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Abstract

We examine a dynamic disclosure model in which the value of an

asset follows a random walk. Every period, with some probability an

agent learns the value of the asset and decides whether to disclose it.

The agent maximizes the market perception of the asset’s value, which

is based on disclosed information. We show that in equilibrium the

agent follows a threshold strategy but also reveals pessimistic informa-

tion that reduces market perception. We examine different variants

and show, for example, that when he can disclose stale information he

is less likely to disclose current values, but over time discloses more.

JEL Codes: D21, D82, D83, G12, L11.

1 Introduction

Analyzing voluntary disclosure and its consequences for the functioning of

markets intersects accounting, economics, and finance. The existing liter-
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ature on strategic disclosure focuses on static or dynamic models with the

asset having a fixed value. This is at odds with a common feature of financial

and other markets in which, as information arrives, the (expected) value of

an asset follows a random walk. Such stochastic evolution introduces new

strategic considerations. The agent may decide to hide information, hoping

to disclose the value in the future when it is higher. However, when the agent

continues to hide information, the market becomes more pessimistic about

the value. Therefore, in deciding whether to disclose information, the agent

accounts for the effect of current and future market perceptions. Optimal

disclosure decisions depend on his expectations about the evolution of the

future value of the firm and the evolution of the market’s beliefs. Our goal

in this paper is to provide a first step in bridging the gap between static and

dynamic voluntary disclosure models.

We study a model of dynamic voluntary information disclosure by a man-

ager of a public firm. The value of the firm follows a random walk. In every

period, with some probability, the manager holds material information and

chooses whether to disclose it. A key feature of strategic disclosure models

captures the fact that it is often difficult to blame an agent for not disclosing

information, as it is hard to prove whether he had it. However, he can be

punished if he discloses false information. We follow this logic and assume

that the agent may disclose information only when it is timely. A regulator

may not know with certainty that an agent has concealed information, so it

cannot punish him for this. However, when the agent has delayed revealing

information, it is clear the agent has concealed information so he can be pun-

ished. 1 We assume that the market sets the current price as the expected

value of the firm conditional on the public history of disclosures. The equi-

librium is based on the manager maximizing a weighted average of market

prices, and market prices being consistent with the manager’s strategy. In

1To understand how this restriction affects the equilibrium outcome, in Section 5.1 we
allow the agent to disclose stale information.
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particular, the market no-disclosure price is based on the set of values the

manager chooses not to disclose.

We first show that similarly to static models, the equilibrium is based on

threshold strategies. At any given time, and given some history, the manager

who has information reveals it if and only if it exceeds a certain history-

dependent threshold. In a dynamic environment, this feature has to some

interesting implications. The value process is assumed to be a martingale.

Prices also follow a martingale as they reflect expected values conditional on

public information. However, since the agent follows a threshold strategy,

prices are more positively skewed, compared to the value process. In equilib-

rium, “no news is bad news”: in the intervals between disclosures, prices drift

down and there is usually (but not always; see our second result) a positive

jump upon disclosure.

We then characterize the equilibrium thresholds for disclosure. We show

that disclosure thresholds are always lower than the no-disclosure price (apart

from the last period). This implies that with positive probability, the agent

discloses information that leads to a lower price than the price that would

have prevailed had he decided not to disclose. This result stands in contrast

to a one-period model or a myopic behavior. The intuition for why the

manager chooses to disclose some values even though by doing so he reduces

prices today is that by disclosing today, he reduces future uncertainty. It

is important to note that the manager is risk-neutral, and prices are equal

to the expected value of the firm regardless of what uncertainty the market

faces. So, it is perhaps surprising that despite being risk-neutral, the manager

discloses information that reduces uncertainty about the value of the firm at

the cost of reducing the current price. The key reason for this behavior is

the difference in beliefs about future values between the manager and the

market: the market forms beliefs based on the public disclosure history. The

manager additionally knows the undisclosed information. These differences

are generated over time and are affected by the disclosure decisions of the
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manager. A decision to withhold information leads to higher uncertainty (i.e.,

the market’s beliefs being more dispersed than the agent’s). This higher

uncertainty implies lower no-disclosure prices in the future, as the market

accounts for a fatter left tail. The market is skeptical about the value since

there is a chance the agent is hiding information, and the skepticism is higher

the more uncertain the value is from the market’s point of view.

We then establish a generalization of the “minimum principle” that was

introduced in Acharya et al. (2011), by defining the “suspicious belief prin-

ciple”. If the market believes that the agent follows a certain disclosure

strategy, then it sets non-disclosure prices as the expected values conditional

on no-disclosure. We show that the equilibrium disclosure strategy must sat-

isfy a certain pessimistic beliefs property (for computation of expected no

disclosure prices) for all possible disclosure strategies. This provides a nec-

essary and sufficient condition for a strategy to be an equilibrium strategy.

It takes a simple form if we assume that the agent cares only about the final

price. We rely on this solution in Section 5.1 when we consider the disclosure

of stale information.

To better understand our model, we study a few variants in Section 5. We

first consider the restriction that the agent must disclose timely information.

Relaxing this restriction implies that the agent can disclose at time t the value

vt′ that he had obtained at an earlier date t′ < t. We analyze a two-period

case. With the option to disclose stale information, off-equilibrium beliefs

play a more significant role, and there exists an equilibrium in which the

agent never discloses stale information. However, when we apply a refinement

that is based on a trembling hand, there exists a unique equilibrium outcome

in which the manager does disclose stale information.

We show that the manager follows a myopic strategy in the sense that

he discloses a piece of evidence (either current or stale) if and only if it

leads to a higher current price. While this is similar to the static case, the

disclosure strategy is more involved. For example, at t = 2 the disclosure
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strategy is defined by two thresholds, as he may disclose two different pieces

of information. We then ask how the ability to disclose stale information

affects overall equilibrium disclosure. The first-period equilibrium threshold

in the stale model is higher than in our main model. However, the equilibrium

threshold for disclosing the first-period value decreases in period two, so that

the agent discloses with delay some values that he conceals in the first period.

We prove that the threshold in the second period is even lower than the first-

period threshold when only timely disclosure is allowed. The takeaway is

that while our assumption that information must be disclosed in a timely

manner may seem at first to increase disclosure, this outcome may reverse

when we consider the aggregate/long-term effects.

We then examine a variant in which an information event occurs in each

period with some probability. This information event leads to a change in

the asset’s value that can be disclosed. Since it is uncertain whether such an

event has occurred, the manager has discretion whether to disclose it or not.

We first note that if the disclosure is about the asset’s value, the same results

as in our main model continue to hold. However, when the information the

manager can disclose is only about the changes in the asset’s value, then the

equilibrium is similar to a static model, and the disclosure strategy is myopic.

This is because the changes in the asset’s value are independent over time.

This highlights that the serial auto-correlation in the asset’s value leads to a

non-myopic disclosure strategy.

1.1 Related Literature

The voluntary disclosure literature goes back to Grossman and Hart (1980),

Grossman (1981), and Milgrom (1981), who showed that if it is commonly

known that the agent is privately informed, then there is full disclosure.

Our paper follows Dye (1985) and Jung and Kwon (1988), who showed in a

one-period model that when investors are uncertain about the information

endowment of the agent, then there exists a non-trivial equilibrium in which
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some types withhold information and some disclose it. As mentioned in the

introduction, despite the vast literature on voluntary disclosure, only a few

papers have examined multi-period settings in which the information changes

over time. Shin (2003) and Shin (2006) study a setting in which a firm may

learn a binary signal for each of its independent projects, and each project

may fail or succeed. In this binary setting, Shin studies the “sanitization”

strategy, under which the agent discloses only the good (success) news. The

timing of disclosure does not play a role in such a setup. Pae (2005) considers

a single-period setting in which the agent can learn up to two normally

distributed signals.

Einhorn and Ziv (2008) study a setting in which in each period the man-

ager may obtain a single signal about the period’s cash flows. At the end

of each period, the realized cash flows are publicly revealed, which elimi-

nates the dynamic considerations that are at the heart of the present paper.

