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This Appendix is organized as follows. First, in Section A.1, we discuss a variant of a static

disclosure model that provides a numerical result and analytical insights we later use in the proof

of Proposition 1. This variant of the static model may also be of independent interest. Then,

in Section A.2 we provide a proof of the Proposition. The proof starts with noticing properties

of the equilibrium prices if the agent follows any threshold strategy. Given these properties, we

show that the best response of the agent is indeed to follow a threshold strategy, establishing

existence of a threshold equilibrium with the properties we discussed. In the same section we also

establish the second claim in Proposition 1. Finally, Section A.3 contains omitted proofs of some

lemmas describing the sensitivity of equilibrium prices to the disclosed signals if the agent follows

a threshold strategy.

A.1 A Variant of a Static Model

Consider the following static disclosure setting, similar to Dye (1985) and Jung and Kwon (1988).

With probability p the agent learns the firm’s value, which is the realization of a random variable

S ∼ N(µ, σ2).1 If the agent learns the realization of S he may choose to disclose it. We are

interested in investors’beliefs about the firm’s value given no disclosure for an arbitrary threshold

disclosure policy. That is, what is the expectation of S given that the agent discloses s if and only

if s ≥ z, for exogenously determined z. Unlike Dye (1985) and Jung and Kwon (1988), we are not
constraining z to be consistent with optimal disclosure strategy by the agent, i.e., z is not part

of an equilibrium. We will refer to this setting as the "Dye setting with an exogenous disclosure

threshold.”
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1The reason we are considering general µ is that in our dynamic setting investors will update their beliefs about
the undisclosed signal, y, based on the value of the disclosed signal, x.
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Denote by hstat (µ, z) investors’expectation of S given that no disclosure was made and given

that the disclosure threshold is z. Figure A.1 plots hstat (µ, z) for S ∼ N (0, 1) and p = 0.5.
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Figure A.1: Price Given No-Disclosure in a Dye Setting with Exogenous Disclosure Threshold z

For z → ∞ none of the agents discloses, and hence, following no disclosure investors do not

revise their beliefs relative to the prior. For z → (−∞) all agents who obtain a signal disclose it, and

therefore, following no disclosure investors infer that the agent is uninformed, so investors posterior

beliefs equal the prior distribution (as for z → ∞). As the exogenous disclosure threshold, z,
increases from −∞, upon observing no disclosure investors know that the agent is either uninformed
or that the agent is informed and his type is lower than z. Therefore, for any finite disclosure

threshold, z, investors’expectation of S following no disclosure is lower than the prior mean (zero).

The following lemma provides a further characterization of investors’expectation about S given no

disclosure, hstat (µ, z).

Lemma A.1 Consider the Dye setting with an exogenous disclosure threshold. Then:
1. hstat (µ+ ∆, z + ∆) = hstat (µ, z) + ∆ for any constant ∆; this implies that

∂

∂µ
hstat (µ, z) +

∂

∂z
hstat (µ, z) = 1.

2. z∗ = arg minz h
stat (µ, z) if and only if z∗ = hstat (µ, z∗). This implies that the equilibrium

disclosure threshold in the standard Dye (1985) and Jung and Kwon (1988) equilibrium minimizes

hstat (µ, z).

The second point follows from Lemma 2 (the Generalized Minimum Principle). Note that for all

z < hstat (µ, z) the price given no disclosure, hstat (µ, z), is decreasing in z (and for z > hstat (µ, z)

it is increasing in z).

Direct analysis of the hstat (µ, z) shows that:

Claim A.1 (Numerical Result) For p < 0.95 the absolute value of the slope of hstat (µ, z) with

respect to z is uniformly bounded by 1.
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We use this claim extensively in the proof below since it allow us to bound how future prices (in

particular, P2 (x, 1) and P2 (x, 2)) change with x and in turn that allows us to establish existence

of a threshold strategy equilibrium. This is where we use the assumption p < 0.77 in the proof

of Proposition 1. Note the difference in the bound in the proposition (p < 0.77) and in the claim

(p < 0.95). The reason is that in the dynamic setup in period 2 the agent is informed about Y with

probability p+ p (1− p), which needs to be less than 0.95 for us to apply this claim.

For the analysis of our dynamic model it will prove useful to consider an even richer variant of

this model, allowing a random threshold policy. In particular, first, nature chooses publicly µ, the

unconditional mean of S. Then, with probability λi, i ∈ {1, ..,K} , where
∑K

i=1 λi = p, the agent

discloses s if and only if s ≥ zi (µ).

The reason we are considering a random disclosure policy is as follows. In our dynamic setting,

when by t = 2 the agent disclosed a single signal investors do not know whether the agent learned a

second signal, and if so, whether he learned it at t = 1 or at t = 2. Since the agent follows different

disclosure thresholds at the two possible dates, investors in equilibrium must assign a probability

distribution over different disclosure thresholds. Moreover, in the dynamic model the disclosure

thresholds for Y change with x and the disclosed x affects investors’unconditional expectation of

Y . Therefore to apply these generic results to our dynamic model we write z as a function of the

unconditional mean, µ.

Let us denote by hstat (µ, {zi(µ)}) the conditional expectation of S given no disclosure and given
that the disclosure thresholds are {zi (µ)} (assuming that {zi (µ)} are differentiable).

Lemma A.2 For p ≤ 0.95 suppose that zi (µ) < hstat (µ, {zi (µ)}) and z′i (µ) ∈ [0, c] for all i. Then
d
dµh

stat (µ, {zi(µ)}) ∈ (min {1, 2− c} , 2).

Before we formally prove Lemma A.2, we analyze the particular case in which the disclosure

strategy is nonrandom, i.e., K = 1. This provides the basic intuition for Lemma A.2.

We start by providing the two simplest examples, for the cases where z′ (µ) = 1 and z′i (µ) = 0.

These examples are useful in demonstrating the basic logic and how it can be analyzed using Figure

A.1. These two examples also provide most of the intuition for the case with no restriction on z′i (µ),

which is presented in Example 3. Note that Example 3 also provides the upper and lower bounds

for the more general case in Lemma A.2.

Examples (all the examples assume K = 1):

1. If z′ (µ) = 1 then d
dµh

stat (µ, z(µ)) = 1.

Using point 1 in Lemma A.1 we have d
dµh

stat (µ, z(µ)) = ∂
∂µh

stat (µ, z)+z′ (µ)∗ ∂
∂zh

stat (µ, z) =

1. The intuition can be demonstrated using Figure A.1. A unit increase in µ (keeping z

constant) shifts the entire graph both upwards and to the right by one unit. However, since

also z increases by one unit, the overall effect is an increase in hstat (µ, z(µ)) by one unit.

