
<td>syllable</td>
</tr>
<tr>
<td>σ</td>
<td>exceptionally-stressed syllable</td>
</tr>
<tr>
<td>(σσ)</td>
<td>non-head foot</td>
</tr>
<tr>
<td>(σσ)</td>
<td>head foot</td>
</tr>
</tbody>
</table>

(Note: a sequence of two vowel graphemes corresponds to a disyllable, unless the first one is *i* or the second one is *u*. The number of vowel graphemes thus typically reflects the number of syllables. I notate the stress of a syllable on its nucleus vowel.)

I am grateful to members of the Główka family for their help with data, and to Paul Kiparsky for his practical and theoretical advice.
1 Existing data

1.1 Basic word stress

(4) Basic word stress template (derived and inflected words):

- primary stress on penult (right-aligned trochaic head foot);
- alternating non-primary stresses from left (left-aligned trochaic feet).

a. ¹kot
 cat.NOM.SG
 (Comrie 1976)

b. ¹reporter
 reporter.NOM.SG
 (Rubach and Booij 1985)

c. ²reporter-owi
 reporter-DAT.SG
 (Rubach and Booij 1985)

d. ²²konstytu-tynopolitańczyk-a
 ‘person from Constantinopole’
 Constantinopolitan-GEN.SG
 (Rubach and Booij 1985)

1.2 Compounds

(5) Individual components of compounds follow the basic template (whether headed by the first
or second component¹):

- the compound linking morpheme (-o- and allomorphs) is counted in the first component;
- each component has a stress on the penult (right-aligned trochee);
- each component has alternating non-primary stresses from the left (left-aligned trochees);
- the final stress in the compound (penult of second component) is primary.

a. ²²demokratyczny
 democratic-CPD + republican-ADJ-NOM.SG
 (Kraska-Szlenk 2003)

b. *²²demokratyczny
 democratic-CPD + republican-ADJ-NOM.SG
 (Kraska-Szlenk 2003)

(6) The template for each component is broken when one of the components is monosyllabic (so
that the word as a whole follows the template).

¹Most compounds are headed by the second component (Szymanek 2009).
a. łam-i + strajk
break-CPD + strike
‘strike-breaker’ (Rubach and Booij 1985)

b. ciśnieni-o + mierz
pressure-CPD + measure.NOM.SG
‘pressure-meter’ (Rubach and Booij 1985)

c. jedenast-o + kąt
eleventh-CPD + angle.NOM.SG
‘eleven-angled shape’ (Kraska-Szlenk 2003)

d. dw-u + takt
two-CPD + stroke
‘two-stroke engine’ (Kraska-Szlenk 2003)

e. dw-u + języcz-ny-mi
two-CPD + language-ADJ-INST.PL
‘bilingual’ (Kraska-Szlenk 2003)

1.3 Clitics

(7) Proclitics do not interfere with primary stress placement.

a. na = dom
 on = house.ACC.SG
 σ = (σ)
 (Rubach and Booij 1985)

b. do = dom-u
 to = house-GEN.SG
 σ = (σσ)
 (Rubach and Booij 1985)

(8) Sequences of proclitics:

• do not interfere with stresses in the host;
• stressed on alternating syllables (left-aligned trochees).

a. by 2 = mu 2 = się 2 = spodoba-l-a
 COND = 3.SG.M.DAT = REFL = like-PAST-3.SG.F
 ‘he would start liking her’
 (Kraska-Szlenk 2003)

b. by 2 = ście 2 = mu 1 = go = tam = mie-li
 COND = 2.PL.NOM = 3.SG.M.DAT = it = there = have-PAST
 (Kraska-Szlenk 2003)

(9) A single proclitic:
• receives non-primary stress instead of the first syllable of the host;
• does not interfere with other stresses in the host;
• triggers the insertion of an additional stress in a 5-syllable host.

a. d_2o_1 to = profesor-GEN.SG
 \((\hat{\sigma}=\sigma)\sigma(\hat{\sigma}\sigma)\)
 (Kraska-Szlenk 2003)

b. d_2o_1 to = American-GEN.SG
 \((\hat{\sigma}=\sigma)(\hat{\sigma}\sigma)(\hat{\sigma}\sigma)\)
 (Kraska-Szlenk 2003)

c. d_2o_1 to = Canadian-GEN.SG
 \((\hat{\sigma}=\sigma)(\hat{\sigma}\sigma)(\hat{\sigma}\sigma)\)
 (Kraska-Szlenk 2003)

(10) Enclitics do not interfere with primary stress placement.

a. w_1 wagon = nasz
 \((\hat{\sigma}\sigma)=\sigma\)
 (Rubach and Booij 1985)

(11) Sequences of enclitics:

• the penult receives non-primary stress (right-aligned trochee);
• the first syllable receives non-primary stress (left-aligned trochee).

a. $zrob_i-l_i = mu = by = \acute{\text{scie}}$
 do-PAST = 3.SG.M.DAT = COND = 2.PL.NOM
 ‘you.PL would do for him’
 \(\sigma(\hat{\sigma}\sigma)=\sigma=(\hat{\sigma}=\sigma)\)
 (Kraska-Szlenk 2003)

b. $k_up_i-l_i = by = mu = go = on = tam$
 buy-PAST = COND = 3.SG.M.DAT = it = he = there
 ‘he would buy it for him there’
 \((\hat{\sigma}\sigma)=(\hat{\sigma}=\sigma)=\sigma=(\hat{\sigma}=\sigma)\)
 (Kraska-Szlenk 2003)

2 Analyzing existing data

2.1 General observations

(12) Similarity across different-sized morphophonological units – if possible, standalone words (including entire compounds), components of compounds, and clitic-host combinations each have the following, in order of priority:

• a foot at the right edge;
• a foot at the left edge;
• left-aligned feet inbetween.
All feet must be binary, except for the single foot in monosyllabic standalone words.

(13) Differences across different-sized units:

a. the right-aligned foot in the first component of a compound takes priority over general left-alignment of feet across the entire compound (5);
b. a single left-aligned foot of a clitic-host combination takes priority over a single left-aligned foot of the host (9);
c. other left-aligned feet of a host take priority over left-aligned feet of a clitic-host combination (8);
d. the head foot is the rightmost foot of a standalone word (compound or non-compound), which cannot contain clitics in a clitic-host combination (11);
e. the rightmost (head) foot of a host in a clitic-host combination takes priority over feet in enclitics (7)/(10).