Acharya et al. (2011) examine a dynamic model in which a manager learns

one piece of information at some random time, and his decision to disclose

it is affected by the release of some external news. Bertomeu et al. (2011)

study a reputation model in which the manager may learn a single private

signal in each of the two periods. The manager can be either “forthcoming”

and disclose any information he learns, or he may be “strategic”. At the end

of each period, the firm’s signal/cash flow for the period becomes public, and

the market updates beliefs about the value of the firm and the type of the

agent. Importantly, the option to “wait for a better signal” that is behind

our main result is not present in any of these papers.

Guttman et al. (2014) examine a two-period model in which there are

potentially two pieces of information. The main result is that in the second

period, the market values the same signal more if it is disclosed in the second

period rather than in the first period. This is different from the result we

obtain for the case with stale information disclosure. The reason for this

difference stems from the nature of the evidence we consider. In our model,
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the evidence is about the current value, and so it has a “time stamp”. When it

is disclosed late, the market knows that it was disclosed with delay. Moreover,

the information sets in the different periods can be described as filtration.

Information in the first period is not only less informative than information

in the second period, but also a garbling of the value in the second period.

Aghamolla and An (2019) study a two-period model in which the value is

normally distributed. They obtain a result that is similar to our first result.

The manager may disclose negative information in the first period. The

setup and the driving force, however, are quite different. In their paper, it is

commonly known that the manager knows the value of the firm. Disclosure,

however, is costly. When deciding whether to disclose, the manager optimizes

the benefits of disclosure against the cost of disclosure in each period.

2 The Model

We consider a model of dynamic strategic disclosure with a single agent who

can be viewed as a manager of a public firm. Time is discrete, t ∈ {1, 2..., T}.
The starting value of the firm, V0, is known. The value evolves as a random

walk

Vt = V0 +
t∑

τ=1

∆Vτ ,

with increments ∆Vτ ≡ Vτ − Vτ−1, which are zero-mean i.i.d. random vari-

ables, with cumulative distribution function F , strictly positive density func-

tion f , and finite variance.

In every period t, with probability π ∈ (0, 1) the manager learns the

current value of the firm, and can credibly/verifiably disclose it.2

2For simplicity, we assume that the event of being able to disclose is independent of
the realized value. Our model and results can be generalized to allow the distribution of
the increments to depend on whether the agent can disclose information, as long as we
maintain that the current value and future opportunities to disclose are independent. See
Section 5.2 for an example of such a model.
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A strategy of the agent is a disclosure rule that specifies which values of

Vt to disclose. Denote by Ht = {d1...dt} the (public) history of disclosures

at time t, where dτ = Vτ if the agent discloses the value of the firm, and

dτ = ∅ if he does not. The manager can reveal the value of the firm only

when he has verifiable information. The manager’s time-t disclosure strategy

is denoted by σt(Ht−1, Vt) ∈ [0, 1], which is the probability of disclosure of

the current value if he can disclose it.

The market sets prices to be equal to the expected value of Vt based on

rational expectations and conditional on the history of the agent’s disclosures.

We denote the market prices by Pt(Ht).

We show later that the equilibrium disclosure strategies are threshold

rules. Thus, it is convenient to define the pricing function P̂t(Ht, x1, ..xt)

as the expectation of Vt conditional on the history and conditional on the

manager using some arbitrary disclosure thresholds x1, .., xt in periods when

he did not disclose information.3

The manager maximizes a weighted sum of prices:

T∑
t=1

wt · Pt(Ht),

for some known weights wt ≥ 0. This general specification allows us to

capture a standard discounted utility model as well as the case in which

managerial compensation is more sensitive to stock prices on specific dates.

Definition 1. An equilibrium of this model is a disclosure strategy of the

agent and market prices, {σt(Ht−1, Vt), Pt(Ht)} such that:

1. (Sequential Rationality) After every history, the manager maximizes

his expected utility given market prices.

2. (Sequential Consistency of Prices). The price at time t equals the ex-

pected value of Vt conditional on the public history and the manager’s

3For equilibrium thresholds it holds that P̂t(Ht, x1, ..xt) = Pt(Ht).
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disclosure strategy.

Since we presented the equilibrium using a verbal description rather than

a mathematical expression, we should make a few comments. When the

manager maximizes his utility given prices, he considers how disclosure af-

fects his current price and also future prices. In computing prices, there are

two cases to consider. In periods in which the agent discloses information,

i.e., for any Ht such that dt = Vt, we have Pt(Ht) = Vt (since we assumed

disclosure is credible). In periods in which the agent does not disclose, i.e.,

for any Ht such that dt = ∅, let τ ∈ {0, ...t− 1} be the last period in which

dτ 6= ∅ (or 0 in case the agent had never disclosed). For those histories,

Pt(Ht) = E[Vt|Vτ , {σs(Hs−1, Vs), ds = ∅}s=ts=τ+1]. Note that the agent’s strat-

egy {σt(., .)} since the last disclosure is used to calculate the expected value

conditional on no disclosure.

The equilibrium conditions apply to histories on and off the equilibrium

path. In case the history is on the equilibrium path, prices follow Bayes’

rule. The off-the-equilibrium path events are disclosures of values to which

σ assigns zero probability. After those histories, when the agent discloses

value Vτ , we require that the continuation strategy and the prices form an

equilibrium of the model as if the starting value were Ṽ0 = Vτ and the model

had horizon T̃ = T − τ .4

Discussion of Assumptions We assumed that the increments ∆Vt have

identical distributions and that the probability that the agent can disclose

information, π, is constant. These assumptions are just for ease of exposition.

Our qualitative results are robust to allowing F and π to vary over time. Our

assumption that increments have zero mean and are independent implies

that the value process follows a martingale. This is a common feature of

4It would also be possible to write the model as a game between the agent and a
competitive set of investors. In that case, we could use as the equilibrium notion perfect
Bayesian equilibrium with the requirement that beliefs satisfy proper subgame consistency
(see Kreps 2020).
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finance models that captures the fact that in efficient markets, prices are

equal to expected value conditional on available information. Prices then

follow a martingale, as the expected value conditional on an increasing set

of information is a martingale process.

A more substantial assumption is that the agent may reveal only timely

information. If he does not reveal Vt at t, he cannot reveal it later. One reason

for this assumption is that the verifiable information may be short-lived.

Another reason is that agents are commonly required to reveal all material

information in a timely fashion. An agent can hide information by pretending

an information event has not occurred. If he reveals the information with

delay, it becomes clear he has violated that requirement. For example, an

outside investor could approache the manager with a credible price offer (for

the firm or a part of it). When the offer is made, the agent has to decide

whether to treat it as material information. If he does, he is compelled to

reveal it immediately to the shareholders. If he does not, the offer expires,

and hence it may not be possible to reveal it credibly. Moreover, revealing

it later could put the manager in trouble. We later examine the effect of

this assumption on equilibrium disclosure by studying a case in which the

manager can also disclose stale information (see Section 5).

We also assumed that the agent learns Vt only when he can disclose it (for

example, news about V arrives via offers made by outside investors). Our

analysis and results would remain unchanged if instead the agent observed

Vt even in periods when he could not disclose it. This is because the agent

can only take actions when he has verifiable information and once that in-

formation arrives, the current realization of Vt is a sufficient statistic for the

firm’s future value.

Finally, we assumed that when the agent obtains information, it fully

reveals the value of the firm Vt. Instead, we could interpret Vt as the best

(possibly noisy) estimate available to the agent at the time of disclosure. For

example, if instead of observing at t the value Vt the agent observed the value
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of Vs for some s < t, then, as long as the time he observes the signal can

be verified and the agent is constrained to reveal Vs only in the period he

observes it, our model with timely disclosure would apply. In other words,

what matters in the model for information to be “timely” is not whether

the information is about current or past values of Vt, but rather when the

agent received that information: if he can disclose the information only in

the period in which he received it, our model still applies.

3 Preliminary Analysis

3.1 Disclosure in a One-Period Model

We begin the analysis by considering a static model (which is useful for

understanding disclosure in period T ). We review some results that are due

to Dye (1985), Jung and Kwon (1988), and Acharya et al. (2011). These

results form a benchmark against which we will compare disclosure policies

in the dynamic model.