2. If z′ (µ) = 0 and z (µ) = z∗, then d
dµh

stat (µ, z(µ)) ∈ (1, 2).

From Lemma A.1 we know that ∂
∂µh

stat (µ, z∗)+ ∂
∂z∗h

stat (µ, z∗) = 1 and therefore ∂
∂µh

stat (µ, z∗) =
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1 − ∂
∂z∗h

stat (µ, z∗). From Claim A.1 we also know that ∂
∂z∗h

stat (µ, z∗) ∈ (−1, 0) since

z∗ ≤ hstat (µ, z∗). Therefore, ∂
∂µh

stat (µ, z∗) ∈ (1, 2). The intuition can be demonstrated

using Figure A.1. The effect of a unit increase in µ can be presented as a sum of two effects:

(i) a unit increase in the disclosure threshold, z, as well as a shift of the entire graph both

to the right and upwards by one unit, and (ii) a unit decrease in the disclosure threshold,

z, (as z′ (µ) = 0). The first effect is similar to Example 1 above and therefore increases

hstat (µ, z(µ)) by one. The second effect increases hstat (µ, z(µ)) by the absolute value of the

slope of hstat (µ, z), which is between zero and one.

3. In case z′ (µ) = c, we have d
dµh

stat (µ, z(µ)) ∈ (min {1, 2− c} ,max {1, 2− c}).
The previous examples are nested in this more general case. Following a similar logic, we

conclude that d
dµh

stat (µ, z(µ)) = ∂
∂µh

stat (µ, z) + c ∂∂zh
stat (µ, z) = 1 + (c− 1) ∂

∂zh
stat (µ, z(µ)).

Recall that ∂
∂zh

stat (µ, z(µ)) ∈ (−1, 0) for p < 0.95.

We next provide the a formal proof of Lemma A.2.

Proof of Lemma A.2
By applying Bayes role, hstat (µ, {zi(µ)}) is given by:

hstat (µ, {zi(µ)}) =
(1− p)µ+

∑K
i=1 λi

∫ zi(µ)
−∞ yφ (y|µ) dy

(1− p) +
∑K

i=1 λiΦ (zi (µ) |µ)
.

Taking the derivative of hstat (µ, {zi(µ)}) with respect to µ and applying some algebraic manip-
ulation yields:

d

dµ
hstat (µ, {zi(µ)}) = 1 +

∑K
i=1 λi (z′i (µ)− 1)φ (zi (µ) |µ)

(
zi (µ)− hstat (µ, {zi(µ)})

)
(1− p) +

∑K
i=1 λiΦ (zi (µ) |µ)

.

We start by proving the supremum of this derivative.

Given that z′i (µ) ≥ 0 and zi (µ) ≤ hstat (µ, {zi(µ)}) for all i ∈ {1, ..,K} we have

d

dµ
hstat (µ, {zi(µ)}) ≤ 1 +

∑K
i=1 λiφ (zi (µ) |µ)

(
hstat (µ, {zi(µ)})− zi (µ)

)
(1− p) +

∑K
i=1 λiΦ (zi (µ) |µ)

(1)

≤ 1 + max
zi≤h(x)
i∈{1,...K}

∑K
i=1 λiφ (zi (µ) |µ)

(
hstat (µ, {zi(µ)})− zi (µ)

)
(1− p) +

∑K
i=1 λiΦ (zi (µ) |µ)

.

Due to symmetry, for all i ∈ {1, ..,K} the maximum is achieved at the same zi (µ) = ẑ (µ). To see

4



this, note that the FOC of the maximization with respect to zi (µ) is

0 =
(
φ′ (zi (µ) |µ)

(
hstat (µ, {zi(µ)})− zi (µ)

)
− φ (zi (µ) |µ)

)(
(1− p) +

K∑
i=1

λiΦ (zi (µ) |µ)

)

−
(

K∑
i=1

λiφ (zi (µ) |µ)
(
hstat (µ, {zi(µ)})− zi (µ)

))
φ (zi (µ) |µ) .

Since φ′ (zi (µ) |µ) = −α (zi (µ)− µ)φ (zi (µ) |µ) (for some constant α > 0), this simplifies to

−α (zi (µ)− µ)
(
hstat (µ, {zi(µ)})− zi (µ)

)
=

∑K
i=1 λiφ (zi (µ) |µ)

(
hstat (µ, {zi(µ)})− zi (µ)

)
(1− p) +

∑K
i=1 λiΦ (zi (µ) |µ)

+ 1.

In the range zi (µ) ≤ hstat (µ, {zi(µ)}) ≤ µ, the LHS is decreasing in zi (µ).2 The RHS is the same

for all i. Therefore, the unique solution to this system of FOC is for all zi (µ) to be equal (and

note that the maximum is achieved at an interior point since at zi (µ) = hstat (µ, {zi(µ)}) the LHS
is zero and the RHS is positive; and as zi (µ) goes to −∞ the LHS goes to +∞ while the RHS is

bounded).

Returning to the bound in (1) , that the maximum is achieved for some ẑ (µ) constant for all i, im-

plies that Example 3 (discussed above) can be used to provide the upper bound: d
dµh

stat (µ, {zi(µ)}) ≤
max {1, 2−mini {z′i (µ)}}. The lower bound can be achieved in a similar way by observing that
if we want to minimize the slope we will again choose the same zi (µ) for all i, and therefore by

Example 3 d
dµh

stat (µ, {zi(µ)}) ≥ min {1, 2−maxi {z′i (µ)}}.3 Computing uniform bounds over all

slopes z′i (µ) ∈ [0, c] yields the result.

QED Lemma A.2

A.2 Existence of a Threshold Equilibrium

We now turn the proof of existence of a threshold equilibrium. The proof of Proposition 1 is

complicated and technical, so we start with a road-map.

Road-map of Proof of Proposition 1
First, we assume that the manager follows some threshold strategy and establish bounds on

the slopes of equilibrium prices under the assumption that p < 0.77 (Claim A.2 below). We then

show that if prices have these properties then the manager’s best response is indeed to follow a

threshold strategy. This requires looking at all possible private histories of the agent and verifying

that claim for each one of them. By appropriately choosing off-equilibrium beliefs, we then establish

the existence of a threshold equilibrium. Finally, in the last step of the proof we show that there

exists an x′ such that for x > x′ later disclosure receives a strictly better interpretation, i.e.,

2Since zi (x) ≤ h (x, {zi(·)}) also h (x, {zi(·)}) ≤ E [x|y] = β1x.
3For a complete analysis of this case see proof of Lemma A.7 below.
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P2 (x, 2) > P2 (x, 1). To keep the flow of the reasoning we delegate some of the most algebra-heavy

proofs to Section A.3.