2.2 A monostratal analysis

(14) Ideas behind a monostratal OT analysis (Kraska-Szlenk 2003):

a. nested prosodic domains corresponding to different-sized morphophonological units:
 • PWord {···}: root plus any affixes (non-compounds, plus compound components – first component includes linking morpheme, second component includes inflection);
 • MWord {···}: complete word (all standalone words, plus clitic hosts);
 • PUnit [···]: clitic group (all standalone words, plus clitic-host combinations);

b. three core foot-alignment constraints, one of which is parameterized for each domain D, the other two of which apply to domains smaller than the PUnit only due to nestedness:
 • Foot-R(D): have a foot at the right edge of D;
 • Foot-L(PUnit): have a foot at the left edge of the PUnit;
 • Feet-L(PUnit): don’t leave unfooted syllables to the left of a foot (for each foot, assign one violation for each unfooted syllable to its left);

c. a core Output–Output faithfulness constraint, Ident(MWord): an MWord with clitics has the same foot structure as that MWord without clitics (assign a violation for each foot in the non-cliticized MWord that does not correspond to a foot in the cliticized MWord, i.e. does not contain all and only the corresponding syllables);

d. ranking of these core constraints:

 Foot-R(MWord) \gg Foot-R(PWord) \gg Foot-L(PUnit) \gg
 Ident(MWord) \gg Foot-R(PUnit) \gg Feet-L(PUnit)

e. an undominated constraint OblFt(MWord): an MWord must properly contain a foot;

f. an undominated constraint HeadFt-R(MWord): the rightmost foot properly contained in an MWord is head;

g. other constraints (highly ranked) ensuring trochaic foot structure (Trochee), foot binarity (FtBin), and no lapses (*Lapse: assign one violation per pair of adjacent unfooted syllables in the output).
2.2.1 Demonstration of the monostratal analysis

(15) Basic template (some constraints / candidates omitted)

<table>
<thead>
<tr>
<th>({(\sigma\sigma\sigma\sigma\sigma)})</th>
<th>FtBin</th>
<th>Foot-R(MW)</th>
<th>Foot-L(PU)</th>
<th>FEET-L(PU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ({((\delta\sigma)(\delta\sigma))})</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b. ({((\delta\sigma)(\delta\sigma))(\delta\sigma)})</td>
<td></td>
<td></td>
<td></td>
<td>**!</td>
</tr>
<tr>
<td>c. ({((\sigma\delta\sigma)(\delta\sigma))(\delta\sigma)})</td>
<td></td>
<td></td>
<td>*!</td>
<td>***</td>
</tr>
<tr>
<td>d. ({((\delta\sigma)(\delta\sigma))(\delta\sigma)(\delta\sigma)})</td>
<td></td>
<td></td>
<td>*!</td>
<td>***</td>
</tr>
<tr>
<td>e. ({((\delta\sigma)(\delta\sigma))(\delta\sigma)})</td>
<td></td>
<td></td>
<td>*!</td>
<td>***</td>
</tr>
</tbody>
</table>

(16) Compounds (some constraints / candidates omitted)

<table>
<thead>
<tr>
<th>({(\sigma\sigma\sigma) + (\sigma\sigma\sigma)})</th>
<th>Ft-R(PW)</th>
<th>Ft-L(PU)</th>
<th>FEET-L(PU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ({((\delta\sigma)(\delta\sigma)) + (\delta\sigma)(\delta\sigma))})</td>
<td></td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>b. ({((\delta\sigma)(\delta\sigma)) + (\delta\sigma)})</td>
<td></td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>c. ({((\sigma\delta\sigma)(\delta\sigma)) + (\delta\sigma)(\delta\sigma)})</td>
<td></td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>d. ({((\delta\sigma)(\delta\sigma))(\delta\sigma) + (\sigma)(\delta\sigma)(\delta\sigma)})</td>
<td></td>
<td>****</td>
<td></td>
</tr>
</tbody>
</table>

(17) Clitics – single proclitic, enclitic sequence (some constraints / candidates omitted)

<table>
<thead>
<tr>
<th>(\sigma=((\sigma\sigma\sigma\sigma\sigma)}) =(\sigma=\delta=\sigma)</th>
<th>Ft-L(PU)</th>
<th>Id(MW)</th>
<th>Ft-R(PU)</th>
<th>FEET-L(PU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ({((\sigma)(\sigma\sigma)(\delta\sigma))}) =(\sigma=(\delta=\sigma))</td>
<td></td>
<td></td>
<td>*</td>
<td>****</td>
</tr>
<tr>
<td>b. ({((\sigma)(\sigma\sigma))(\delta\sigma)}) =(\sigma=(\delta=\sigma))</td>
<td></td>
<td></td>
<td>*</td>
<td>****</td>
</tr>
<tr>
<td>c. ({((\sigma\delta\sigma)(\delta\sigma))}) =(\sigma=(\delta=\sigma))</td>
<td></td>
<td></td>
<td>**!</td>
<td></td>
</tr>
<tr>
<td>d. ({((\delta\sigma)(\delta\sigma)(\delta\sigma))}) =(\sigma=(\delta=\sigma))</td>
<td></td>
<td></td>
<td>*!</td>
<td>*****</td>
</tr>
</tbody>
</table>

(18) Clitics – proclitic sequence, single enclitic (some constraints / candidates omitted)

<table>
<thead>
<tr>
<th>(\sigma=\delta=\sigma=((\sigma\sigma\sigma\sigma\sigma)}) =(\sigma)</th>
<th>Ft-L(PU)</th>
<th>Id(MW)</th>
<th>Ft-R(PU)</th>
<th>FEET-L(PU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ({((\delta\sigma)(\delta\sigma)(\delta\sigma))}) =(\sigma)</td>
<td></td>
<td></td>
<td>*</td>
<td>****</td>
</tr>
<tr>
<td>b. ({((\delta\sigma)(\delta\sigma))(\delta\sigma)}) =(\sigma)</td>
<td></td>
<td></td>
<td>*</td>
<td>****</td>
</tr>
<tr>
<td>c. ({((\delta\sigma)(\delta\sigma)(\delta\sigma))}) =(\sigma)</td>
<td></td>
<td></td>
<td>*</td>
<td>****</td>
</tr>
<tr>
<td>d. ({((\delta\sigma)(\delta\sigma)(\delta\sigma))}) =(\sigma)</td>
<td></td>
<td></td>
<td>!*</td>
<td></td>
</tr>
<tr>
<td>e. ({((\delta\sigma)(\delta\sigma)(\delta\sigma))}) =(\sigma)</td>
<td></td>
<td></td>
<td>*!</td>
<td>****</td>
</tr>
</tbody>
</table>

2.3 Extension to a multistratal analysis

(19) Why a multistratal analysis?