In the static model, the asset value is given by V1 and is distributed

according to some distribution F . With probability π, the manager learns

the value and can decide whether or not to disclose it. In equilibrium, the

manager follows a threshold strategy. The manager withholds the value if

and only if it is below a certain threshold. The reason is that his payoff is a

fixed price in case of no disclosure and increases in his type if he discloses. As

a result, the incentive to disclose is increasing in type. The threshold equals

the price the manager would obtain upon no disclosure, P (∅). Given that

the price equals the market’s expected value conditional on no disclosure, we

have

P (∅) =
(1− π)E[V1] + π ∗ Pr(V1 < P (∅))E[V1|V1 < P (∅)]

(1− π) + π ∗ Pr(V1 < P (∅))
.

One can express the equilibrium threshold, x∗, as a fixed point. Con-
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sider the expected value of V1 conditional on no disclosure and the disclosure

threshold being x:

P̂ (∅, x) ≡ (1− π)E[V1] + π ∗ Pr(V1 < x)E[V1|V1 < x]

(1− π) + π ∗ Pr(V1 < x)
.

Then, x∗ is a solution to P̂ (∅, x) = x. This model was first introduced by

Dye (1985). Jung and Kwon (1988) show the existence and uniqueness of

such a fixed point (and hence of equilibrium). Acharya et al. (2011) show

an alternative characterization named the “minimum principle” to which we

will refer later:

P (∅) = min
x
P̂ (∅, x). (1)

Note that an immediate implication of this condition is the uniqueness of

the equilibrium (because if the minimum is also a fixed point, then P̂ (∅, x)

has only one minimum; see Figure 1 for illustration). Moreover, for any x

such that x < P̂ (∅, x), we have x < x∗ < P̂ (∅, x), and for any x such that

x > P̂ (∅, x), we have P̂ (∅, x) > x∗: see Figure 1.

Finally, consider the expected payoff for the manager. With probability

π he is informed, and his payoff is max{P (∅), V1}, because he discloses if

and only if doing so increases his price. With probability 1−π, the manager

has no discretion, and his payoff is P (∅). The law of iterated expectations

implies that the manager’s average payoff equals the firm’s average value

based on the distribution of F , that is,

E[V1] = (1− π)P (∅) + π

∫
V1

max{P (∅), V1}dF.

3.2 Existence and Uniqueness in the Dynamic Model

We now turn to the dynamic game and provide preliminary results about the

existence, uniqueness, and structure of the equilibrium:
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Lemma 1.

(i) In any equilibrium the agent follows a threshold strategy.

(ii) An equilibrium exists.

(iii) For π small enough the equilibrium is unique.

The term “threshold strategy” in (i) means that for any given history

Ht−1, if a type Vt = v discloses with positive probability, then all higher types

Vt > v find it strictly optimal to disclose. Thus, there exists a threshold xt

(that depends on the history, Ht−1) such that types above it disclose and

types below it do not.

The proof of part (i) is as follows. Consider any equilibrium and any

history Ht−1. If the agent discloses today Vt = v, his expected equilibrium

payoff (starting today) is v
∑

s≥tws (because values are a martingale and the

equilibrium prices are correct on average). Let G(v) denote the payoff of the

agent with Vt = v if he does not disclose today, and subsequently follows an

optimal disclosure strategy (this payoff includes the no-disclosure price today

and the expected future prices given optimal disclosure in the future).

Clearly, G(v) is increasing since a type v′ > v can follow the strategy of

disclosing for the same value increments as those for which v discloses. If v′

does so, he gets the same prices until the first disclosure and a strictly higher

(by v′ − v) price upon disclosure (and a strictly higher continuation payoff).

By a similar rationale G(v′)−G(v) < (v′ − v)
∑

s≥tws because the lower

type can mimic the disclosure policy of the higher type (as before): in the

event of no disclosure the lower type gets the same price as the higher type,

and in the event of disclosure gets only (v′ − v) less. Since this is not the

optimal strategy for the lower type, and no disclosure happens with positive

probability on the equilibrium path (in particular, in period t), the strict

inequality follows.5

5We assume that ws > 0 for some s ≥ t to make the problem non-trivial. That
assumption is sufficient for the strict inequality since there is a strictly positive probability
that the manager will not be able to disclose in periods t to s. In that event, both types
get the same payoff.
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Rearranging this inequality we get that

G(v′)− v′
∑
s≥t

ws < G(v)− v
∑
s≥t

ws. (2)

So indeed, if the lower type v weakly prefers to disclose at t, which requires

that G(v)− v
∑

s≥tws ≤ 0, the higher type strictly prefers to disclose.

We prove part (ii) (existence) in the appendix via relatively standard ar-

guments that use Berge’s theorem and a fixed point theorem. Roughly, think

about every history of length {1, ..., T} in which there was no disclosure. Pick

some probabilities of disclosure in every period for each of these histories.

They imply unique disclosure thresholds and, by Bayes’ rule, unique no-

disclosure prices that are continuous in the probabilities. Given those prices,

find best-response disclosure thresholds for the agent. By Berge’s theorem,

the best-response thresholds are continuous in prices. This procedure cre-

ates a continuous mapping from probabilities of disclosure to probabilities of

disclosure. That mapping has a fixed point, and that fixed point pins down

the equilibrium (prices and thresholds).

Regarding uniqueness (part iii; also see the appendix), note that the

analysis of equilibria in the multi-period game is more involved than in the

static case we discussed above. In the static model, the uniqueness of the

equilibrium can be shown without making any additional assumptions. In

the dynamic model, uniqueness is not guaranteed. The main reason for

this is that, unlike in the static case, in periods t < T the expected no-

disclosure payoff of type Vt depends on Vt. Even though the current-period

no-disclosure price does not depend on it, the expected future prices do. In

particular, considering two types that do not disclose today, a higher type

today expects higher values in the future and hence higher expected future

payoffs. Moreover, expected future prices depend on the market’s beliefs

about past disclosure thresholds, and this creates the possibility of multiple

equilibria.
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To see how the proof works when π is low, fix some history Ht−1. Let

xt denote the sequence of thresholds up to time t that the market believes

the agent follows in his disclosure strategy at times {0, ..., t}. At t, the

equilibrium threshold x type has to be indifferent between revealing Vt = x

and hiding it. As we argued before, if he reveals it, his expected payoff is

x
∑

s≥tws. If he does not disclose, the current period price is Pt(Ht−1,∅),

and then there are continuation prices given equilibrium beliefs and optimal

disclosure in the continuation game. Thus the equilibrium condition is

x
T∑
s=t

ws = wtP̂t(Ht,xt) +
T∑

s=t+1

wsE[Ps|Ht, Vt = x]. (3)

To claim uniqueness, we compare the derivative of the LHS of (3) with

respect to x to that of the RHS. In order to rule out the possibility of more

than one solution, it is sufficient to show that the derivative of the RHS is

always higher. The derivative of the LHS is constant and equals
∑T

s=tws.

One might be tempted to conclude that our bound of the derivative of G(v)

in part (i) implies that the derivative of the RHS of (3) is lower than
∑T

s=tws,

which would imply the uniqueness of the equilibrium. This is not true because

when we argue about G(v), we take the continuation equilibrium as given.

To find the equilibrium, we also need to account for how continuation prices

change when we change the threshold at time t. Moreover, as xt changes,

future optimal thresholds change as well, further affecting prices. We show

that when π is not too high, these additional effects get small as well.

To see the intuition for that claim, note that as π → 0, the RHS of (3)

converges to Vτ where τ is the last disclosed value (or τ = 0 if no value

was disclosed yet). Moreover, the derivative of the RHS converges to zero as

π → 0 because the probability that the market assigns to the agent knowing

the value in any period between τ and T goes to zero. Hence, the sensitivity

of future prices to any past thresholds goes to zero too. Hence, at least for

small π, there is a single solution to that equilibrium condition.
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In the rest of the paper, we assume that the parameters of the game are

such that the equilibrium is unique. This simplifies the arguments. That

said, similar results can be derived for the set of equilibria, in particular, if

we focus on the equilibria that are the highest and the lowest solutions to

(3) in any period.