Proof of Proposition 1
To establish existence of a threshold equilibrium we need to look at many possible private

histories at t = 1 and t = 2. We make the following observations about all equilibria:

1) Once an agent reveals one of the signals, he follows a myopic disclosure strategy (i.e. reveals

the second signal if and only if it increases the current price), so his disclosure policy is a threshold

policy (see Lemma 3).

2) At t = 2, if the agent has not revealed any of the signals, he reveals at least one if P2 (∅) ≤
P2 (x, 2) . For this to be a threshold strategy we need that P2 (x, 2) is increasing (as in Pae (2005)).

We establish this property below for the equilibria we construct.

3) In a threshold equilibrium we must have that at t = 1, P1 (∅) < P1 (x, 1) for any x ≥ x∗.

Otherwise an agent that leaned only the signal X at t = 1 would strictly prefer to postpone

disclosure since there is a positive probability that he will learn the second signal at t = 2 and

reveal only the second signal (if P2 (y, 2) > max {P (x, y) , P2 (x, 2) , P2 (∅)}). In addition, recall
that P2 (x, 2) ≥ P2 (x, 1) so there may be another benefit to waiting, which applies to both the

agent that learned on X at t = 1 and for an agent that learned both signals at t = 1 and will

disclose only one signal by t = 2.

4) The most diffi cult analysis is for t = 1 since the agent incentives to disclose depend not only

on the current prices but also on how his current disclosure affects continuation payoffs. Therefore,

most of our proof considers different possible private histories of the agent at t = 1.

It proves convenient to introduce a new definition:

Definition A.1 Denote investors’expectation of the value of the signal y, as of time t, given that
the manager disclosed only x at time tx, by ht (x, tx). The notation is borrowed from the notation

of prices, Pt (x, tx).

With this notation, the equilibrium prices that play a central role in our proof are:

P1 (x, 1) = β2 (x+ h1 (x, 1)) ,

P2 (x, 1) = β2 (x+ h2 (x, 1)) ,

P2 (x, 2) = β2 (x+ h2 (x, 2)) .

The following Claim derives upper and lower bounds to the slopes of these prices:

Claim A.2 Suppose that investors believe that the manager follows a threshold reporting strategy
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as in Proposition 1. Then, for p ≤ 0.77 and x > x∗:

∂

∂x
h1 (x, 1)

{
= β1 if h1 (x, 1) < x

∈ (2β1 − 1, β1) if h1 (x, 1) > x
,

∂

∂x
h2 (x, 2)

{
= β1 if h2 (x, 2) < x∗

∈ (2β1 − 1, 2β1) if h2 (x, 2) > x∗
, (2)

∂

∂x
h2 (x, 1)

{
= β1 if h2 (x, 1) < x

∈ (2β1 − 1, β1) if h2 (x, 1) > x
.

This Claim established part (iii) of Proposition 1. In particular, the bound on ∂
∂xh2 (x, 2) implies

that P2 (x, 2) increases in x, so the agent indeed best responds with a threshold strategy at time

t = 2. So from now on we focus on t = 1.

In proving the existence of a threshold equilibrium, we first consider partially informed agents

that learn a single signal, x, at t = 1 (τx = 1, τy 6= 1) and then we consider fully informed agents

that learn both signals at t = 1. For each of these cases we show that: (i) for suffi ciently high (low)

realizations of x the agent discloses (does not disclose) x at t = 1; and (ii) On the equilibrium path,

the difference between the agent’s expected payoff if he discloses only x at t = 1 and if he does not

disclose at t = 1 is increasing in x, implying that the agent’s best response is indeed a threshold

strategy.

Partially Informed Agents (τx = 1, τy 6= 1)
First consider an agent that knows only x at t = 1. For suffi ciently low realizations of x the

agent is always better off not disclosing it at t = 1, as he can “hide”behind uninformed agents.

We next establish that for an agent that learns a single signal, x, at t = 1 his incentives to disclose

it are monotone in x and hence a threshold strategy is a best response (the proof of the lemma is

in the next section).

Lemma A.3 Consider an agent that learns a single signal, x, at t = 1. If β1 ≥ 1
2 or if h2 (x∗, 1) ≤

x∗ then if investors believe that the agent follows a threshold strategy, the incentives to disclose x

at t = 1 are strictly increasing in x. That is,

∂

∂x
(E [U |τx = 1, τy 6= 1, tx = 1]− E [U |τx = 1, τy 6= 1, tx 6= 1]) > 0,

and there exists x high enough that the agent is better off revealing it than not.

Fully Informed Agents (τx = τy = 1)
We next discuss an agent that learns both signals at t = 1 (such that x > y).

Using Theorem 1, we divide these private histories into three cases:
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1) y ≥ h2 (x, 2) .

2) y ∈ (h2 (x, 1) , h2 (x, 2))

3) y ≤ h2 (x, 1)

Types y ≥ h2 (x, 2) disclose y in period 2 no matter if they disclose x at t = 1 or not. Therefore,

such types will disclose x at t = 1 if

max {P1 (x, 1) , P (x, y)} ≥ P1 (∅) .

and since Claim A.2 implies that the left-hand side is increasing in x, these types will follow a

threshold strategy.

Now consider the case y ≤ h1 (x, 1) so that y is suffi ciently low that it will not be disclosed at

t = 2 if it was not disclosed at t = 1 but the agent disclosed x. There are two sub-cases: either

after not disclosing x at t = 1 the agent will remain silent at t = 2 or he will disclose x. The first

sub-case is easier since the payoff from non-disclosing x is a constant and hence the incentives to

disclose are increasing in x if and only if P1 (x, 1) + P2 (x, 1) are increasing and that follows from

Claim A.2. The next lemma covers the second sub-case.

Lemma A.4 Consider an agent that learned both signals at t = 1 and the realization of y ≤ x is

such that y ≤ h2 (x, 1) (so that it will not be disclosed at t = 2) and β2 [x+ h2 (x, 2)] ≥ P2 (∅) .
Then:

(i) For suffi ciently high realizations of x the agent prefers to disclose x at t = 1 over not disclosing

x at t = 1.

(ii) ∂
∂x(E [U |τx = 1, τy = 1, tx = 1]− E [U |τx = 1, τy = 1, tx 6= 1]) > 0.

Proof.
(i) We need to show that for suffi ciently high x :

β2 [x+ h1 (x, 1)] + β2 [x+ h2 (x, 1)] > P1 (∅) + β2 [x+ h2 (x, 2)] .