- Strata can be reconciled with morphological structure:
 - Stratum 1 (pre-PWord/PWord – to be motivated): creation of new lexical items –
 derivational morphology, compound head, compound formation;
 - Stratum 2 (PWord/MWord): infflectional morphology, non-head compound com-
 ponent morphology;
 - Stratum 3 (PUnit): cliticization.
• O-O faithfulness across domains can be reconciled with I-O faithfulness across strata.

(20) First step: observe that the monostratal analysis is consistent with the following extension of the core constraints (keeping Foot-L(PUnit) ≫ Ident(MWord) ≫ Feet-L):

a. all three core foot-alignment constraints parameterized for each domain \(D \);

b. rankings of each parameterized constraint across different domains:
 - Foot-R: MWord ≫ PWord ≫ PUnit;
 - Foot-L: PUnit ≫ MWord ≫ PWord;
 - Feet-L: PWord ≫ MWord ≫ PUnit;

c. rankings of different parameterized constraints across each domain:
 - PWord: Foot-R ≫ Foot-L ≫ Feet-L;
 - MWord: Foot-R ≫ Foot-L ≫ Feet-L;
 - PUnit: Foot-L ≫ Foot-R ≫ Feet-L

(21) Problems for reformulating (20) as a multistratal analysis (all concerning the head foot):

a. the ranking of domain-parameterized Foot-R does not follow domain size (the right-aligned (head) foot in a host is not affected by enclitics);

b. the constraints are ranked differently for the PUnit domain (a proclitic affects the leftmost foot in the host, but an enclitic leaves the rightmost (head) foot in the host);

c. the head foot has to be assigned at Stratum 2 (MWord domain), so some constraint must prevent (re)assignment at Stratum 3 (PUnit domain).

(22) Solution: posit constraints specific to head feet (i.e. view the head foot as a formal object).

 - OBLHdFt: assign a violation if the output contains no head foot;
 - *HdFt: assign a violation for each head foot in the output;
 - HEADFt-R: assign a violation if there is a foot to the right of the head foot in the output;
 - MAX(HdFt): assign a violation if the head foot in the input does not correspond to the head foot in the output (containing all and only the corresponding syllables).

(23) Interactions of head-foot constraints (dominating all foot structure template constraints):

 - if OBLHdFt ≫ *HdFt, there is a single head foot;
 - if *HdFt ≫ OBLHdFt (and *HdFt ≫ MAX(HdFt)), there is no head foot;
 - if HEADFt-R ≫ MAX(HdFt) (and OBLHdFt ≫ *HdFt), the head status is transferred to the rightmost foot, but the head foot itself cannot shift e.g. to incorporate a single unfooted syllable to the right;
 - if MAX(HdFt) ≫ HEADFt-R (and OBLHdFt ≫ *HdFt), head status is maintained on the head foot in the input, which cannot shift.

(24) Head-foot constraint rankings motivated by the data so far:

 - Stratum 1: unknown;
• Stratum 2: \(\text{OblHdFt} \gg *\text{HdFt} \) and \(\text{HeadFt-R} \gg \text{Max(HdFt)} \);
• Stratum 3: \(\text{OblHdFt} \gg *\text{HdFt} \) and \(\text{Max(HdFt)} \gg \text{HeadFt-R} \).

(25) Foot structure template constraints (non-head feet):

- \(\text{Max(Ft)} \): assign a violation for each foot in the input that does not have a corresponding foot (containing all and only the corresponding syllables) in the output;
- if a given alignment constraint dominates \(\text{Max(Ft)} \) at all strata, only the feet aligned by this constraint at the last stratum (largest domain) surface;
- if \(\text{Max(Ft)} \) dominates a given alignment constraint at all strata, the feet aligned by this constraint at earlier strata (smaller domains) take priority over those aligned at later strata (larger domains);
- consistent ranking across strata:
 \(\text{FtBin} \gg \text{Foot-R} \gg \text{Foot-L} \gg \text{Max(Ft)} \gg \text{Feet-L} \).

(26) Undominated constraints enforce trochees and prevent lapse (adjacent unfooted syllables).

2.4 Filling gaps in the multistratal analysis

2.4.1 Stratum 1

(27) Stratum 1 is motivated by consideration of lexical exceptions with irregular primary stress, which come in 3 classes (see Idsardi 1992, for complete inventory).

(28) Of key interest here: P/A stems

- penultimate primary stress in null-inflected forms;
- antepenultimate primary stress in monosyllabically-inflected forms.

a. \(^1\) \text{gramatyk}
 grammar.GEN.PL
 \(\sigma(\dot{o}\sigma) \)
 (Rubach and Booij 1985)

b. \(^1\) \text{gramatyk-a}
 grammar-NOM.SG
 \(\sigma(\dot{o}\sigma)-\sigma \)
 (Rubach and Booij 1985)

(29) P/A stems regularize under monosyllabic derivation.

a. \(^2\) \(^1\) \text{gramatycz-n-ość}
 grammar-ADJ-NOUN.NOM.SG
 ‘grammaticality’
 \((\dot{o}\sigma)(\dot{o}-\sigma) \)
 (Rubach and Booij 1985)

(30) The fact that exceptional stress is retained under monosyllabic inflection but lost under monosyllabic derivation motivates a distinction between inflection and derivation in the phonology.
In the multistratal analysis, the distinction between inflection and derivation is reflected in the distinction between Stratum 2 and Stratum 1. For this distinction to make the correct predictions, the following assumptions are required:

a. exceptional stress is caused by a lexically-marked head foot, which can be protected at Stratum 2 by $\text{MAX}(\text{HdFt})$;
b. $\text{HdFt} \gg \text{OblHdFt}, \text{MAX}(\text{HdFt})$ at Stratum 1, so that items passing through Stratum 1 enter Stratum 2 without a head foot and are thus not affected by $\text{MAX}(\text{HdFt})$ at Stratum 2;
c. stems not undergoing derivation skip Stratum 1 (Non-Derived Environment Blocking); more generally, items only enter a stratum if they are selected by a trigger of that stratum.