4 Excess Disclosure

We now present our main result. We argue that in the equilibrium of the

dynamic model, the manager reveals more information than he would in a

one-period model.

In a one-period model, the manager reveals information if and only if dis-

closure yields him a higher price than the no-disclosure price. We show that

in the dynamic model there is more disclosure. Namely, we show two results:

first, the dynamic-model no-disclosure threshold is below the static-model

disclosure threshold. Second, since in the static model the no-disclosure price

satisfies the simple minimum principle, in the dynamic model, the manager

discloses some information even though it decreases his current price to be-

low the no-disclosure price. This equilibrium behavior might be seen as

“excessive” disclosure if we tried to understand it through the lens of a static

model.

The reason the manager may disclose some information that hurts his

current price is that he cares about future prices, and we can prove that dis-

closing information today improves expected prices tomorrow. It may at first

seem counterintuitive that additional disclosure of a type below the expected

no-disclosure type could improve future prices: after all, the manager and the

market are risk-neutral, and values and prices are martingales. Nevertheless,

we show that in equilibrium, by disclosing Vt today, the manager reduces the

uncertainty that the market will face in the future, and that improves his

future no-disclosure prices. Thus it may seem that the manager is risk averse
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Figure 1: The no-disclosure price in a one-period model as a function of the
threshold x. The unique equilibrium threshold is x∗ and, as the graph shows,
it equals the minimum no-disclosure price.

despite actually being risk-neutral. Given that disclosure is a call option,

it may appear that the manager should prefer more uncertainty. However,

the “strike price” of that option is the no-disclosure price that goes down

with the market’s uncertainty (because the market is more worried about

the manager hiding negative information) and so the value of the manager’s

option increases with disclosure.

Our proof strategy is based on the following logic. We assume by way of

contradiction that the manager follows a myopic disclosure strategy. Given

these market beliefs, we then show that the threshold type would actually

strictly prefer to disclose. This leads to a contradiction. A threshold that

would make him indifferent has to be lower (the solution to (3) has to have

a lower x than the one that solves xt = P̂t(Ht,xt), which defines the myopic

threshold). This also implies that the equilibrium no-disclosure price in the

dynamic model is higher than in the static model. That is implied by the

minimum principle we discussed before: the myopic price is the lowest price

over all possible disclosure policies in period t (see Figure 1).

In a two-period model, this result is relatively simple to prove. One can
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use the lemma of Jung and Kwon (1988).

Lemma 2. (Jung and Kwon 1988) Consider a one-period model and let x∗F
denote the threshold when the prior distribution is F . If F dominates G in

the second-order stochastic dominance sense, then x∗F > x∗G.

With this lemma at hand, suppose that in period t = 1 (when T = 2)

in equilibrium the manager follows a myopic strategy: disclose if and only if

P1(V1) = V1 > P1(∅). To see why the threshold type would strictly prefer to

disclose, consider the market beliefs in the second period. From the point of

view of the threshold type there are two relevant histories: H1 = (xmyopic1 ) =

(P1(∅)) or H1 = (∅). That is, he either discloses or not.

If the manager followed a myopic threshold in the first period, the mar-

ket beliefs about V2 would have the same mean (xmyopic1 ) after both histories.

However, if he does not disclose in the first period, market beliefs would

be more dispersed. In fact, the market beliefs upon no-disclosure are domi-

nated in the second-order stochastic dominance sense by the market beliefs

upon disclosure. Therefore, Lemma 2 implies a lower no-disclosure price in

the second period if he does not disclose in the first period: P2(∅,∅) <

P2(x
myopic
1 ,∅) (recall that in the static game thresholds are equal to no-

disclosure prices and so the ranking of thresholds implies a ranking of prices).

Since the distribution of values in the second period, V2, is unaffected by the

disclosure in the first period, we conclude that the expected payoff of the

threshold type of the manager would be strictly higher in the second period

if he disclosed in the first period, a contradiction. Instead, the first-period

equilibrium threshold has to be lower than the myopic threshold (and the

first-period no-disclosure price higher than under myopic disclosure because

of the minimum principle).6

6This reasoning seems to directly establish only that the equilibrium threshold has to
be lower than the equilibrium no-disclosure price. But inspecting Figure 1 (which follows
from the minimum principle in Section 3.1), we see that the threshold is below the no-
disclosure price if and only if x1 < xmyopic1 .
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For the general case of an arbitrary number of periods, we need a different

proof strategy because disclosure at time t affects prices in all future periods,

and except in period T, disclosure is not myopic.

Suppose that the current time is t and the history is Ht−1. The current-

period equilibrium threshold is x∗t (Ht−1). Define by xmyopict (Ht−1) an equi-

librium threshold in a single-period game with the same prior probability

distribution over Vt as in the equilibrium of the dynamic game.7 Our main

result is that the equilibrium disclosure thresholds are lower than the myopic

thresholds and hence lower than the no-disclosure prices.

Theorem 1. For every t < T and every history Ht−1,

x∗t (Ht−1) < xmyopict (Ht−1) < Pt(Ht−1,∅).

Proof. Fix an arbitrary history Ht−1 and the equilibrium thresholds before

t. In this proof we abuse notation and let Pt(∅) ≡ Pt(Ht−1,∅) to suppress

the dependence on Ht−1. Let h(v) denote the expected future payoff (not

including time t) for a type Vt = v conditional on him not disclosing at t.8

We first show that h is convex. We argue that for all ∆ > 0,

h(v) <
1

2
(h(v + ∆) + h(v −∆)).

Consider the optimal continuation strategy of type Vt = v as a function of

future increments of value. Suppose that types (v + ∆) and (v −∆) imitate

it. Under the imitation strategies, the average payoff of the two types equals

h(v). The reason is that by disclosing when type v would disclose, types

7The prior depends on the history Ht−1 and past equilibrium disclosure thresholds.
As we discussed in the one-period model, given this prior, xmyopict (Ht−1) is equal to the
minimum of no-disclosure prices over all period t disclosure policies.

8Again, this payoff depends on Ht−1 but, for clarity, we suppress this dependence in
the notation.
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(v + ∆) and (v −∆) get the same price on average. By not disclosing when

type v does not disclose, types (v+∆) and (v−∆) get the same no-disclosure

price. Since exactly mimicking type v is not the optimal strategy for either

(v + ∆) or (v −∆), the inequality follows.

Let E[h(Vt)] be the average continuation payoff of all types that do not

disclose in equilibrium at t. Based on the convexity of h, Jensen’s inequality

implies

h(Pt(∅)) < E[h(Vt)|dt = ∅], (4)

where Pt(∅) = E[Vt|dt = ∅] by rational expectations, i.e., because the equi-

librium no-disclosure price is the average of types that do not disclose at

t.

We can now prove the claim in the theorem. The equilibrium threshold

x∗t has to satisfy:

x∗t
∑
s≥t

ws = wtPt(∅) + h(x∗t ). (5)

Suppose by way of contradiction that there exists an equilibrium in which

at t < T , x∗t ≥ Pt(∅). First, recall that (2) implies that if we compare the

continuation payoffs of the threshold type and the type equal to the no-

disclosure price, then, because the lower type can mimic the higher type’s

strategy, we get

h(x∗t )− h(Pt(∅)) ≤ (x∗t − Pt(∅))
∑
s>t

ws. (6)

Second, Jensen’s inequality (4) and the equilibrium conditions imply that

h(Pt(∅)) < E[h(Vt)] = Pt(∅)
∑
s>t

ws, (7)

where the equality follows from the value process being a martingale: since

the market believes that all the types that do not disclose have an average
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value Pt(∅), it follows that averaging future prices at any future date is also

Pt(∅).

Combining (6) and (7) we get

h(x∗t ) < x∗t
∑
s>t

ws,

which contradicts (5). Since we know that an equilibrium exists, it must

therefore be that in equilibrium x∗t < Pt(∅).

Finally, recall that the minimum principle implies that for any xt <

P̂t(∅, xt) we have xt < xmyopict < P̂t(∅, xt) (see Figure 1), as claimed in

the statement of the theorem.