Rearranging yields

β2 [x+ h2 (x, 1)]− P1 (∅) > β2 [h2 (x, 2)− h1 (x, 1)] .

By Claim A.2 the LHS of the above inequality, β2 [x+ h2 (x, 1)]− P1 (∅), goes to infinity as x goes
to infinity. Therefore, it is suffi cient to show that h2 (x, 2)− h1 (x, 1) is bounded from above. Both

h2 (x, 2) and h1 (x, 1) are lower than β2x. From the Generalized Minimum Principle (Lemma 2) we

know that h1 (x, 1) is higher than the price given no disclosure in a Dye (1985), Jung and Kwon

(1988) setting where y ∼ N (β1x, V ar (y|x)). The price given no disclosure in such a setting is

β1x − Const, so h1 (x, 1) > β1x − Const. Hence, given that h2 (x, 2) < β1x we have h2 (x, 2) −
h1 (x, 1) < Const.
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(ii) We need to show that

∂

∂x
(β2 [x+ h1 (x, 1)] + β2 [x+ h2 (x, 1)]− P1 (∅)− β2 [x+ h2 (x, 2)]) > 0,

which is identical to condition 2 in the proof of Lemma A.3.

Finally, for the sub-case y ∈ (h2 (x, 1) , h2 (x, 2)) the agent will reveal y in period 2 if he reveals

x at t = 1, but will not reveal it if he does not reveal x at t = 1. This agent will reveal x today if

β2 [x+ h1 (x, 1)] + β2 [x+ y] > P1 (∅) + β2 [x+ h2 (x, 2)] .

and these incentives are monotone in x for the same reasons as in the previous lemma.

Fixed point and off-equilibrium beliefs
That finishes the analysis of all possible private histories. To summarize, we have proven that

(assuming p < 0.77) if β2 ≥ 1
2 or if or if h2 (x∗, 1) ≤ x∗, then the best response of the agent is to

indeed follow a threshold strategy. We now need to find a fixed-point for the threshold. That is,

we need to find x∗ such that if the market believes that in period 1 the agent uses threshold x∗

then he best responds using that exact threshold. We also need to specify off-equilibrium beliefs

and it turns out that these two tasks are connected.

In a model with only one signal (static or dynamic), the only off-path history is when the agent

reveals a signal below the equilibrium threshold but that does not matter for beliefs since at that

point there is no information asymmetry. In contrast, in a model with two signals, when the agent

reveals only one of them and it is below x∗, we need to specify the market’s beliefs about the

probability that he has learned the other signal and if so, what is y. In particular, we can set the

beliefs to be arbitrarily negative about y and hence the price Pt (x, tx) to be arbitrarily low off-path,

making sure that the agent does not have incentives to reveal such x.

Therefore, any x∗ such that for all x ≥ x∗ the agent prefers (weakly or strictly) to reveal x (and
possibly also y) when he is partially informed (knows only x) or fully informed (knows both x and

y, in which case the incentives have to hold for all y ≤ x) can be used to complete a construction

of our equilibrium. (Note: a model with two-dimensional signals has multiple equilibria supported

by appropriate off-path beliefs).

To see that such x∗ exists note that as investors belief x∗ goes to infinity then the price upon

nondisclosure, P1 (∅) converges to 0 (since there is no inference from nondisclosure in the limit) while

for any x > x∗ prices P1 (x, 1) and P2 (x, 1) get arbitrarily large (and recall that we have proven

above that h2 (x, 2) − h1 (x, 1) < Const). So for suffi ciently large x∗ after all private histories in

period 1 the agent prefers to reveal x if it is above x∗ to not revealing anything.

That finishes the proof that there exists an equilibrium in threshold strategies.

Finally, we establish in the following lemma the last part of Proposition 1.

Lemma A.5 There exists an x′ ≥ x∗ such that P2 (x, 2) > P2 (x, 1) for any x ≥ x′.
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Proof. In Theorem 1 we have shown that P2 (x, 2) ≥ P2 (x, 1) for any x, which implies in the

setting of Section 4 that h2 (x, 2) ≥ h2 (x, 1).

As established in Section 3, given disclosure of the signal x the manager behaves myopically

in the sense that he discloses the signal y (when he learned y) if and only if it increases the price

relative to the price when y is not disclosed. This holds for both t = 1 and t = 2. We can now

introduce the equilibrium inference on the sets B11, B21, B12 and B22 that were defined in Section 3.
In particular, we adjust the set Bji by taking into account also the equilibrium disclosure strategy

when defining the potential disclosers and denote it by Dji . The sets D
j
i for i, j = 1, 2 are given by:

D11 = {(y, τy)|τy = 1, tx = 1 and y ≤ min {x, h1 (x, 1) , h2 (x, 1)}}

D21 = {(y, τy)|τy = 2, tx = 1 and y ≤ h2 (x, 2)}

D12 = {(y, τy)|τy = 1, tx = 2 and y ≤ min {x∗, h2 (x, 2)}}

D22 = {(y, τy)|τy = 2, tx = 2 and y ≤ min {x, h2 (x, 2)}}

Note that h1 (x, 1) > h2 (x, 1) so D11 can be written as
D11 = {(y, τy)|τy = 1, tx = 1 and y ≤ min {x, h2 (x, 1)}}.

We next show that h2 (x, 2) > h2 (x, 1) for all x such that h2 (x, 2) > x∗. From Section 3

we know that h2 (x, 2) ≥ h2 (x, 1) so we only need to preclude h2 (x, 2) = h2 (x, 1). Assume by

contradiction that h2 (x, 2) = h2 (x, 1). Since x > x∗ we have D12 ⊂ D11 and D22 ⊆ D21. Moreover,
any y ∈ (x∗, h2 (x, 2)) is strictly lower than h2 (x, 2) which equals E [y|y ∈ SA,D2 ]. From part (i)

of the Generalized Minimum Principle (Lemma 2) we have h2 (x, 2) > h2 (x, 1) which leads to a

contradiction. Therefore, for all values of x such that h2 (x, 2) > x∗ we have h2 (x, 2) > h2 (x, 1).

The last thing to be shown is that there exists an x′ such that h2 (x, 2) > x∗ for any x ≥ x′.

This is immediate given that ∂
∂xh2 (x, 2) = β1 (> 0) for value of x such that h2 (x, 2) < x∗ (see

Claim A.2). Note that x′ can be, but is not necessarily, greater than x∗.

QED Proposition 1.

A.3 Omitted Proofs.

In this section we provide proofs for the lemmas and claims in the previous section.