With these assumptions, the differences between strata are limited to the head-foot constraint rankings and can be made entirely systematic, via constraint promotion to highest rank between strata:

- Stratum 1: $\text{HdFt} \gg \{\text{OblHdFt}, \text{HEADFt-R}, \text{MAX}(\text{HdFt})\}$
- Stratum 2: $\{\text{OblHdFt}, \text{HEADFt-R}\} \gg \text{HdFt} \gg \text{MAX}(\text{HdFt})$
- Stratum 3: $\text{MAX}(\text{HdFt}) \gg \{\text{OblHdFt}, \text{HEADFt-R}\} \gg \text{HdFt}$

Side note: regular penult stress is also observed under disyllabic inflection, due to Stratum 2 having $\text{LAPSE} \gg \text{HdFt-R} \gg \text{MAX}(\text{HdFt})$.

2.4.2 Compounding

The first (non-head) component is required to pass through a stratum independently before compound formation in order to generate a foot at its right edge (which is not aligned further left by FEET-L), as in (5a) (repeated below).

- a. $\text{demokratyczny} \cdot \text{republikanski}$
 - democratic-CPD + republican-ADJ-NOM.SG
 - $\text{Feet-L} \gg \text{HdFt-R} \gg \text{MAX}(\text{HdFt})$

Exceptional stress is preserved in the first (non-head) component of a compound, implying that it passes through Stratum 2 prior to compound formation:

- a. $\text{matematy$\text{k}$}$
 - mathematician-GEN.SG
 - $\text{Feet-L} \gg \text{HdFt-R} \gg \text{MAX}(\text{HdFt})$

b. $\text{matematyk} \cdot \text{geodeta}$
 - mathematician-CPD + surveyor
 - $\text{Feet-L} \gg \text{HdFt-R} \gg \text{MAX}(\text{HdFt})$
The second (head) component is also required to pass through a stratum independently before compound formation in order to generate a foot at its left edge (which is not aligned further left by FEET-L), as in (35b) (repeated below).

\[
\begin{align*}
\text{a. } & \text{matematyk-o} + \text{geodeta} \\
& \text{mathematician-cpd + surveyor}
\end{align*}
\]

\[
*(\odos)(\odos) + (\odos)(\odos)
\]

(AGpc, KGpc)

(37) Exceptional stress is lost in the second (head) component of a compound, implying that it passes through Stratum 1 prior to compound formation:

\[
\begin{align*}
\text{a. } & \text{prezydent} \\
& \text{president.nom.sg}
\end{align*}
\]

\[
(\odos)\sigma
\]

(Comrie 1976)

\[
\begin{align*}
\text{b. } & \text{pseud-o} + \text{prezydent} \\
& \text{pseudo-cpd + president.nom.sg}
\end{align*}
\]

\[
(\odos) + \sigma(\odos)
\]

(constructed; AGpc, KGpc)

\[
\begin{align*}
\text{c. } & \text{* pseud-o} + \text{prezydent} \\
& \text{pseudo-cpd + president.nom.sg}
\end{align*}
\]

\[
*(\odos) + (\odos)\sigma
\]

(AGpc, KGpc)

(38) The two components are required to be joined in compound formation at Stratum 1 in order to prevent the head foot from the first component being protected when the second component is monosyllabic (à la P/A stems under monosyllabic inflection), as in (6c) (repeated below).

\[
\begin{align*}
\text{a. } & \text{jedenast-o} + \text{kąt} \\
& \text{eleventh-cpd + angle.nom.sg}
\end{align*}
\]

\[
(\odos)\sigma(\odos + \sigma)
\]

(Kraska-Szlenk 2003)

\[
\begin{align*}
\text{b. } & \text{* jedena-st-o} + \text{kąt} \\
& \text{eleventh-cpd + angle.nom.sg}
\end{align*}
\]

\[
(\odos)(\odos) + \sigma
\]

(Kraska-Szlenk 2003)

(39) This could work as follows:

a. Stratum 2 corresponds to operations that assign morphosyntactic features;
b. the compound linking morpheme yields a morphosyntactic feature [COMP] upon its combination with a stem (i.e. the first / non-head component) at Stratum 2;
c. any item with the feature [COMP] is not licensed to surface;
d. Stratum 1 corresponds to operations that alter properties of lexical semantics;
e. the second component receives the property of being a compound head at Stratum 1;
f. compound formation is triggered by the head (i.e. the second component) selecting for an item with [COMP] at Stratum 1;
g. compound formation yields a new lexical item, in which [COMP] is cleared, and which is free to be further derived at Stratum 1 or inflected at Stratum 2.