4.1 The “Suspicious Belief Principle”

A key property in static disclosure models is the “minimum principle”. Ac-

cording to this principle, whenever the agent does not disclose information,

in equilibrium the market assumes the worst possible scenario. For instance,

where it is commonly known that the agent is informed, as in Grossman

(1981) and Milgrom (1981), the equilibrium price upon no-disclosure is the

lowest value. Moreover, when it is not commonly known that the agent is

informed, the no-disclosure price is the lowest expected value that any dis-

closure policy can support, see (1) and Figure 1.

In contrast, in our dynamic model, the disclosure policy does not minimize

the first-period no-disclosure price (Theorem 1). But does the spirit of the

“minimum principle” survive in any way in our game?

Notice first that no one belief minimizes all no-disclosure prices in our

dynamic setting. As a result, if we wanted to find a market belief that

minimizes the sum of no-disclosure prices weighted by wt and the probability

the agent reaches t without disclosing, the minimizer would depend on the

disclosure strategy (via the probabilities).
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As a result, instead of the “minimum principle,” a more general property

holds in our game. We call it the “suspicious belief principle.” This new

principle simplifies to the “minimum principle” if the agent assigns positive

wt to only one period.

To define the “suspicious belief principle,” let P σ̂
s (∅) be the no-disclosure

price at time s, given that there was no disclosure up to time s and the

market believes the agents follows σ̂. Next, suppose that the agent follows

σ, but the market believes that he follows σ̂. For these two strategies, define

the weighted sum of expected no-disclosure prices as:

φ(σ, σ̂) = E

[ τ(σ)−1∑
s=1

ws · P σ̂
s (∅)

]
, (8)

where τ(σ) is a random variable which is equal to the first disclosure period

given σ and the expectation is with respect to that random variable.9

Note that σ̂ affects φ(σ, σ̂) only via the no-disclosure prices and σ affects it

only via the stopping times. As we discussed above, changing σ̂ can increase

the no-disclosure prices in some periods and reduce them in other periods.

For example, the strategy that minimizes P σ̂
1 (∅) (the static model strategy)

does not minimize P σ̂
2 (∅).

With this notation, φ(σ, σ) is the sum of expected no-disclosure prices if

the market believes correctly that the agent follows σ. By contrast, φ(σ, σ̂) is

the sum for the same agent strategy but when the market believes incorrectly

that he follows σ̂. The following proposition states that σ∗ is an equilibrium

strategy if and only if for any potential strategy σ, the equilibrium belief

σ∗ is worse (in terms of the sum of no-disclosure prices) than if the market

believed σ.

9To simplify notation, we have defined φ(σ, σ̂) only from the perspective of t = 1.
However, recall that our model “resets” after every disclosure: if the agent discloses Vt = v
then the continuation equilibrium is also an equilibrium of a game with horizon T − t and
starting value V0 = v. For periods following disclosure the function in (8) is re-computed
by replacing s = 1 with s = t.
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Proposition 1. Consider the beginning of the game or any history following

disclosure. σ∗ is an equilibrium strategy if and only if for any strategy σ,

φ(σ, σ∗) ≤ φ(σ, σ).

Our proof shows that if this condition is violated for some σ, then this σ

would be a profitable deviation. The intuition starts with noting that if the

market observed the deviation to σ, the average price in every period would

be v0, as in equilibrium (since the market updates correctly). However, since

the market does not observe deviations, if φ(σ, σ∗) > φ(σ, σ), the expected

deviation payoff would be strictly higher.

One special case of our dynamic setting is when the agent cares only about

the last period price. In this case there is one belief that minimizes the value

upon no disclosure for all strategies as in the static model, and therefore the

minimizing strategy is the unique equilibrium strategy. In other words, in the

special case where the agent cares only about the final price, the condition

of Proposition 1 implies the familiar “minimum principle”:

Corollary 1. If ∀s ≤ T − 1, ws = 0, and wT = 1, then

σ∗ = arg min
σ
P σ
T (∅). (9)

This corollary has an interesting implication regarding the information re-

vealed about the final value VT . Consider an arbitrary weight profile {wt}
and compare it to the case in which the agent cares only about the final

price. The above corollary implies that more information is being revealed

regarding the final value in the latter case. The agent discloses more values

when he cares only about the final price. As we shall see in section 5.1,

this is also relevant for the hypothetical case in which the agent can disclose

information in a non-timely manner.
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5 Variants

Our goal in this section is to examine alternative assumptions to understand

better what drives our results. We first consider a variant in which the

manager can disclose stale information. We then consider a variant in which

information arrives in the form of a Poisson process of information events.

The agent’s ability to disclose coincides with the realization of these events.

5.1 Allowing for Stale Disclosure

A key feature of our model is that the manager can disclose only timely

information. For an intuitive understanding of how this restriction affects

equilibrium information disclosure, we now examine a variant of the model

where the agent can disclose both current and old (stale) information. There

are two interpretations of this variant of the model: either the information

becomes long-lived in the sense that even with delay it can be credibly re-

vealed, or the requirement to disclose information in a timely manner is

removed.

We analyze a two-period model and show that lifting the restriction for

timely disclosure (or, in the opposite direction, requiring timely disclosure),

has an ambiguous effect on the amount of information disclosed in equilib-

rium. On the one hand, allowing the agent to disclose information with delay

reduces the likelihood of early disclosure of V1 at t = 1. On the other, this

is offset by more disclosure at a later date: we show that the threshold of

disclosure of the first signal goes down over time and in the second period is

below the threshold in our original model.

We start with a comparative static result for our main model (when the

manager cannot disclose stale information). We examine the effect of chang-

ing the weight on the first period, w1. We shall maintain the assumption

that π is sufficiently small such that the equilibrium is unique.10 We argue

10A similar result can be obtained for the case of multiple equilibria, but comparative
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that:

Lemma 3. In the two-period model, when the disclosure of stale information

is not allowed, the threshold for disclosure in the first period is increasing in

w1.

While we provide the formal proof in the Appendix, the economic intu-

ition is clear. The larger the weight w1, the less important the continuation

payoff, and hence the equilibrium disclosure strategy gets closer to being

myopic.

Suppose now that the manager can disclose stale information. Specifi-

cally, in addition to the disclosure opportunities in our main model, he can

disclose V1 at t = 2. This disclosure is relevant only when he does not also

disclose V2.

We first note that this possibility leads to multiple equilibria in which

off-equilibrium beliefs play a major role. In particular, there exists an equi-

librium in which stale information is never disclosed. It is based on nega-

tive off-equilibrium beliefs (for example, if the agent reveals V1 in period 2,

the market believes that V2 has the smallest possible realization given V1).

However, some natural refinements eliminate this equilibrium. In particular,

consider a variant of a “trembling-hand” that we define as follows.

Definition 2. An ε − game is a game in which at each point in time, any

piece of evidence is leaked with probability ε. The probability of this event

is independent of (i) the value of this and other pieces of evidence and (ii)

leakage and strategic release of other pieces of information.

Definition 3. A trembling-hand equilibrium is the limit of equilibria of ε −
games when ε goes to zero.

The trembling we consider implies that conditional on V1 being leaked

but not V2, the manager discloses V2 strategically. An alternative refinement

statics become clearer when the equilibrium is unique.
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would be that with some small probability the manager is truthful. Thus,

when only V1 is leaked, it must be that the manager does not know V2, and

V1 represents the entire truth. This is considered by Hart et al. (2017) who

name this “truth leaning”. One can show that the equilibrium outcome is

the same under both refinements.

When the manager can disclose V1 at t = 2 there are time t = 2 disclosure

thresholds for both V1 and V2. We denote by x∗,stale1,1 , x∗,stale1,2 the equilibrium

thresholds for disclosure of V1 at t = 1 and at t = 2, respectively. Similarly,

we denote by x∗,stale2,2 the equilibrium threshold for disclosure of V2 at t = 2

when the agent has not disclosed V1 and x∗,stale2,2 (v) when he has disclosed

V1 = v. The equilibrium is, as before, a collection of these thresholds and

history-dependent prices such that the thresholds are optimal given prices,

prices are consistent with Bayes’ rule and the equilibrium strategy on and off

the path, and prices are consistent with the trembles for off-path disclosures.