A.3.1 Proof of Claim A.2

Claim A.2 above is:
Suppose that investors believe that the manager follows a threshold reporting strategy as in
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Proposition 1. Then, for p ≤ 0.77:

∂

∂x
h1 (x, 1)

{
= β1 if h1 (x, 1) < x

∈ (2β1 − 1, β1) if h1 (x, 1) > x
,

∂

∂x
h2 (x, 2)

{
= β1 if h2 (x, 2) < x∗

∈ (2β1 − 1, 2β1) if h2 (x, 2) > x∗
, (3)

∂

∂x
h2 (x, 1)

{
= β1 if h2 (x, 1) < x

∈ (2β1 − 1, β1) if h2 (x, 1) > x
.

Proof of Claim A.2

In the proof we use a terminology "non-binding" and "binding" case to distinguish between

ht (x, 1) ≤ x and ht (x, 1) > x. These cases are qualitatively different because in general investors

infer that if τy = 1 then y ≤ x and y < ht (x, 1). In the "non-binding" the second inequality implies

the first. In the "binding" case, y ≤ x implies the second inequality.

We start the proof with ∂
∂xh1 (x, 1).

Lemma A.6 For p ≤ 0.95, ∂
∂xh1 (x, 1)

{
= β1 if h1 (x, 1) < x

∈ (2β1 − 1, β1) if h1 (x, 1) > x

Proof. As shown in Section 3, for any x that is disclosed at t = 1 such that h1 (x, 1) < x (the

non binding case), if τy = 1 the agent is myopic with respect to the disclosure of y and discloses

it whenever y ≥ h1 (x, 1). This case is captured by Example 1 in Section A.1: an increase in the

mean of the distribution results in an identical increase in both the equilibrium beliefs and the

equilibrium disclosure threshold. The quantitative difference in our setting is that a unit increase

in x increases investors’beliefs about y by β1 (rather than by 1), and therefore also increases both

the beliefs about y and the threshold for disclosure of y by β1. As a result, for h1 (x, 1) < x we

have ∂
∂xh1 (x, 1) = β1.4

In the binding case, i.e., for all x such that h1 (x, 1) > x (if such x > x∗ exists) we know that

if τy = 1 then y < x (otherwise, the manager would have disclosed y). An increase in x increases

the beliefs about y at a rate of β1, while the increase in the constraint/disclosure threshold (y < x)

increases the beliefs about y at a rate of 1. Therefore, this is a special case of Example 3 in Section

A.1, where we increase the mean by β1 and z′ (µ) ≡ c = 1
β1
. From Example 3 we know that an

increase in the beliefs about y given a unit increase in x (which is equivalent to an increase of β1
4Since both the beliefs about Y and the disclosure threshold increase at the same rate, the probability that the

agent learned y at t = 1 but did not disclose it, conditional on him disclosing x at t = 1, is independent of x.
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in the value of µ in Example 3) is given by β1
(
1 + (c− 1) ∂

∂zh
stat (µ, z)

)
. Substituting c = 1

β1
and

rearranging terms yields

∂

∂x
h1 (x, 1) = β1 + (1− β1)

∂

∂z
hstat (µ, z) .

Since ∂
∂zh

stat (µ, z) ∈ (−1, 0) (recall Claim A.1), we have ∂
∂xh1 (x, 1) ∈ (2β1 − 1, β1).

Analyzing the effect of x on h2 (x, 2) and h2 (x, 1) is more involved and more technical. The

reason these cases are more complicated is that when pricing the firm at t = 2 investors do not

know whether the manager learned y at t = 1 or at t = 2 (in the case where the agent did in

fact learn y). Investors’inferences about y depend on when the agent learned it, and therefore the

analysis of h2 (x, 2) and h2 (x, 1) requires stochastic disclosure thresholds. This is where we use

Lemma A.2.

We next analyze h2 (x, 2).

When an agent discloses x > x∗ at t = 2 investors know that τx = 2 (otherwise the agent would

have disclosed x at t = 1). Investors’beliefs about the manager’s other signal at t = 2 are set

as a weighted average of three scenarios: τy = 1, τy = 2 and τy > 2. We start by describing the

disclosure thresholds conditional on each of these three scenarios.

(i) If τy > 2 the agent cannot disclose y and therefore the disclosure threshold is not relevant.

In the pricing of the firm conditional on τy > 2 investors use E [y|x] which equals β1x.

(ii) If τy = 2 investors know that y < h2 (x, 2) and also that y < x. We need to distinguish

between the binding case and the non-binding case. In the non-binding case, where h2 (x, 2) ≤ x,

investors know that y < h2 (x, 2), so conditional on τy = 2 investors set their beliefs as if the manager

follows a disclosure threshold of h2 (x, 2). In the binding case, where h2 (x, 2) > x, investors know

that y < x, so it is equivalent to a disclosure threshold of x.

(iii) If τy = 1 investors know that y < x∗ (where x∗ ≤ x) and also y < h2 (x, 2). Here again we

should distinguish between a non-binding case, in which h2 (x, 2) < x∗ (if such case exists), and a

binding case in which h2 (x, 2) > x∗. In the non-binding case the disclosure threshold is h2 (x, 2).

In the binding case the disclosure threshold is x∗, which is independent of x.

The next lemma provides an upper and lower bound for ∂
∂xh2 (x, 2) and since the proof uses

generic disclosure thresholds for each of the three scenarios above, it applies also to ∂
∂xh2 (x, 1).

Lemma A.7 For any p < 0.77

∂

∂x
h2 (x, 2) ,

∂

∂x
h2 (x, 1) ∈ (2β1 − 1, 2β1) .

Proof of Lemma A.7.

In this proof we use a slightly different notation, as part of the proof is more general than our

setting. Note that the first part of this proof is quite similar to the proof of Lemma A.2.
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Suppose that x and y have joint normal distribution and the agent is informed about y with

probability p and uninformed with probability 1 − p.5 Conditional on being informed the agent’s
disclosure strategy is assumed to be as follows: with probability λi, i ∈ {1, ..,K} , he discloses if
his type is above zi (x), where the various zi (x) are determined exogenously such that zi (x) ≤
h (x, {zi(x)}) for all i (which always holds in our setting). Note that

∑K
i=1 λi = p. Let’s denote the

conditional expectation of y given x and given the disclosure thresholds, zi (x), by h (x, {zi(x)}).
By applying Bayes rule, h (x, {zi(x)}) is given by:

h (x, {zi(x)}) =
(1− p)E [y|x] +

∑K
i=1 λi

∫ zi(x)
−∞ yφ (y|x) dy

(1− p) +
∑K

i=1 λiΦ (zi (x) |x)
.

