Exceptionality and Faithfulness in Polish Stress: Comparing mono- and multistratal OT analyses

Simon Todd, Stanford University

A multistratal analysis of Polish stress placement better accounts for exceptionality, faithfulness, & their interactions with morphosyntax

Basic stress template

- Primary stress on penult, non-primary stress alternating from left (1).
 1. \((\sigma) (\sigma) (\sigma) (\sigma) \) (rubach and Booij 1985)

- Compound components each independently follow the template (2).
 2. (a)\(\sigma \) (b)\(\sigma \) (c)\(\sigma \) (d)\(\sigma \)

- A single proclitic gets initial 2º stress but doesn’t otherwise interfere (3).
 3. \((\sigma \alpha) (\sigma) (\sigma) (\sigma) \)

- Encitics and sequences of proclitics do not interfere with host stress.

Treatments of exceptionality

- Exceptions: antepenultimate 1º stress under monosyllabic inflection (4a), regular penultimate 1º stress under derivation (4b).
 4. a. \(\sigma (\sigma \sigma) \) →
 b. \((\sigma \alpha) (\sigma) \) →

- Mono: inflection and derivation both yield a PWord.
 - cannot predict the difference.

- Multi: assume that exceptions have lexically-marked head feet;
 - protected under inflection by Max(HoF) → Foot-R at Stratum 2;
 - erased under derivation by *HoF → Obl.HoF, Max(HoF) at Stratum 1.

- Conclusion: the multistratal analysis gives better treatment of exceptions.

Existing monostatal analysis

- (Based on Kraska-Szlenk 2003, *The Phonology of Stress in Polish, LINCOM*)

- Nested prosodic domains correspond to morphophonological units:
 - PWord: root + affixes
 - MWord: complete word
 - PUnit: clitic group

- Core constraints for (binary, trochaic) foot placement in each domain:
 1. HoF-R(MWord) → the rightmost foot in the MWord is head (1º stress)
 2. Foot-R(MWord) → have a foot at the right edge of the MWord
 3. Foot-L(PUnit) → have a foot at the left edge of the PWord
 4. Foot-L(PUnit) or IDENT(MWord) → clitic-host MWord is O-O faithful to standalone MWord
 5. Foot-L(PUnit) → don’t leave unfooted (right) foot at the right edge of the PUnit

Empirical coverage of faithfulness

- Mono: faithfulness only holds between cliticized and non-cliticized forms;
 → all non-final feet in non-cliticized forms should be left-aligned.

- Multi: faithfulness also between inflected and uninflected complex forms;
 → penultimate foot in 2º-inflected complex forms should be right-aligned.

Extension to multiple strata

- Step 1: extend domain parameterization from Foot-R to Foot-L and Feet-L.
- Step 2: swap domains with morphological strata, O-O faithfulness with i-O.
- Stratum 1: triggered by derivation, compound head, compound formation;
- Stratum 2: triggered by inflection, compound non-head;
- Stratum 3: triggered by cliticization.

- At all strata (foot-template): FBN \(\Rightarrow \) Foot-R \(\Rightarrow \) Foot-L \(\Rightarrow \) Max(Ft) \(\Rightarrow \) Feet-L

- Step 3: add head-foot constraints, dominating foot-template constraints:
 1. Stratum 1: erase existing head foot
 2. Stratum 2: require a head foot
 3. Stratum 3: make rightmost foot head

- Step 2: swap domains with morphological strata, O-O faithfulness with i-O.

Effects of morphosyntax

- Exceptional stress in compounds: regularized in head (2nd) component (8); retained in non-head (1st) component (9).
 8. a. \(\sigma \) (president)
 b. \(\sigma \) (pseudo-cpd + president)

- Multi: marked foot is erased in cpd head at S1; protected in non-head at S2.

Conclusion

- the multistratal analysis allows effects of morphosyntax.

KEY
- \(\sigma \) exceptionally-stressed syllable
- BOUNDARIES: \(\Rightarrow \) derivation, \(\Rightarrow \) inflection, \(\Rightarrow \) compound, \(\Rightarrow \) clitic

Questions / comments
- Email sjtodd@stanford.edu

Details