2.4.3 Demonstration of the multistratal analysis

(40) Basic template (non-derived, non-exception; some constraints / candidates omitted)

<table>
<thead>
<tr>
<th>σσσσσ</th>
<th>OBLHdFt</th>
<th>HdFt-R</th>
<th>*HdFt</th>
<th>FtBin</th>
<th>Foot-R</th>
<th>Foot-L</th>
<th>FEET-L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. (σσ)(σσ)(σσ)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. (σσ)(σσ)(σσ)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. σ(σσ)(σσ)(σσ)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. (σσ)(σσ)(σσ)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. (σσ)(σσ)(σσ)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. (σσ)(σσ)(σσ)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. (σσ)(σσ)(σσ)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(41) Compounding (non-derived, non-exception; some constraints / candidates omitted)

<table>
<thead>
<tr>
<th>σσσσ</th>
<th>OBLHdFt</th>
<th>HdFt-R</th>
<th>*HdFt</th>
<th>FtBin</th>
<th>Foot-R</th>
<th>Foot-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (σσ)(σσ)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. σ(σσ)(σσ)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. (σσ)(σσ)σ</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. (σσ)(σσ)σ</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. (σσ)(σσ)(σσ)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. (σσ)(σσ)(σσ)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. (σσ)(σσ)(σσ)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c. Stratum 3: skipped (not cliticized)
d. Stratum 1 (compound formation)

<table>
<thead>
<tr>
<th>((\sigma\sigma)\sigma(\sigma\sigma)+(\sigma\sigma)\sigma(\sigma\sigma))</th>
<th>*HdFt</th>
<th>Max(HdFt)</th>
<th>FtBin</th>
<th>Max(Ft)</th>
<th>Feet-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ((\hat{\sigma}\sigma)\sigma(\hat{\sigma}\sigma)+(\hat{\sigma}\sigma)\sigma(\hat{\sigma}\sigma))</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>****</td>
</tr>
<tr>
<td>b. ((\hat{\sigma}\sigma)(\hat{\sigma}\sigma)(\hat{\sigma}\sigma)(\hat{\sigma}\sigma))</td>
<td>*</td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>c. ((\hat{\sigma}\sigma)(\hat{\sigma})(\hat{\sigma}\sigma)(\hat{\sigma}\sigma))</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. ((\hat{\sigma}\sigma)(\hat{\sigma})(\hat{\sigma}\sigma)(\hat{\sigma}\sigma))</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>e. ((\hat{\sigma}\sigma)(\hat{\sigma})(\hat{\sigma})(\hat{\sigma}\sigma)(\hat{\sigma}\sigma))</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e. Stratum 2 (entire compound)

<table>
<thead>
<tr>
<th>((\sigma\sigma)\sigma(\sigma\sigma)+(\sigma\sigma)\sigma(\sigma\sigma))</th>
<th>OblHdFt : HdFt-R</th>
<th>*HdFt</th>
<th>FtBin</th>
<th>Max(Ft)</th>
<th>Feet-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ((\hat{\sigma}\sigma)\sigma(\hat{\sigma}\sigma)+(\hat{\sigma}\sigma)\sigma(\hat{\sigma}\sigma))</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>****</td>
</tr>
<tr>
<td>b. ((\hat{\sigma}\sigma)(\hat{\sigma}\sigma)(\hat{\sigma}\sigma)(\hat{\sigma}\sigma))</td>
<td></td>
<td>*</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>c. ((\hat{\sigma}\sigma)(\hat{\sigma})(\hat{\sigma}\sigma)(\hat{\sigma}\sigma))</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>d. ((\hat{\sigma}\sigma)(\hat{\sigma})(\hat{\sigma}\sigma)(\hat{\sigma}\sigma))</td>
<td></td>
<td>*</td>
<td>*</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>e. ((\hat{\sigma}\sigma)(\hat{\sigma})(\hat{\sigma})(\hat{\sigma}\sigma)(\hat{\sigma}\sigma))</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td>****</td>
</tr>
</tbody>
</table>

f. Stratum 3: skipped (not cliticized)

(42) Clitics – single proclitic, enclitic sequence (non-derived, non-exception; some constraints / candidates omitted)

a. Stratum 1: skipped (not derived)

<table>
<thead>
<tr>
<th>(\sigma\sigma\sigma\sigma\sigma)</th>
<th>OblHdFt : HdFt-R</th>
<th>*HdFt</th>
<th>Foot-R</th>
<th>Foot-L</th>
<th>Feet-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ((\hat{\sigma}\sigma)(\hat{\sigma}\sigma)(\hat{\sigma}\sigma)(\hat{\sigma}\sigma)(\hat{\sigma}\sigma))</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>****</td>
</tr>
<tr>
<td>b. ((\hat{\sigma}\sigma)(\hat{\sigma}\sigma)(\hat{\sigma}\sigma)(\hat{\sigma}\sigma)(\hat{\sigma}\sigma))</td>
<td></td>
<td>*</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>c. ((\hat{\sigma}\sigma)(\hat{\sigma})(\hat{\sigma})(\hat{\sigma}\sigma)(\hat{\sigma}\sigma)(\hat{\sigma}\sigma))</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td>****</td>
</tr>
<tr>
<td>d. ((\hat{\sigma}\sigma)(\hat{\sigma})(\hat{\sigma})(\hat{\sigma}\sigma)(\hat{\sigma}\sigma)(\hat{\sigma}\sigma))</td>
<td></td>
<td>*</td>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>e. ((\hat{\sigma}\sigma)(\hat{\sigma})(\hat{\sigma})(\hat{\sigma}\sigma)(\hat{\sigma}\sigma)(\hat{\sigma}\sigma))</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td>****</td>
</tr>
<tr>
<td>f. ((\hat{\sigma}\sigma)(\hat{\sigma})(\hat{\sigma})(\hat{\sigma}\sigma)(\hat{\sigma}\sigma)(\hat{\sigma}\sigma))</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td>****</td>
</tr>
</tbody>
</table>

c. Stratum 3

<table>
<thead>
<tr>
<th>(\sigma=(\hat{\sigma}=\sigma)(\hat{\sigma}=\sigma)(\hat{\sigma}=\sigma)=(\hat{\sigma}=\sigma))</th>
<th>Max(HdFt)</th>
<th>Hdt-R</th>
<th>Ft-R</th>
<th>Ft-L</th>
<th>Max(Ft)</th>
<th>Feet-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ((\hat{\sigma}=\sigma)(\hat{\sigma}=\sigma)(\hat{\sigma}=\sigma)=(\hat{\sigma}=\sigma))</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>****</td>
</tr>
<tr>
<td>b. ((\hat{\sigma}=\sigma)(\hat{\sigma}=\sigma)(\hat{\sigma}=\sigma)=(\hat{\sigma}=\sigma))</td>
<td>*</td>
<td></td>
<td></td>
<td>**!</td>
<td></td>
<td>***</td>
</tr>
<tr>
<td>c. ((\hat{\sigma}=\sigma)(\hat{\sigma}=\sigma)(\hat{\sigma}=\sigma)=(\hat{\sigma}=\sigma))</td>
<td>*</td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
<td>****</td>
</tr>
<tr>
<td>d. ((\hat{\sigma}=\sigma)(\hat{\sigma}=\sigma)(\hat{\sigma}=\sigma)=(\hat{\sigma}=\sigma))</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>***</td>
</tr>
<tr>
<td>e. ((\hat{\sigma}=\sigma)(\hat{\sigma}=\sigma)(\hat{\sigma}=\sigma)=(\hat{\sigma}=\sigma))</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>****</td>
</tr>
<tr>
<td>f. ((\hat{\sigma}=\sigma)(\hat{\sigma}=\sigma)(\hat{\sigma}=\sigma)=(\hat{\sigma}=\sigma))</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>***</td>
</tr>
</tbody>
</table>