Taking the derivative of h (x, {zi(x)}) with respect to x and applying some algebraic manipu-
lation (recall that ∂E[y|x]

∂x = β1) yields:

d

dx
h (x, {zi(x)}) = β1 +

∑K
i=1 λi (z′i (x)− β1)φ (zi (x) |x) (zi (x)− h (x, {zi(x)}))

(1− p) +
∑K

i=1 λiΦ (zi (x) |x)
. (4)

We start by proving the supremum of d
dxh (x, {zi(x)}).

Given that z′i (x) ≥ 0 and (zi (x)− h (x, {zi(x)})) ≤ 0 for all i ∈ {1, ..,K} we have

d

dx
h (x, {zi(x)}) ≤ β1 +

β1
∑K

i=1 λiφ (zi (x) |x) (h (x, {zi(x)})− zi (x))

(1− p) +
∑K

i=1 λiΦ (zi (x) |x)

≤ β1 + max
zi≤h(x)
i∈{1,...,K}

β1
∑K

i=1 λiφ (zi|x) (h (x, {zi(x)})− zi)
(1− p) +

∑K
i=1 λiΦ (zi|x)

.

Due to symmetry, for all i ∈ {1, ..,K} the maximum is achieved at some zi (x) = ẑ (x), which

is the same for all i. To see this, note that the FOC of the maximization with respect to zi (x) is

0 =
(
φ′ (zi (x) |x) (h (x, {zi(x)})− zi (x))− φ (zi (x) |x)

)(
(1− p) +

K∑
i=1

λiΦ (zi (x) |x)

)

−
(

K∑
i=1

λiφ (zi (x) |x) (h (x, {zi(x)})− zi (x))

)
φ (zi (x) |x) .

Since φ′ (zi (x) |x) = −α (zi (x)− β1x)φ (zi (x) |x) (for some constant α > 0), this simplifies to

−α (zi (x)− β1x) (h (x, {zi(x)})− zi (x)) =

∑K
i=1 λiφ (zi (x) |x) (h (x, {zi(x)})− zi (x))

(1− p) +
∑K

i=1 λiΦ (zi (x) |x)
+ 1.

In the range zi (x) ≤ h (x, {zi(x)}) ≤ β1x, the LHS is decreasing in zi (x).6 The RHS is the

5We apologize for the abuse of notation: the p in this proof corresponds to p+ p (1− p) in our model since this is
the probability that the agent is informed about signal Y in the beginning of period 2.

6Since zi (x) ≤ h (x, {zi(·)}) also h (x, {zi(·)}) ≤ E [x|y] = β1x.
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same for all i. Therefore, the unique solution to this system of FOC is for all zi (x) to be equal

(and note that the maximum is achieved at an interior point since at zi (x) = h (x, {zi(x)}) the
LHS is zero and the RHS is positive; and as zi (x) goes to −∞ the LHS goes to +∞ while the RHS

is bounded).

Let ẑ (x) be the maximizing value. Then

d

dx
h (x, {zi(x)}) ≤ β1 +

β1
∑K

i=1 λiφ (ẑ (x) |x) (h (x, {zi(x)})− ẑ (x))

(1− p) + pΦ (ẑ (x) |x)

= β1 +
pβ1φ (ẑ (x) |x) (h (x, {zi(x)})− ẑ (x))

(1− p) + pΦ (ẑ (x) |x)
.

The right hand side of the above inequality is identical to the slope in a Dye setting with exoge-

nous disclosure threshold with probability of being uninformed (1− p) and a disclosure threshold
ẑ (x), constant in x (see the discussion in Section A.1). In such a setting, we can think of the effect

of a marginal increase in x as the sum of two effects. The first effect is a shift by β1 in both the

distribution and the disclosure threshold. This will increase h (x) by β1. The second effect is a

decrease in the disclosure threshold by β1 (as the disclosure threshold does not change in x). Since

ẑ (x) < β1x we are in the decreasing part of the beliefs about y given no disclosure (to the left

of the minimum beliefs). Therefore, the decrease in the disclosure threshold increases the beliefs

about y by the change in the disclosure threshold times the slope of the beliefs about y given no

disclosure. Since for p < 0.95 the slope of the beliefs about y given no disclosure is greater than

−1, the latter effect increases the beliefs about y by less than β1. The overall effect is therefore

smaller than 2β1.

Next we prove the infimum of d
dxh (x, {zi(x)}).

Equation (4) captures a general case with any number of potential disclosure strategies. In our

particular case K = 1 where i = 1 represents the case of τy = 1 and i = 2 represents the case of

τy = 2. So, in our setting equation (4) can be written as

d

dx
h (x, {zi(x)}) = β1 +

λ1 (z′1 (x)− β1)φ (z1 (x) |x) (z1 (x)− h (x, {zi(x)}))
(1− p) +

∑2
i=1 λiΦ (zi (x) |x)

+
λ2 (z′2 (x)− β1)φ (z2 (x) |x) (z2 (x)− h (x, {zi(x)}))

(1− p) +
∑2

i=1 λiΦ (zi (x) |x)
.

When calculating h2 (x, 2) and h1 (x, 1) in our setting, the disclosure threshold, zi (x), in any

possible scenario (the binding and non-binding case for both τy = 1 and τy = 2) takes one of the

following three values: hi (x, ·) , x or x∗. Note that whenever zi (x) = h (x, {zi(x)}) we have

(z′i (x)− β1)φ (zi (x) |x) (zi (x)− h (x, {zi(x)}))
(1− p) +

∑K
i=1 λiΦ (zi (x) |x)

= 0.

For the remaining two cases (zi (x) = x and zi (x) = x∗), for all i ∈ {1, 2} we have z′i (x) ≤ 1
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and (zi (x)− h (x, {zi(x)})) ≤ 0. This implies

d

dx
h (x, {zi(x)}) ≥ β1 −

(1− β1)
∑K

i=1 λiφ (zi (x) |x) (h (x, {zi(x)})− zi (x))

(1− p) +
∑K

i=1 λiΦ (zi (x) |x)
.

Using the same symmetry argument for the first order condition as before, d
dxh (x, {zi(x)}) is

minimized for some zmin (x), and hence,

d

dx
h (x, {zi(x)}) ≥ β1 +

p (1− β1)φ
(
zmin (x) |x

) (
h (x, {zi(x)})− zmin (x)

)
(1− p) + pΦ (zmin (x) |x)

.