We argue that in a trembling-hand equilibrium, stale information is treated

in the same way as information that is revealed on time. That is, at t = 2

the market price when only V1 is revealed is independent of whether it is

revealed at t = 1 or t = 2. The manager’s disclosure strategy is myopic. We

show in the Appendix that:

Lemma 4. In the two-period model with stale information, there exists a

unique trembling-hand equilibrium. In this equilibrium, the disclosure strategy

is myopic. The manager releases information at time t if and only if it

leads to a higher price at time t than the no-disclosure price. Moreover, the

disclosure of V1 has the same effect on the price at t = 2 regardless of whether

it was disclosed at t = 1 or t = 2.

5.1.1 Comparison of Information Disclosure

We consider the disclosure of V1. We argue that there is less disclosure in

the first period but overall more disclosure when it can be disclosed at t = 2.
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That is, the stale disclosure of V1 at t = 2 more than compensates for the

lower level of disclosure at t = 1.

Proposition 2. Suppose that w1, w2 > 0. Then, x∗,stale1,2 < x∗1 < x∗,stale1,1 .

Proof. The proof of why x∗1 < x∗,stale1,1 follows from Lemma 4, which implies

x∗,stale1,1 = xmyopic1 , and Theorem 1 which implies that x∗1 < xmyopic1 .

The proof of why x∗,stale1,2 < x∗1 follows from a few observations. First,

we argue that in the stale model, the decision to disclose V1 can be made

independently of V2. The reason is that disclosure of V1 is relevant to the

price only in the case where V2 is not disclosed. The manager’s disclosure

strategy can be viewed as disclosing V1 if it leads to a higher price compared

to not disclosing anything, assuming that V2 will not be disclosed. Then,

if he learns that V2 is even higher than the price after deciding about V1,

he discloses it. Second, x∗,stale1,2 equals x∗1 when w1 = 0. That is, it equals

the time t = 1 disclosure threshold when stale information is not allowed

and the manager cares only about the time t = 2 price. This follows from

the first observation and Lemma 4 (that the disclosure of V1 has the same

effect on the price at t = 2 regardless of whether it was disclosed at t = 1

or t = 2). Finally, the claim that x∗,stale1,2 < x∗1 follows immediately from the

second observation and Lemma 3 (that x∗1 increases in w1).

It follows from the proposition that there is a range of (low) values of V1

that are disclosed only if stale information is allowed, and not otherwise.11

A similar result holds with regard to V2:

Proposition 3.

x∗,stale2 < x∗2.

Proof. In the proof of Proposition 2 we used the idea that when stale infor-

mation is allowed, the agent disclosure policy in the second period is just

11Nevertheless, this disclosure is not timely since an agent discloses such a value only in
the second period (when it is a stale information).
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like the disclosure policy of an agent in our main model where w1 = 0 and

wT = 1. Therefore, the proposition follows directly from Corollary 1, Lemma

3, and the observation that in the last period in both models the agent is

myopic. To see this, note that in the stale model, if there is no disclosure in

any period, the last period is the minimum price over all possible disclosure

strategies and it is the same price as in the main model if w1 = 0. However,

if w1 > 0 then the first-period strategy is different (Lemma 3), and hence the

last period price is higher. Since the last period disclosure threshold is equal

to the no-disclosure price, it must also be higher.

To summarize, there are low values of V1 and low values of V2 that are

never disclosed if stale information is not allowed, but might be disclosed if

stale information is allowed. In this sense, more information is disclosed when

stale information is allowed to be disclosed. Nevertheless, as Proposition 2

shows, low values in the first period are disclosed only as stale information,

i.e., at period 2.

A final remark applies to the case of more than two periods. Solving

the game with stale information for longer horizons is quite difficult. The

main difficulty is in proving that the equilibrium strategy is myopic (as we

have done in the two-period model). Nevertheless, we have verified in many

examples using numerical solutions that there exists a myopic equilibrium

(i.e., the agent discloses information to maximize the current price.). When

the equilibrium disclosure is myopic, our main conclusion holds even with

longer horizons. Namely, when the disclosure of stale information is allowed,

there is less early disclosure. Yet, over time, disclosure thresholds go down,

and eventually, more information is revealed.

5.2 Disclosure When Value Changes

Consider now a variant of the model in which the value changes in some

periods only, and when it does, the manager has verifiable information. In
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particular, in every period, with probability π, an information event occurs.

If so, the value, Vt, increases by ∆Vt, and the manager has information he

can disclose at that time (as before {∆Vt} are i.i.d. random variables). With

probability 1 − π, the value does not change so that Vt = Vt−1 and the

manager cannot prove that the value has not changed. One can think about

two different cases for such a game. In the first, the manager can disclose the

cumulative value Vt. In the other, he can only disclose the current increment

∆Vt.

When the manager discloses Vt, note that the model is not immediately

a special case of our main model. We have assumed so far that the ability

to disclose is independent of the value. Nevertheless, one can verify that

our results from Section 4 continue to hold with essentially the same proofs,

because this model maintains that the probability the agent can disclose in

the future is independent of the current value. The proof for why there is

excess disclosure is also valid for this case. The agent follows a threshold

strategy where the thresholds are lower than the myopic one.

When instead the manager discloses the increments ∆Vt, then the agent

becomes myopic. In period t the price equals the time t−1 plus the expected

value of the increment conditional on the time t disclosure, Pt = Pt−1 +

E(∆Vt|dt). It follows that Pt−1 does not affect the disclosure decision. Hence,

the disclosure decision is the same as the static model discussed above, where

the agent decides whether to disclose ∆Vt.

This comparison shows that our model yields different results depending

on the nature of the information the agent can disclose. If it is just current

increments, disclosure does not depend on past decisions. If it is cumulative

value, previous disclosure decisions do affect current disclosure. It matters

whether the market knew Vt−1 so Pt−1 = Vt−1 or Pt−1 was based on partial

information (even if the price last period was the same).
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6 Conclusions

We have studied a dynamic model of voluntary information disclosure in

a setup where the firm’s true value follows a random walk. The manager

occasionally learns verifiable information and chooses what to disclose to

maximize a weighted sum of stock prices.

We have derived two main results. First, the equilibrium disclosure

threshold is strictly lower than the no-disclosure price. The manager in

equilibrium sometimes discloses information even though doing so reduces

the current stock price. We refer to this result as “excess disclosure” and

it runs counter to most existing models. The intuition is that the manager

has an incentive to reduce the future market’s uncertainty (despite all agents

being risk-neutral). Second, we have shown to what extent the “minimum

principle” from static models extends to our dynamic model. The “minimum

principle” states that when the market sets the price upon no disclosure, it

assigns the most pessimistic beliefs about the agent’s strategy. This prop-

erty does not hold in the dynamic model and is replaced by a more general

“suspicious belief principle” we discovered.

Finally, focusing on two-period models, we compare the timely disclosure

model to a stale information model (i.e., where the manager can disclose

information with delay). We show that ranking the amount of information

disclosed in the two models is complex. Specifically, in the stale model, where

the agent is not required to disclose information in a timely manner, there

is less disclosure in the first period but more disclosure overall. An inter-

pretation of this result is that regulation in response to managers delaying

information disclosure can unintentionally result in less rather than more

information reaching the market.
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Appendix

Proof of Lemma 1: We have proven part (i) in the text.

Part (ii) (existence): Start with an auxiliary game: for each τ ∈ {0, ..., T−
1} define the following game. First, Vτ = 0 and the game starts at t = τ + 1.

Second, in this game, Vt has the increments distributed in the same way as

in the original game. The agent observes each Vt with the same probability

as in the original game and decides whether to disclose in every period. If

he does not disclose at t, he obtains a payoff flow wtPs(H
∅
t ) where H∅

t is the

history of no disclosure between τ + 1 and t. If he discloses at t the game

ends and he gets a final payoff of Vt
∑

s≥tws. An equilibrium of the auxiliary

game for a fixed τ is a sequence of disclosure thresholds x∗t and no-disclosure

prices Pt for all t ∈ {τ + 1, ...T}, such that the thresholds are optimal given

the prices and the prices are consistent with the thresholds and Bayes’ rule.