(43) Clitics – proclitic sequence, single enclitic (non-derived, non-exception; some constraints / candidates omitted)

a. Stratum 1: skipped (not derived)
b. Stratum 2: see (42b)
c. Stratum 3

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\sigma=\sigma=\sigma=(\delta \sigma)(\delta \sigma)(\delta \sigma)=\sigma & \text{Max(HdFt)} & \text{HdFt-R} & \text{Ft-R} & \text{Ft-L} & \text{Max(Ft)} & \text{Feet-L} \\
\hline
\text{a. } (\check{\delta}=\sigma)=\sigma=(\check{\delta} \sigma)(\check{\delta} \sigma)(\check{\delta} \sigma)=\sigma & * & * & * & * & * & * \\
\text{b. } (\check{\delta}=\sigma)=\sigma=(\check{\delta} \sigma)(\check{\delta} \sigma)(\check{\delta} \sigma)=\sigma & * & * & * & * & * & * \\
\text{c. } \sigma=(\check{\delta}=\sigma)=\sigma=(\check{\delta} \sigma)(\check{\delta} \sigma)(\check{\delta} \sigma)=\sigma & * & * & * & * & * & * \\
\text{d. } (\check{\delta}=\sigma)=\sigma=(\check{\delta} \sigma)(\check{\delta} \sigma)(\check{\delta} \sigma)(\check{\delta} \sigma)=\sigma & * & * & * & * & * & * \\
\text{e. } (\check{\delta}=\sigma)=\sigma=(\check{\delta} \sigma)(\check{\delta} \sigma)(\check{\delta} \sigma)(\check{\delta} \sigma)=\sigma & * & * & * & * & * & * \\
\hline
\end{array}
\]

3 Comparison of the two analyses

3.1 Treatments of exceptionality

(44) The monostratal analysis cannot explain why P/A stems are irregular under monosyllabic inflection but regular under monosyllabic derivation, as both kinds of affix are included in the PWord.

(Side note: the tableaux below use Unstr to generate irregular stress, following Kraska-Szenk (2003); this constraint is violated whenever the syllable following the lexically-marked exceptional syllable \(\sigma \) is stressed.)

a. Inflection

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\{(\sigma \sigma \sigma \cdot \sigma)\} & \text{HdFt-R(MW)} & \text{Unstr} & \text{FtBin} & \text{Foot-R(MW)} & \text{Foot-L(PU)} \\
\hline
\text{a. } \{(\sigma(\check{\sigma} \sigma) \cdot \sigma)\} & & * & * & * & * \\
\text{b. } \{(\check{\sigma}) (\check{\sigma} \sigma) \cdot \sigma\} & & * & * & * & * \\
\text{c. } \{(\check{\sigma} (\check{\sigma}) \cdot \sigma)\} & & * & * & * & * \\
\text{d. } \{(\check{\sigma} (\check{\sigma}) \cdot (\check{\sigma})\} & & * & * & * & * \\
\hline
\end{array}
\]

b. Derivation

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\{(\sigma \sigma \sigma \cdot \sigma)\} & \text{HdFt-R(MW)} & \text{Unstr} & \text{FtBin} & \text{Foot-R(MW)} & \text{Foot-L(PU)} \\
\hline
\text{a. } \{(\sigma(\check{\sigma} \sigma) \cdot \sigma)\} & & * & * & * & * \\
\text{b. } \{(\check{\sigma}) (\check{\sigma} \sigma) \cdot \sigma\} & & * & * & * & * \\
\text{c. } \{(\check{\sigma} (\check{\sigma}) \cdot (\check{\sigma})\} & & * & * & * & * \\
\text{d. } \{(\check{\sigma} (\check{\sigma}) \cdot (\check{\sigma})\} & & * & * & * & * \\
\hline
\end{array}
\]

(45) The multistratal analysis explains the difference: inflection triggers Stratum 2, where the lexically marked head foot is protected by \(\text{Max(HdFt)} \gg \text{Foot-R} \); derivation triggers Stratum 1, where the lexically marked foot loses its head status due to \(*\text{HeadFt} \gg \{\text{OblHdFt, HdFt-R}\} \) and a right-aligned foot is output by \(\text{Foot-R} \gg \text{Max(Ft)} \).

a. Inflection

i. Stratum 1: skipped (not derived)

ii. Stratum 2
3.2 Effects of morphosyntax: compounds

(46) The monostratal analysis cannot explain why exceptional stresses in the non-head (first) component of a compound are preserved, while those in the head (second) component are erased, as both components are PWords. (Note that the result could be obtained from observing that the exceptional stress in the head component is also rightmost in the MWord, and thus ranking \(\text{Foot-R}(\text{MW}) \gg \text{Unstr} \); however, this would create the wrong prediction for inflection of exceptional stems (44a).)