The right hand side of the above inequality is identical to the slope in a Dye setting with exoge-

nous disclosure threshold in which: the probability of being uninformed is (1− p), the threshold is
zmin (x) , and ∂

∂xz
min (x) = 1 (see the discussion in Section A.1). In such a setting, we can think of

the effect of a marginal increase in x as the sum of two effects. The first is a shift by β1 in both

the distribution and the disclosure threshold. This will increase beliefs about y by β1. The second

effect is an increase in the disclosure threshold by (1− β1) (as the disclosure threshold increases by
1). Since zmin (x) < β1x we are in the decreasing part of the beliefs about y given no disclosure (to

the left of the minimum beliefs). Therefore, the increase in the disclosure threshold decreases the

beliefs about y by the change in the disclosure threshold, (1− β1), times the slope of the beliefs
about y given no disclosure. Since for p < 0.95 the slope of the beliefs about y given no disclosure

is greater than −1, the latter effect decreases the beliefs about y by less than (1− β1). The overall
effect is therefore greater than β1 − (1− β1) = 2β1 − 1.

The reasoning we have presented is independent of the actual thresholds, so the bounds apply

to h2 (x, 1) as well.

This covers the range h2 (x, 2) ≥ x∗.
For the case h2 (x, 2) < x∗ (if such case exists) we claim that ∂

∂xh2 (x, 2) = β1.

To see this, note that h2 (x, 2) is a weighted average of the beliefs about y over the three scenarios

τy = 1, τy = 2 and τy > 2. That is, we can write

h2 (x, 2) = λ1g1 + λ2g2 + (1− λ1 − λ2) g3,

where λi = Pr (τy = i|NDy) and gi = E [y|τy = i,NDy] for i = 1, 2, 3 (where i = 3 represents

the case of τy > 2). NDy stands for No-Disclosure of y (where x was disclosed at t = 2). Since

h2 (x, 2) < x∗ the disclosure threshold for both τy = 2 and τy = 1 is h2 (x, 2).

Assume, by contradiction, that ∂
∂xh2 (x, 2) > β1. Then, an increase in x increases h2 (x, 2)

by more than the increase in the expectation of y (which is β1) and therefore, the probability of

obtaining a signal below the disclosure threshold increases for both the first and the second period.

This implies that both λ1 and λ2 increase. In addition, note that the increase in g1 and in g2 is

lower than ∂
∂xh2 (x, 2) and the increase in g3 is β1 - which is also lower than ∂

∂xh2 (x, 2). The fact

that both g1 and g2 are lower than g3 leads to a contradiction, since an increase in x puts more
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weight on the lower values (λ1 and λ2 increase) and in addition all the values g1, g2, g3 increase at

a rate weakly lower than the assumed increase in h2 (x, 2). A symmetric argument can be made

when assuming by contradiction that ∂
∂xh2 (x, 2) < β1. The case of ∂

∂xh2 (x, 2) = β1 does not lead

to a contradiction, as an increase in x does not affect the probabilities λ1, λ2 and the derivatives

of g1 and g2 and g3 are all equal to β1.

Finally, we analyze h2 (x, 1).

Recall that Lemma A.7 applies also to h2 (x, 1). However, for h2 (x, 1) we can show tighter

bounds.

1) If h2 (x, 1) < x (the non-binding case) then when pricing the firm at t = 2 investors know

that if the agent learned y (at either t = 1 or t = 2) then y < h2 (x, 1). If the agent did not learn y

then investors use in their pricing E [Y |x] = β1x. So, the beliefs about y are a weighted average of

E [Y |y < h2 (x, 1)] and E [Y |x] = β1x. This is similar to a Dye (1985) and Jung and Kwon (1988)

setting, and therefore, in equilibrium we have ∂
∂xh2 (x, 1) = β1.

2) Next, we show that for x such that h2 (x, 1) > x (if such case exists) ∂
∂xh2 (x, 1) ∈ (2β1 − 1, β1).

The argument is similar to the one we made in the proof of Lemma A.6 (that ∂
∂xh1 (x, 1) ∈

(2β1 − 1, β1), for x such that h1 (x, 1) > x). First note that for h2 (x, 1) > x investors’beliefs about

y conditional on that the agent has learned y are independent of whether he learned y at t = 1 or

at t = 2. Moreover, given that τy ≤ 2 investors know that y < x. So, from investors’perspective,

it doesn’t matter if the agent learned y at t = 1 or at t = 2. Their pricing, h2 (x, 1), will reflect

a weighted average between E [Y |y < x] and E [Y |τy > 2, x] = β1x. From here on the proof is

qualitatively the same as in the proof for ∂
∂xh1 (x, 1) ∈ (2β1 − 1, β1), where the only quantitative

difference is the probability that the agent learned y.

QED Claim A.2

A.3.2 Lemma A.3

Proof of Lemma A.3. For simplicity of exposition, we partition the support of x into two cases:
realizations of x for which β2 (x+ h2 (x, 2)) ≥ P2 (∅) and for which β2 (x+ h2 (x, 2)) < P2 (∅).7

Case I - β2 (x+ h2 (x, 2)) ≥ P2 (∅) (i.e. an agent that does not learn the second signal will prefer
to disclose x at t = 2)

Rewriting E [U |τx = 1, τy 6= 1, tx = 1, x]− E [U |τx = 1, τy 6= 1, tx 6= 1] yields:

β2 [x+ h1 (x, 1) + h2 (x, 1)− h2 (x, 2)]− P1 (∅)

+ pβ2

[∫ ∞
h2(x,1)

(y − h2 (x, 1)) f (y|x) dy −
∫ ∞
h2(x,2)

(y − h2 (x, 2)) f (y|x) dy −
∫ ∞
yH(x)

(h2 (y, 2)− x) f (y|x) dy

]
.

7Note that on the equilibrium path we are always in case I, i.e., β2 (x+ h2 (x, 2)) ≥ P2 (∅).
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The derivative of this expression with respect to x has the same sign as

D = 1 +
∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2)) + p [A+B + C] , (5)

where

A =
∂

∂x

∫ ∞
h2(x,1)

(y − h2 (x, 1)) f (y|x) dy

B = − ∂

∂x

∫ ∞
h2(x,2)

(y − h2 (x, 2)) f (y|x) dy

C = − ∂

∂x

∫ ∞
yH(x)

(h2 (y, 2)− x) f (y|x) dy.

To evaluate this derivative we use the following, easy to obtain, equations:

∂

∂x
f (y|x) = −β1

∂

∂y
f (y|x) ,

∂

∂x
(F (y (x) |x)) = f (y (x) |x)

(
∂

∂x
y (x)− β1

)
.

Next, we analyze the three terms A,B, and C. Note that the derivative with respect to the

limits of integrals for A, B and C is zero.