If we can find the equilibria of this auxiliary game for every τ , then we

can construct an equilibrium for the original game. To see this, note that
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if in the original game Vτ = v is disclosed, and if we make the continuation

prices (until the next disclosure) and disclosure thresholds equal to the prices

and thresholds from the auxiliary game plus v, then all incentives continue to

be satisfied, and prices continue to be consistent with equilibrium strategies.

Now, fix any τ and consider an arbitrary vector of probabilities of disclo-

sure in every period t ∈ {τ+1, ...T} conditional on not disclosing before (and

conditional on having verifiable information in that period). These proba-

bilities pin down uniquely the disclosure thresholds in all periods. Second,

compute for that vector of disclosure probabilities the implied thresholds,

and then the implied no-disclosure prices. These prices are continuous in the

vector of probabilities. Third, for any arbitrary vector of prices P̃s for s > τ ,

consider the best-response problem of the agent in the auxiliary game given

those prices. The objective function of the agent is continuous in the prices

and the probabilities. It follows from Berge’s theorem that the best-response

correspondence (from prices to optimal probabilities of disclosure) is upper

semicontinuous. Moreover, we claim (below) that the best response is unique,

and so the best response is a continuous function from the vector of prices to

the vector of probabilities disclosure (implied by the optimal deterministic

thresholds).

Putting these operations together (from the vector of probabilities of dis-

closure to no-disclosure prices using Bayes’ rule, and then from no-disclosure

prices back to probabilities of disclosure using the best response), we define

a continuous mapping from conjectured probabilities of disclosure back to

the vector of probabilities of disclosure. By Brouwer’s fixed point theorem,

this mapping has a fixed point. That fixed point is an equilibrium of the

auxiliary game.

To see that the best-response disclosure policy is unique for any vector

of no-disclosure prices P̃s, note the following. First, the disclosure threshold

at T is equal to P̃T . Second, for any other period t, the disclosure threshold

is independent of disclosure thresholds in previous periods and can be found
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by solving:

xt
∑
s≥t

ws = wtP̃t + h(xt|P̃ ), (10)

where h(v|P̃ ) is the expected optimal continuation payoff of type v if he does

not disclose today, given the future no-disclosure prices.

The derivative of the LHS of (10) is
∑

s≥tws while the derivative of

the RHS is strictly less. By the envelope theorem, the latter is equal to∑
s>t(ws Pr(disclosure at s or before |Vt = xt)). Hence, either for all xt the

LHS is larger (so the best response is to disclose with probability 1) or the

RHS is larger (so the best response is to disclose with probability 0) or there

is a unique interior xt that satisfies (10). The intuition for why the derivative

of the RHS is smaller than
∑

s≥tws is analogous to the argument we made

in the proof of part (i). Fix the optimal continuation strategy of type v′

and consider a lower type v < v′. That type can mimic v′ by disclosing for

the same value increments. Conditional on disclosure their payoffs differ by

v′ − v (weighted by w′s) and conditional on no disclosure their payoffs are

the same.

Part (iii) (uniqueness for small π): We argue that at least for small π, for

an arbitrary history Ht, and for an arbitrary threshold strategy up to time

t, (x1, ...xt), there exists a unique threshold equilibrium for the sub-game for

periods s > t. Let xt ≡ (x1, ..., xt). In the proof we shall rely on the following

observation. For all histories, thresholds, and τ ≤ t

∂P̂t(Ht,xt)

∂xτ

converges uniformly (across all xt ) to zero as π → 0. The intuition is that

xτ is relevant only when there is no disclosure in periods τ, ... , t. For small

π, the market’s equilibrium beliefs are that it is most likely that the manager

could not disclose at τ . Thus, as π gets small, xτ has a diminishing impact
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on no-disclosure prices.12

We prove the claim by backward induction on t, showing that for every

history Ht, all arbitrary thresholds xt, and all periods s > t:

(a) There exists a unique continuation equilibrium with disclosure thresh-

olds x∗s(Hs|xt) and prices Ps(Hs|xt) for every history Hs consistent with Ht.

(b) ∀τ ≤ t : ∂x∗s(Hs|xt)
∂xτ

converges uniformly (across all xt) to zero as π → 0.

Before continuing with the formal proof, we should note that the intuition

for (b) is similar to the intuition described above for why the no-disclosure

prices become insensitive to thresholds as π gets small: optimal thresholds

today depend on the current and future no-disclosure prices; if those prices

are not sensitive to past thresholds, today’s threshold also becomes insensi-

tive to them.

We begin the proof by induction by letting t = T − 1. Part (a) of

the hypothesis follows directly from our discussion of the one-period model

above: in a single-period game, the equilibrium is unique for all prior dis-

tributions. Part (b) holds because, letting HT = (HT−1,∅), the threshold

x∗T (HT−1|xT−1) (for disclosure of VT ) is a solution to

xT = P̂T (HT ,xT),

12The claim can be proven by first expressing P̂t(Ht,xt) using Bayes’ rule as a sum of
terms that correspond to different combinations of signals the agent has observed so far.
Each of these terms has a bounded derivative (uniformly for all xt since fs(v) and |vfs(v)|
are being uniformly bounded). Moreover, each such derivative is multiplied by π (other
than the first term, which is that the agent received no signals, but the derivative of that
term is zero), and so the limit derivative uniformly converges to zero.
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so that by the implicit function theorem we have that

∂x∗T (HT−1|xT−1)

∂xτ
=

∂P̂T (HT ,xT)
∂xτ

1− ∂P̂T (HT ,xT)
∂xT

.

The claim for T follows because the derivatives of prices uniformly converge

to zero.

Now, consider an arbitrary t and an arbitrary history Ht−1. Let Ht =

(Ht−1,∅). Suppose that time τ is the last time in which the manager has

disclosed and let dτ = Vτ (if there was no disclosure, τ = 0). Recall that the

assumption that the increments ∆V are independent implies that without

loss of generality we can assume that Vτ = 0.13 At time t the equilibrium

condition is

xt

T∑
s=t

ws = wtP̂t (Ht,xt) +
T∑

s=t+1

wsE[Ps|Ht, Vt = x]. (11)

The expression E[Ps|Ht, Vt = x] in (11) is the expectation of prices at time

s given the history Ht (hence, no disclosure in period t), past disclosure

thresholds xt, and sequentially optimal disclosures in periods (t + 1, ..., T ).

That expectation depends on the past conjectured cutoffs xt as well as the

optimal cutoffs x̂∗s(Hs−1,xt) from the induction hypothesis.14

For uniqueness, note that the derivative of the LHS of (11) with respect

to Vt is constant at
∑T

s=tws, while as π → 0, the derivative of the RHS goes

to zero. The reason the derivative of RHS goes to zero is that the probability

that the agent will be able to disclose in future periods goes to zero, and

13If we find an equilibrium when Vτ = 0 we can then add to all prices and thresholds
any constant v to get an equilibrium when Vτ = v and vice versa.

14Existence of the equilibrium for small π can be shown even more directly than in our
general proof above, by noticing that for all thresholds, the (RHS) of (11) converges to

Vτ
∑T
s=t ws, where Vτ is the last disclosed value in Ht−1, and that Vτ is in the interior of

the support of Vt for any τ < t. Hence by the intermediate function theorem there exists
a solution to (11).
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we have assumed by the induction hypothesis that the derivatives of future

thresholds go to zero as well. Since the derivatives of all future no-disclosure

prices with respect to conjectured thresholds converge to zero as well, the

derivative of the RHS indeed converges to zero. That establishes that for

small π, (11) has a unique solution x∗t (Ht−1|xt−1).