a. Exceptional non-head component

\[
\begin{align*}
\{\langle \sigma \sigma \sigma \sigma \rangle + \langle \sigma \sigma \sigma \sigma \rangle\} & & \text{Unstr} & \text{Foot-R(MW)} & \text{Foot-R(PW)} \\
\hline
\text{a.} & \{\langle \sigma \sigma \sigma \sigma \rangle + \langle \sigma \sigma \sigma \sigma \rangle\} & & \ast & \ast \\
\text{b.} & \{\langle \sigma \sigma \sigma \sigma \rangle + \langle \sigma \sigma \sigma \sigma \rangle\} & & \ast & \ast & \ast & \ast \\
\text{c.} & \{\langle \sigma \sigma \sigma \sigma \rangle + \langle \sigma \sigma \sigma \sigma \rangle\} & & \ast & \ast & \ast & \ast \\
\end{align*}
\]

b. Exceptional head component
The multistratal analysis explains the difference: the non-head component passes through Stratum 2, where the lexically marked head foot is protected by \(\text{MAX}(\text{HdFt}) \gg \text{Foot-R} \), so that it can later be protected by \(\text{MAX}(\text{Ft}) \) when the compound is formed; the non-head component passes through Stratum 1, where the lexically marked foot loses its head status due to \(\ast \text{HEADFt} \gg \{\text{OblHdFt}, \text{HdFt-R}\} \) and a right-aligned foot is output by \(\text{Foot-R} \gg \text{MAX}(\text{Ft}) \).

a. Exceptional non-head component
i. Stratum 1 (non-head component): skipped
ii. Stratum 2 (non-head component)

<table>
<thead>
<tr>
<th>(\sigma(\sigma)\sigma)</th>
<th>OBLHdFt</th>
<th>HdFt-R</th>
<th>*HdFt</th>
<th>MAX(HdFt)</th>
<th>Ft-R</th>
<th>Ft-L</th>
<th>MAX(Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ((\sigma)\sigma(\sigma))</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. ((\sigma)\sigma(\sigma))</td>
<td></td>
<td></td>
<td>*</td>
<td>* (!)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>c. ((\sigma)\sigma(\sigma))</td>
<td></td>
<td></td>
<td>* (!)</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>d. ((\sigma)\sigma(\sigma))</td>
<td>* (!)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

iii. Stratum 1 (head component)

<table>
<thead>
<tr>
<th>(+\sigma\sigma\sigma)</th>
<th>*HdFt</th>
<th>OBLHdFt</th>
<th>HdFt-R</th>
<th>MAX(HdFt)</th>
<th>Ft-R</th>
<th>Ft-L</th>
<th>MAX(Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (+\sigma(\sigma)\sigma)</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. (+\sigma(\sigma)\sigma)</td>
<td>*</td>
<td></td>
<td></td>
<td>* (!)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>c. (+\sigma(\sigma)\sigma)</td>
<td>* (!)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

iv. Stratum 1 (compound formation)

<table>
<thead>
<tr>
<th>((\sigma)\sigma(\sigma)\sigma+(\sigma)\sigma(\sigma))</th>
<th>*HdFt</th>
<th>OBLHdFt</th>
<th>HdFt-R</th>
<th>MAX(HdFt)</th>
<th>Ft-R</th>
<th>Ft-L</th>
<th>MAX(Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ((\sigma)\sigma(\sigma)\sigma+(\sigma)\sigma(\sigma))</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. ((\sigma)\sigma(\sigma)\sigma+(\sigma)\sigma(\sigma))</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>* (!)</td>
</tr>
<tr>
<td>c. ((\sigma)\sigma(\sigma)\sigma+(\sigma)\sigma(\sigma))</td>
<td>*</td>
<td></td>
<td></td>
<td>* (!)</td>
<td></td>
<td></td>
<td>* (!)</td>
</tr>
<tr>
<td>d. ((\sigma)\sigma(\sigma)\sigma+(\sigma)\sigma(\sigma))</td>
<td>* (!)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>* (!)</td>
</tr>
<tr>
<td>e. ((\sigma)\sigma(\sigma)\sigma+(\sigma)\sigma(\sigma))</td>
<td>* (!)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>* (!)</td>
</tr>
<tr>
<td>f. ((\sigma)\sigma(\sigma)\sigma+(\sigma)\sigma(\sigma))</td>
<td>* (!)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>* (!)</td>
</tr>
</tbody>
</table>

v. Stratum 2 (entire compound)

<table>
<thead>
<tr>
<th>((\sigma)\sigma(\sigma)\sigma+(\sigma)\sigma(\sigma))</th>
<th>OBLHdFt</th>
<th>HdFt-R</th>
<th>*HdFt</th>
<th>MAX(HdFt)</th>
<th>Ft-R</th>
<th>Ft-L</th>
<th>MAX(Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ((\sigma)\sigma(\sigma)\sigma+(\sigma)\sigma(\sigma))</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. ((\sigma)\sigma(\sigma)\sigma+(\sigma)\sigma(\sigma))</td>
<td>*</td>
<td></td>
<td></td>
<td>* (!)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>c. ((\sigma)\sigma(\sigma)\sigma+(\sigma)\sigma(\sigma))</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>* (!)</td>
</tr>
<tr>
<td>d. ((\sigma)\sigma(\sigma)\sigma+(\sigma)\sigma(\sigma))</td>
<td>* (!)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>* (!)</td>
</tr>
<tr>
<td>e. ((\sigma)\sigma(\sigma)\sigma+(\sigma)\sigma(\sigma))</td>
<td>* (!)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>* (!)</td>
</tr>
<tr>
<td>f. ((\sigma)\sigma(\sigma)\sigma+(\sigma)\sigma(\sigma))</td>
<td>* (!)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>* (!)</td>
</tr>
</tbody>
</table>
vi. Stratum 3: skipped (not cliticized)

b. Exceptional head component

i. Stratum 1 (non-head component): skipped

ii. Stratum 2 (non-head component)

<table>
<thead>
<tr>
<th></th>
<th>OBLHdFt</th>
<th>HdFt-R</th>
<th>*HdFt</th>
<th>Max(HdFt)</th>
<th>Ft-R</th>
<th>Ft-L</th>
<th>Max(Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (σσ)</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>b. (σσ)</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

iii. Stratum 1 (head component)

<table>
<thead>
<tr>
<th></th>
<th>*HdFt</th>
<th>OBLHdFt</th>
<th>HdFt-R</th>
<th>Max(HdFt)</th>
<th>Ft-R</th>
<th>Ft-L</th>
<th>Max(Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. +σ(σσ)</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>b. +(σσ)σ</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>c. +σ(σσ)</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. +(σσ)σ</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

d. (σσ)σ

e. (σσ)σ

iv. Stratum 1 (compound formation)