A = −∂h2 (x, 1)

∂x
(1− F (h2 (x, 1) |x))− β1

∫ ∞
h2(x,1)

(y − h2 (x, 1))
∂

∂y
f (y|x) dy.

Integrating by parts (w.r.t. y) the term
∫∞
h2(x,1)

(y − h2 (x, 1)) ∂
∂yf (y|x) dy yields:

∫ ∞
h2(x,1)

(y − h2 (x, 1))
∂

∂y
f (y|x) dy

= − (h2 (x, 1)− h2 (x, 1)) f (h2 (x, 1) |x)−
∫ ∞
h2(x,1)

f (y|x) dy = − (1− F (h2 (x, 1) |x)) .

Plugging it back to A we get

A = −
(
∂h2 (x, 1)

∂x
− β1

)
(1− F (h2 (x, 1) |x)) .

Next, we calculate B:

B =

∫ ∞
h2(x,2)

h2 (x, 2)

∂x
f (y|x) dy + β1

∫ ∞
h2(x,2)

(y − h2 (x, 2))
∂

∂y
f (y|x) dy

=

(
∂h2 (x, 2)

∂x
− β1

)
(1− F (h2 (x, 2) |x)) .
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Finally,

C =
(
1− F

(
yH (x) |x

))
+ β1

∫ ∞
yH(x)

(h2 (y, 2)− x)
∂

∂y
f (y|x) dy

=
(
1− F

(
yH (x) |x

))
− β1

∫ ∞
yH(x)

∂h2 (y, 2)

∂y
f (y|x) dy.

Substituting A, B and C back to (5) and re-arranging terms yields:

D = 1 +
∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

− p

 (∂h2(x,1)∂x − β1
)

(1− F (h2 (x, 1) |x)) +
(
∂h2(x,2)

∂x − β1
)

(1− F (h2 (x, 2) |x)) +(
1− F

(
yH (x) |x

))
− β1

∫∞
yH(x)

∂h2(y,2)
∂y f (y|x) dy


= (1− p)

(
1 +

∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+ p

[
1 + ∂h1(x,1)

∂x + ∂h2(x,1)
∂x F (h2 (x, 1) |x)− F (h2 (x, 1) |x)β1 − ∂h2(x,2)

∂x F (h2 (x, 2) |x)

+F (h2 (x, 2) |x)β1 +
(
1− F

(
yH (x) |x

))
− β1

∫∞
yH(x)

∂h2(y,2)
∂y f (y|x) dy

]

Additional rearranging yields:

D = (1− p)
(

1 +
∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+ p

[
1 +

∂h1 (x, 1)

∂x
+

(
∂h2 (x, 1)

∂x
− β1

)
F (h2 (x, 1) |x)−

(
∂h2 (x, 2)

∂x
− β1

)
F (h2 (x, 2) |x)

]
+ pβ1

∫ ∞
yH(x)

1

β1
− ∂h2 (y, 2)

∂y
f (y|x) dy.
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Since ∂h2(x,1)
∂x ≤ β1 (see Claim A.2) and F (h2 (x, 2) |x) ≥ F (h2 (x, 1) |x) we have

D ≥ (1− p)
(

1 +
∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+ p

[
1 +

∂h1 (x, 1)

∂x
+

(
∂h2 (x, 1)

∂x
− ∂h2 (x, 2)

∂x

)
F (h2 (x, 2) |x)

]
+ pβ1

∫ ∞
yH(x)

1

β1
− ∂h2 (y, 2)

∂y
f (y|x) dy

= (1− p (1− F (h2 (x, 2) |x)))

(
1 +

∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+

+ p (1− F (h2 (x, 2) |x))

(
1 +

∂h1 (x, 1)

∂x

)
+ pβ1

∫ ∞
yH(x)

1

β1
− ∂h2 (y, 2)

∂y
f (y|x) dy

= (1− p (1− F (h2 (x, 2) |x)))

(
1 +

∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+

+ p

∫ yH(x)

h2(x,2)

(
1 +

∂h1 (x, 1)

∂x

)
f (y|x) dy + p

∫ ∞
yH(x)

2 +
∂h1 (x, 1)

∂x
− β1

∂h2 (y, 2)

∂y
f (y|x) dy

≥ (1− p (1− F (h2 (x, 2) |x)))

(
1 +

∂

∂x
(h1 (x, 1) + h2 (x, 1)− h2 (x, 2))

)
+ p

∫ ∞
yH(x)

2 +
∂h1 (x, 1)

∂x
− β1

∂h2 (y, 2)

∂y
f (y|x) dy

So, the following two conditions are suffi cient for the proof of Case I.

For all x:

1. ∂
∂xh1 (x, 1) + ∂

∂xh2 (x, 1) ≥ ∂
∂xh2 (x, 2)− 1.

2. ∂h2(y,2)
∂y ≤

(
2 + ∂h1(x,1)

∂x

)
1
β1
for any y > x.

Case II - β2 (x+ h2 (x, 2)) < P2 (∅) (i.e. an agent that does not learn the second signal will prefer

to not disclose x at t = 2)

The analysis of Case I was for generic bounds of the integrals h2 (x, 1) and yH (x). The difference

between Case I and Case II is that the price at t = 2 given no disclosure of y (which occurs when

the agent does not obtain a signal y or obtains a low realization of y) is P2 (∅) in Case II and
β2 (x+ h2 (x, 2)) in Case I. Therefore, the expected payoff of the agent in Case II is less sensitive to

x than in Case I. As a result, the fact that for values of x for which β2 (x+ h2 (x, 2)) ≥ P2 (∅) (in
Case I) ∂

∂x(E [U |τx = 1, τy 6= 1, tx = 1]− E [U |τx = 1, τy 6= 1, tx 6= 1]) > 0 implies that it also holds

for β2 (x+ h2 (x, 2)) < P2 (∅).

To summarize the analysis of Partially Informed Agents, conditions 1 and 2 above are suffi cient

for both Case I and Case II. Claim A.2 established that condition 2 above holds.

So, it is only left to show that also condition 1 holds. For any β1 > 1
2 , it is immediate to see

that condition 1 holds since the LHS of condition 1 is greater than 2 (2β1 − 1) > 0 and the RHS
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is less than 2β1 − 1 (again by Claim A.2) For the case β1 < 1
2 we use the assumption that x

∗

satisfies h2 (x∗, 1) ≤ x∗. For such x∗ we know from Claim A.2 that ∂
∂xh2 (x, 1) = β1 for all x ≥ x∗.

Substituting this into condition 1 above yields ∂
∂xh1 (x, 1) +β1 ≥ ∂

∂xh2 (x, 2)− 1 which given Claim

A.2 is always satisfied.
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