Finally, using (11) and the implicit function theorem we can show that

the derivative of the period t equilibrium threshold with respect to any con-

jectured threshold at τ < t converges to zero as well:

lim
π→0

∂x∗t (Ht−1|xt−1)

∂xτ
= lim

π→0

∑T
s=tws

dP̂s(Hs,xs)
dxτ∑T

s=tws(1−
∂P̂s(Hs,xs))

∂xt
)

= 0,

where

dP̂s(Hs,xs)

dxτ
=
∂P̂s(Hs,xs)

∂xτ
+

s∑
z=t+1

∂P̂s(Hs,xs)

∂xz

∂x∗z(Hz−1|xt)

∂xτ

takes into account that past thresholds affect the RHS of (11) directly by

changes in the believed distribution at the beginning of Ht and indirectly by

changes in the future equilibrium thresholds.

The final observation to make is that in performing the induction step we

need to move from functions x∗s(Hs|xt) to functions x∗s(Hs|xt−1) by substi-

tuting the unique equilibrium x∗t (Ht−1|xt−1) in place of the arbitrary xt (and

adding x∗t (Ht−1|xt−1) to the collection of the unique continuation thresholds

now starting at time t). After that substitution, all these functions inherit

the property (b) in the induction hypothesis.

Proof of Proposition 1. First, recall that for σ∗ to be an equilibrium strategy,

it has to be that after disclosure of Vt = v, the continuation strategy is also

an equilibrium in the game that starts with value V0 = v and has horizon

T − t. So, without loss of generality we prove the statements for arbitrary T

but only arguing about what σ implies about the first disclosure time, τ(σ).
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Necessity: Suppose σ∗ is an equilibrium strategy.

For any strategy σ, if the agent follows it and the market believes that

he does, the expected payoff is the same because prices satisfy Bayes’ rule:

∀σ, V0

T∑
s=1

ws = φ(σ, σ) + E

[
Vτ(σ) ·

T∑
s=τ(σ)

ws

]
, (12)

where Vτ(σ) is a random value that is disclosed at the random time τ(σ).

Since this is true for every strategy, it is true also for the equilibrium

strategy:

V0

T∑
s=1

ws = φ(σ∗, σ∗) + E

[
Vτ(σ∗) ·

T∑
s=τ(σ∗)

ws

]
. (13)

Now consider a deviation to some strategy σ1 until the first disclosure

and then following σ∗. For σ∗ to be an equilibrium, this deviation cannot be

profitable. This deviation yields the expected payoff:

φ(σ1, σ
∗) + E

[
Vτ(σ1) ·

T∑
s=τ(σ1)

ws

]
. (14)

Hence, for the deviation not to be profitable we must have that (14) is

weakly smaller than the right hand side of (12) (which has the same payoff

as the equilibrium payoff in (13)). This implies φ(σ1, σ
∗) ≤ φ(σ1, σ1), as

claimed.

Sufficiency: Suppose that for some σ∗ the condition holds at time t = 1

and at every history following disclosure (where φ(σ, σ̂) is redefined to sum

over times following the disclosure). Suppose by contradiction that σ∗ is

not an equilibrium so there exists a profitable deviation σ̂. Moreover, there

must exist at least one period such that it is profitable to deviate from σ∗ to
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σ̂ up to τ(σ̂) − 1 (time of the first disclosure given the deviation strategy)

and after that playing σ∗. Otherwise, by induction, deviating to σ̂ would

not be profitable. Without loss of generality, suppose that this deviation is

profitable at t = 1.

For σ̂ to be profitable, we must have:

V0

T∑
s=1

ws < φ(σ̂, σ∗) + E

[
Vτ(σ̂) ·

T∑
s=τ(σ̂)

ws

]
. (15)

Applying (12) to σ̂ we also get:

V0

T∑
s=1

ws = φ(σ̂, σ̂) + E

[
Vτ(σ̂) ·

T∑
s=τ(σ̂)

ws

]
. (16)

Putting these conditions together yields φ(σ̂, σ∗) > φ(σ̂, σ̂), a contradiction.

Proof of Lemma 3: Suppose that x∗1(w1) is the threshold for disclosure in

the first period given weight w1. It is based on the following indifference

condition:

w1 ∗ (P̂1(∅, x∗1)− x∗1) = w2 ∗ (x∗1 − E[P̂2(∅, d2, x∗1, x∗2)|V1 = x∗1]).

The LHS is the t = 1 gain from no-disclosure by the threshold type; we

have shown in Section 4 that it is positive. The RHS is the time t = 2

expected loss from no-disclosure at t = 1 (the expectation is with respect

to the optimal disclosure d2). Now consider w2
1 < w1

1 . If we keep the

threshold for disclosure at x∗1(w
1
1) as we decrease w1 from w1

1 to w2
1, the LHS

becomes smaller, implying that the agent would strictly prefer to disclose.

Therefore the equilibrium threshold in period 1 has to change with w1. If

instead, we take the threshold x1 to be very low, then the LHS will continue
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to be positive, and the RHS will become negative. The intermediate value

theorem (and our assumption that the equilibrium is unique) implies that

x∗1(w
2
1) < x∗1(w

1
1).

Note that similar reasoning shows that the lemma is true for any T ≥ 2.

Proof of Lemma 4: Consider the case in which the manager discloses V1 in

the first period, that is, d1 = {V1 = v} for some value v. The second period

is equivalent to a one-period model with one signal and with an initial value

V0 = v. The equilibrium in this sub-game exists and is unique. This also

holds off-equilibrium when disclosing d1 = {V1 = v} is not on the equilibrium

path. Second, suppose that the manager reveals V1 in period 2: d2 = {V1 =

v}. Again, regardless of whether d2 = {V1 = v} is on or off the equilibrium

path, prices and the optimal disclosure strategy for V2 are the same as in a

one-period model with initial value V0 = v. The claim for off-path disclosures

of V1 follows from our trembles that pin down the belief about the distribution

of V2 for any V1 disclosed off-path. Hence, second-period prices when only

V1 is disclosed are the same regardless of when V1 was disclosed. Prices are

equal to the no-disclosure price in a one-period, one-signal model with initial

value V0 = v; we denote it by P2(V1).

When there is no disclosure of V1, the agent discloses V2 if and only if

it exceeds the no-disclosure price. Hence, given the disclosure (or the lack

thereof) of V1, the equilibrium behavior for the disclosure of V2 is unique.

It remains to show that the disclosure thresholds (in periods 1 and 2) for

V1 are unique. First, notice that in every equilibrium the first-period thresh-

old cannot be lower than the first-period no-disclosure price, as otherwise the

manager would be better off withholding the threshold value and disclosing

it only in the second period. On the other hand, the threshold cannot be

greater than the first-period no-disclosure price because then the manager

would be better off disclosing values in between those two values in the first

period rather than hiding them. This implies that the first-period threshold
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is unique since the fixed point x = P̂1(∅, x) is unique. It also implies that

this is the myopic threshold.

We now consider the disclosure of V1 in the second period. We shall

argue that there exists a unique no-disclosure price P2(∅,∅), which implies

a unique disclosure threshold. Let g(P ) denote the “market profit” in the

second period as a function of the no-disclosure price (that is, g(P ) is the

difference between the expected type and the average prices paid given the

no-disclosure price). Note that g(P ) is equal to the profit/loss for all types

who do not disclose given P ; any type who discloses is being correctly priced

and leads to zero profit. As a result, g(P ) = 0 if and only if P is equal to

the expected value conditional on no disclosure. We argue that there exists

a unique P ∗ for which g(P ∗) = 0. That claim follows from three properties

of g (and the intermediate value theorem). First, g is continuous. Second,

g(P ) > 0 for sufficiently low P and g(P ) < 0 for sufficiently high P . Third,

g(P ) decreases in P .

That g(P ) > 0 for sufficiently low P follows since for very low P , the

agent fails to disclose only when he does not receive a signal. The expected

non-disclosing type is then the unconditional mean type, which results in

underpricing. By contrast, when P is sufficiently high (for example, higher

than the highest type) no types disclose. The value of these types is again

the unconditional mean, and such high P results in overpricing. To show

that g(P ) is decreasing, note that when we increase P from p1 to p2 > p1

there are two effects to consider. First, we increase the payment to those

who do not disclose at p1 and continue not to disclose at p2; this is a loss.

Second, there are types who disclose when the price is p1 and choose not to

do so when the price is p2. This again is a loss, as these types were priced

correctly when they disclosed, but now they prefer to hide.
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