<table>
<thead>
<tr>
<th></th>
<th>*HdFt</th>
<th>OBLHdFt</th>
<th>HdFt-R</th>
<th>Max(HdFt)</th>
<th>Ft-R</th>
<th>Ft-L</th>
<th>Max(Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (σσ)+σ(σσ)</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. σ(σ)+σ(σσ)</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. (σσ)+(σσ)σ</td>
<td></td>
<td>*</td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. (σσ)+σ(σσ)</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. (σσ)+(σσ)σ</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

v. Stratum 2 (entire compound)

<table>
<thead>
<tr>
<th></th>
<th>OBLHdFt</th>
<th>HdFt-R</th>
<th>*HdFt</th>
<th>Max(HdFt)</th>
<th>Ft-R</th>
<th>Ft-L</th>
<th>Max(Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (σσ)+σ(σσ)</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. σ(σ)+σ(σσ)</td>
<td></td>
<td>*</td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. (σσ)+(σσ)σ</td>
<td></td>
<td>*</td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. (σσ)+σ(σσ)</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. (σσ)+(σσ)σ</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

vi. Stratum 3: skipped (not cliticized)

3.3 Empirical coverage of faithfulness (novel data)

(48) The monostratal analysis predicts that faithfulness should only be seen between cliticized and non-cliticized forms. In particular, it shouldn’t be seen for any 5-syllable stem under disyllabic inflection (compare a and b in the tableau below).
\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Foot-R(MW)} & \text{Foot-L(PE)} & \text{Feet-L(PE)} \\
\hline
\text{a.} & \{((\sigma\sigma)(\sigma\sigma)(\sigma\sigma))\} & * & \\
\text{b.} & \{((\sigma\sigma)(\sigma\sigma)-(\sigma\sigma))\} & **! & \\
\text{c.} & \{(\sigma\sigma)(\sigma\sigma)-(\sigma\sigma))\} & *! & *** \\
\text{d.} & \{(\sigma\sigma)(\sigma\sigma)(\sigma\sigma)-(\sigma\sigma))\} & *! & \\
\hline
\end{array}
\]

(49) The multistratal analysis predicts faithfulness to a 5-syllable stem under disyllabic inflection by Max(Ft) whenever the stem has a foot at its right edge in the input; i.e. when it is
derived, a compound, or a lexical exception (compare a and b in the tableau below).

a. Stratum 2 (input is footed from Stratum 1 or lexical marking)

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\sigma\sigma\sigma(\sigma\sigma)-(\sigma\sigma) & \text{OBLHdFt} & \text{HdFt-R} & \text{*HdFt} & \text{Foot-R} & \text{Foot-L} & \text{Max(Ft)} & \text{Feet-L} \\
\hline
\text{a.} & (\sigma\sigma)(\sigma\sigma)-(\sigma\sigma) & * & \\
\text{b.} & (\sigma\sigma)(\sigma\sigma)-(\sigma\sigma) & * & *! & \\
\text{c.} & \sigma(\sigma\sigma)(\sigma\sigma)-(\sigma\sigma) & * & *! & *** \\
\text{d.} & (\sigma\sigma)(\sigma\sigma)(\sigma\sigma)-(\sigma\sigma) & *! & \\
\text{e.} & (\sigma\sigma)(\sigma\sigma)-(\sigma\sigma) & *! & \\
\text{f.} & (\sigma\sigma)(\sigma\sigma)(\sigma\sigma)-(\sigma\sigma) & *! & \\
\hline
\end{array}
\]

(50) Summary of predictions for 5-syllable complex (compound / derived / exceptional) stems under disyllabic inflection:

- Monostratal: \((\sigma\sigma)(\sigma\sigma)(\sigma\sigma)-(\sigma\sigma))\), by left-alignment in the PUnit;
- Multistratal: \((\sigma\sigma)(\sigma\sigma)(\sigma\sigma)-(\sigma\sigma))\), by faithfulness.

(51) Novel data show that the multistratal prediction is the correct one.

(52) Faithfulness in compounds under disyllabic inflection

a. \(2\) radi-o \(2\) lokator-ami \(1\)
radio-CPD + locator-INST.PL
‘wireless location device’
\((\sigma\sigma)+\sigma(\sigma\sigma)-(\sigma\sigma)\)
(constructed; AGpc, KGpc)

b. \(*2\) radi-o \(2\) lokator-ami \(1\)
radio-CPD + locator-INST.PL
\(*\sigma\sigma)+\sigma(\sigma\sigma)-(\sigma\sigma)\)
(AGpc, KGpc)

(53) Faithfulness(?) in words with “foreign derivational suffixes” (Waszakowa 1991) under disyllabic inflection

a. \(2\) administrator-ami \(2\) \(1\)
administrator-INST.PL
\((\sigma\sigma)(\sigma\sigma)-(\sigma\sigma)\)
(AGpc, KGpc)

b. \(*2\) administrator-ami \(2\) \(1\)
administrator-INST.PL
\(*\sigma\sigma)(\sigma\sigma)(\sigma\sigma)-(\sigma\sigma)\)
(AGpc, KGpc)
c. $\text{2 akompani-ator-owie} \sim \text{2 akompani-ator-owie} \; \text{accompanist-NOM.PL}$

$\text{2 akompani-ator-owie} \sim \text{2 akompani-ator-owie} \; (\sigma\sigma)(\check{o}\cdot\sigma)-(\check{o}\sigma) \sim (\check{o}\sigma)(\check{o}\sigma)-(\check{o}\sigma)$

(Hayes 2009, 288)

(54) Faithfulness(?) in multiple-derived words under disyllabic inflection

a. $\text{2 od-parow-alnik-ami}$

away-evaporate-equipment-INST.PL

‘vaporizer’

(AGpc, KGpc)

b. $\text{2 od-parow-alnik-ami}$

away-evaporate-equipment-INST.PL

(AGpc, KGpc)

(55) Faithfulness under disyllabic inflection of P/A exceptions

a. 2 probabilistyk-a

probability.theory-NOM.SG

(AGpc, KGpc)

b. $\text{2 probabilistyk-ami}$

probability.theory-INST.PL

(AGpc, KGpc)

c. $\text{* probabilistyk-ami}$

probability.theory-INST.PL

(AGpc, KGpc)

References

